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Abstract

In this paper, we introduce and study a novel cohesive subgraph

model, named 𝑘-trine, to address the defects in the classical 𝑘-core

and 𝑘-truss models. Our analysis shows that the 𝑘-trine is a more

feasible model for capturing cohesive subgraphs by containing the

strongly connected vertices. We analyze the theoretical properties

of 𝑘-trine and propose efficient algorithms to compute the 𝑘-trine.

Particularly, we design batch processing algorithms to update the

decomposition of 𝑘-trine against highly dynamic graphs. Extensive

experiments on real-world networks validate the effectiveness of

the 𝑘-trine model and the efficiency of our algorithms.

CCS Concepts

• Theory of computation → Dynamic graph algorithms; •

Human-centered computing→ Social networks.
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1 Introduction

Graphs are widely used for modeling large-scale entities and their

relations in different areas, e.g. social networks [32], the World

Wide Web [17], collaboration networks [4], and biology networks

[7]. As a fundamental graph problem, cohesive subgraph mining

is to find a group of well-connected vertices, widely used in differ-

ent applications, e.g., community discovery [21, 44, 47], predicting

network collapse [30], anomaly detection [37], optimizing network

resilience [38], and user engagement analysis [27, 45].

The 𝑘-core is a widely studied cohesive subgraph model, defined

as a maximal subgraph in which each vertex has at least 𝑘 neighbors

inside [28, 35]. Although the computation cost is linear, 𝑘-core is

often too relaxed and is regarded as a seedbed to find subgraphs

with higher cohesiveness. Since real-world connections often have

different strengths, the 𝑘-truss model is proposed by preserving

some strong edges. As the strength (i.e., support) of an edge is often

estimated by the number of triangles containing it [14, 16, 24, 36],

the 𝑘-truss is defined as a maximal subgraph 𝑆 where each edge is

contained in at least 𝑘 − 2 triangles in 𝑆[10].

Although 𝑘-truss is an enhanced model compared with 𝑘-core,

we think a new model is also needed to find/analyze communities

from a different angle: 1) Real communities are usually vertex-

oriented, i.e., the existence of an edge is dependent on the existence

of its endpoints, but the 𝑘-truss is defined on edges. For instance,

𝑘-truss may remove a “weak” edge even if its endpoints belong to

𝑘-truss; 2) The removal of “weak” edges will decrease the supports

of other edges excessively s.t. some strong edges are regarded as

weak and then removed; and 3) Some strongly engaged nodes are

excluded from 𝑘-truss due to the contagious underestimation of tie

strength and iterative removal of “weak” edges.

To address the above concerns, we propose a novel cohesive

subgraph model, named 𝑘-trine, defined as a maximal subgraph 𝑆

in which the support of each vertex is at least 𝑘 in 𝑆 . The support of

a vertex 𝑣 in a subgraph 𝑆 is the sum of the supports of 𝑣 ’s incident

edges in 𝑆 , i.e., 2 times the number of triangles containing 𝑣 in 𝑆 .

The focus of the 𝑘-trine model is different from the 𝑘-truss model:

The truss requires each vertex to have at least one strong edge, while

the trine additionally captures strongly-engaged vertices including

those with many weak edges. Naturally, we find each 𝑘-truss is

contained by the (𝑘 − 2) (𝑘 − 1)-trine (Prop. 2). Our case study on
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Figure 1: The Difference between 𝑘-Trine and 𝑘-Truss

DBLP shows that any author who published one paper with at least

6 authors belongs to the 6-truss. However, an author who published

many papers with less than 6 authors can be overlooked by the

6-truss but included in the 20-trine (as Exp-2 of Sec. 6.1).

In trine decomposition, we compute the unique triness for each

vertex 𝑣 , i.e., the largest 𝑘 with 𝑘-trine containing 𝑣 . We can imme-

diately retrieve a 𝑘-trine by the vertices with triness no less than 𝑘

and the incident edges. Since the vertex support can be much larger

than edge support, the 𝑘-trine has finer granularity in decomposing

a graph. In existing works, the decomposition number of a node,

e.g., coreness, is the “best practice” to estimate its engagement in

the network [45]. Since the maximum triness of a network is signif-

icantly larger than coreness and trussness, it can categorize users

into finer groups for user engagement study (as Exp-1 of Sec. 6.1).

Fig. 1 shows a toy graph𝐺 in which edge colors represent differ-

ent support values in 𝐺 . 𝐺 itself is 3-truss or 2-trine. The 𝑘-truss

can only extract a 4-truss from𝐺 where 𝑣6 is classified as the same

as 𝑣7 and 𝑣8 but 𝑣6 is better engaged in𝐺 . Our 𝑘-trine model divides

the graph into three parts, from 2-trine, 4-trine to 6-trine, where

𝑣6, as a part of 4-trine, is different from 𝑣7 and 𝑣8.

In this paper, we also study the computational problems for

𝑘-trine, including the computation of 𝑘-trine with a given 𝑘 , the

trine decomposition on static graphs, and the trine maintenance to

update the triness of each vertex against edge insertions/removals.

Challenges. To facilitate efficient computations, we should ana-

lyze the properties of 𝑘-trine in-depth, including its relations with

𝑘-core and 𝑘-truss. The computation on static graphs should mini-

mize the enumeration of triangles which may dominate the cost.

The challenges for the trine maintenance problem are significant:

1) We prove that the maintenance problem is unbounded for edge

insertions (Def. 8 and Thm. 1); 2) The finer granularity of trine

decomposition lends to the fact that a few edge insertions/removals

can affect massive vertices; and 3) Batch processing is needed for

processing large data streams, but it involves more complex changes

compared with single-edge updates.

Our Solutions. We compute the 𝑘-trine on the subgraph of

⌊
√
𝑘 + 0.25 + 0.5⌋-core based on our analysis and further remove

the unqualified vertices. For trine decomposition, we iteratively

remove the vertices with insufficient supports.

As for trine maintenance, we first reduce the problem to a vertex-

order maintenance problem s.t. a novel framework is proposed to

handle batch updates. For edge insertion, our algorithm enumerates

the triangles at most twice for the vertices with potential triness

updates and reposition the vertices in the order at most once. Con-

sidering that the domination cost is from triangle enumeration,

we propose a pruning technique by delaying the update of each

vertex’s neighbor information to reduce the actual number of enu-

merated triangles. We also propose an edge removal algorithm that

is compatible with the insertion algorithm and bounded regarding

the removed edges and the changes of triness.

Contributions. The contributions of the paper are as follows.

• We formally introduce the 𝑘-trine model
1
, study its proper-

ties, and validate its effectiveness in real social networks.

• The 𝑘-trine computation algorithms on static graphs are de-

signedwith the properties of𝑘-trine. Besides, we define the𝑘-

trine maintenance problem and analyze its (un)boundedness.

• We reduce the trine maintenance to a vertex-order main-

tenance problem for efficient solutions. Two novel mainte-

nance algorithms are proposed for edge insertions/removals.

We optimize edge insertions by delaying the updates to re-

duce the cost of triangle enumeration.

• Extensive experiments on 10 real-world datasets demon-

strate that the result of 𝑘-trine is more reasonable, the trine

decomposition has a finer granularity, our maintenance al-

gorithms are faster than the decomposition by 1 − 3 orders
of magnitude, for processing 500 inserted/removed edges.

2 Related Work

Due to the diversity of real-world scenarios, different cohesive

subgraphs are proposed and studied, such as clique [2], 𝑘-core [28,

35], 𝑘-truss [10], etc. The theories, algorithms, and applications of

cohesive subgraphs are surveyed in the literature, e.g., [8, 12, 26, 48].

Core-related Models and Algorithms. The 𝑘-core is a widely

studied relaxation of the clique model and the seedbed for comput-

ing cohesive subgraphs [28, 35]. Core decomposition is to compute

the 𝑘-core with every possible 𝑘 . On static graphs, core decomposi-

tion runs in 𝑂 (𝑚) time by using bin-sort [5]. On dynamic graphs,

the core maintenance problem is first studied with single-edge up-

dates [20, 33, 34] and also with batch updates [50]. Some studies

propose parallel algorithms for 𝑘-core computation, e.g., [23, 42].

In addition, 𝑘-core-related models are extensively studied in

different graphs and scenarios [3, 15, 22, 25, 46, 47]. The (𝑘, ℎ)-core

is studied in [3] with maintenance algorithms on temporal graphs.

The (𝛼, 𝛽)-core is a variant of the 𝑘-core on bipartite graphs and the

maintenance algorithms are proposed in [22]. Some other models

such as 𝑘-peak [15] and (𝑘, 𝑟 )-core [47] are mainly studied on static

graphs. In contrast to the above models, 𝑘-truss and 𝑘-trine further

consider tie strength in computing cohesive subgraphs.

Truss-related Models and Algorithms. As triangles represent

stable and strong vertex relations [43], 𝑘-truss is defined as a max-

imal subgraph in which each edge is contained in at least 𝑘 − 2

triangles in the subgraph [10]. The static truss decomposition runs

1
As discussed in Sec. 2, although 𝑘-trine is a special case of (𝑘,Φ)-core, we are the
first to study the 𝑘-trine as a cohesive subgraph model including its effectiveness and

the efficient algorithms. Note that (𝑘,Φ)-core is used solely for optimizing densest

subgraph computation [13].
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Table 1: Summary of Notations

Notation Definition

𝐺 an unweighted and undirected graph

𝑉 (𝐺 ) ; 𝐸 (𝐺 ) the vertex/edge set of𝐺

𝐺 [𝑉 ] the subgraph of𝐺 induced by vertex set𝑉

△(𝑢, 𝑣, 𝑤 ) a triangle containing vertices 𝑢, 𝑣 and 𝑤

𝑁𝐺 (𝑣) the neighbor set of vertex 𝑣 in𝐺

𝑑𝑒𝑔𝐺 (𝑣) the degree of vertex 𝑣 in𝐺

𝑠𝑢𝑝𝐺 (𝑢, 𝑣) the edge support of (𝑢, 𝑣) in 𝐺 , i.e. 𝑠𝑢𝑝𝐺 (𝑢, 𝑣) =

| {△ (𝑢, 𝑣, 𝑤 ) | 𝑤 ∈ 𝑉 (𝐺 ) } |
𝑠𝑢𝑝𝐺 (𝑣) the vertex support of 𝑣 in 𝐺 , i.e. 𝑠𝑢𝑝𝐺 (𝑣) =∑

𝑢∈𝑁𝐺 (𝑣) 𝑠𝑢𝑝𝐺 (𝑢, 𝑣)
𝑇𝑘 (𝐺 ) the 𝑘-trine of𝐺

𝑡 (𝑣) the triness of vertex 𝑣 in𝐺

⪯ a vertex set ordered by the vertex deletion sequence in

trine decomposition, or the sequence of vertex deletion

in trine decomposition

⪯𝑣 a subset of ⪯ formed by vertex 𝑣 and the vertices behind

𝑣 in ⪯, i.e., ⪯𝑣= {𝑢 | 𝑣 ⪯ 𝑢 ∨𝑢 = 𝑣}
Φ𝑘 a subset of ⪯ formed by every vertex 𝑣 ∈ ⪯ with 𝑡 (𝑣) =

𝑘 , i.e., Φ𝑘 = {𝑣 | 𝑣 ∈ ⪯ ∧ 𝑡 (𝑣) = 𝑘 }
𝑟𝑒𝑚 (𝑣) the remaining support of 𝑣, i.e., 𝑟𝑒𝑚 (𝑣) = 𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣)
𝑒𝑥𝑡 (𝑣) the extra support of 𝑣, i.e., 𝑒𝑥𝑡 (𝑣) = 𝑠𝑢𝑝𝐺 ′ [⪯𝑣 ] (𝑣) −

𝑟𝑒𝑚 (𝑣) where𝐺 ′ is the updated graph

𝑡𝑠 (𝑣) the support of 𝑣 in 𝑠𝑢𝑝𝑇𝑡 (𝑣) (𝑣) , i.e., 𝑡𝑠 (𝑣) = 𝑠𝑢𝑝𝑇𝑡 (𝑣) (𝑣)

in𝑂 (𝑚1.5) time by using the bin-sort [41]. Truss maintenance algo-

rithms are proposed in [16] to handle single-edge updates. Batch-

update algorithms are proposed in [49] which is the state-of-the-art

for truss maintenance. There are also some truss-related models,

such as the (𝑘𝑐 , 𝑘𝑓 )-truss on directed graphs [39] and the (𝑘, 𝑠)-core
considering weak ties [46]. Nevertheless, the truss-related models

still face some issues: 1) some models are not vertex-oriented, 2)

the inaccurate strength estimation after removing all the weak ties,

and 3) the deletion of some nodes with factually strong ties.

𝑘-Trine for Densest Subgraph Discovery. Due to the efficiency,

some cohesive subgraphs are used to discover the densest subgraph

[29, 31]. To solve the 𝑘-clique densest subgraph problem proposed

by [40], the (𝑘,Φ)-core decomposition [13] (i.e., 𝑘-clique core de-

composition mentioned in [11]) is introduced as a technique to

speed up the computation. Although 𝑘-trine can be regarded as

a special case of (𝑘,Φ)-core when Φ is 3-clique, our paper is the

first to study the effectiveness of 𝑘-trine other than computing the

densest subgraph, and the efficient algorithms on computing the

𝑘-trine with a given 𝑘 and maintain the triness values.

3 Basic Concepts

3.1 Definitions of 𝑘-Trine

Let𝐺 = (𝑉 , 𝐸) denote a simple, undirected, and unweighted graph,

with 𝑛 = |𝑉 | vertices and𝑚 = |𝐸 | edges (assume𝑚 > 𝑛). Given a

node 𝑣 ∈ 𝑉 (𝐺), the neighbor set of 𝑣 in 𝐺 is denoted as 𝑁𝐺 (𝑣) =
{𝑢 | 𝑢 ∈ 𝑉 (𝐺) ∧ (𝑢, 𝑣) ∈ 𝐸 (𝐺)}, and the degree of 𝑣 is denoted as

𝑑𝑒𝑔𝐺 (𝑣) = |𝑁𝐺 (𝑣) |. Let △(𝑢, 𝑣,𝑤) be a triangle in graph 𝐺 , i.e., a

cycle with length 3, formed by the edges (𝑢, 𝑣), (𝑣,𝑤) and (𝑤,𝑢) in
𝐸 (𝐺). The notions used in the paper are summarized in Tab. 1. We
may omit 𝐺 in notations when the context is clear.

Definition 1. Edge Support. The support of an edge 𝑒 = (𝑢, 𝑣)
in𝐺 , denoted by 𝑠𝑢𝑝𝐺 (𝑢, 𝑣) or 𝑠𝑢𝑝𝐺 (𝑒), is the number of triangles in
𝐺 that contain (𝑢, 𝑣), i.e., 𝑠𝑢𝑝𝐺 (𝑢, 𝑣) = |{△(𝑢, 𝑣,𝑤) | 𝑤 ∈ 𝑉 (𝐺)}|.

The support of an edge (𝑢, 𝑣) well estimates the strength of the

edge, e.g., the relation of 𝑢 and 𝑣 is strong if they have multiple

common neighbors [14].

Definition 2. Vertex Support. The support of a vertex 𝑢 in 𝐺 ,
denoted by 𝑠𝑢𝑝𝐺 (𝑢), is the sum of supports from all the edges incident
to 𝑢, i.e., 𝑠𝑢𝑝𝐺 (𝑢) =

∑
𝑣∈𝑁𝐺 (𝑢 ) 𝑠𝑢𝑝𝐺 (𝑢, 𝑣).

The support of a vertex 𝑢 is equivalent to twice the number of

triangles in𝐺 which contain 𝑢. So, the following observation holds.

Observation 1. We have 𝑠𝑢𝑝𝐺 (𝑢) =
∑

𝑣∈𝑁𝐺 (𝑢 ) 𝑠𝑢𝑝𝐺 (𝑢, 𝑣) =
2 · |{△(𝑢, 𝑣,𝑤) | 𝑣,𝑤 ∈ 𝑉 (𝐺)}| for each 𝑢 ∈ 𝑉 (𝐺).

Definition 3. 𝑘-Trine. Given a graph 𝐺 and an integer 𝑘 , a
subgraph 𝑆 is the 𝑘-trine of 𝐺 , denoted by 𝑇𝑘 (𝐺), if (i) the support of
each vertex in 𝑆 is at least 𝑘 , i.e., ∀𝑢 ∈ 𝑉 (𝑆), 𝑠𝑢𝑝𝑆 (𝑢) ≥ 𝑘 ; and (ii) 𝑆
is maximal, i.e., any supergraph of 𝑆 is not a 𝑘-trine except 𝑆 itself.

The 𝑘-trine has the following containment relation.

Observation 2. For every integer 𝑘 , the 𝑘-trine of a graph 𝐺 is
a subgraph of the (𝑘 − 1)-trine of 𝐺 .

According to Obs. 2, each vertex has a unique triness value.

Definition 4. Triness. Given a graph 𝐺 , the triness of a vertex
𝑢 ∈ 𝐺 , denoted by t(u), is the largest 𝑘 such that 𝑢 is in the𝑇𝑘 (𝐺) but
not in 𝑇𝑘+1 (𝐺), i.e., 𝑡 (𝑢) = argmax𝑘∈N 𝑢 ∈ 𝑇𝑘 (𝐺).

The triness of a vertex 𝑢 determines which 𝑘-trine contains 𝑢.

Observation 3. A vertex 𝑢 ∈ 𝑇𝑘 (𝐺) if and only if 𝑘 ≤ 𝑡 (𝑢).

3.2 Properties of 𝑘-Trine

In this subsection, we introduce the properties of 𝑘-trine including

the relations with 𝑘-core and 𝑘-truss models, and the diameter limit.

The proof of all the properties in this section is given in Appx. A.1.

Lemma 1. ∀𝑢 ∈ 𝐺,𝑑𝑒𝑔(𝑢) × (𝑑𝑒𝑔(𝑢) − 1) ≥ 𝑠𝑢𝑝 (𝑢) ≥ 𝑡 (𝑢).
Given a graph 𝐺 , 𝑘-core is defined as the maximal subgraph in

which each vertex has at least 𝑘 neighbors in the subgraph [28, 35].

The relation between 𝑘-trine and 𝑘-core is as follows.

Property 1. Each 𝑘-trine of𝐺 is a subgraph of the ⌊
√
𝑘 + 0.25+

0.5⌋-core of 𝐺 .
Given a graph 𝐺 , 𝑘-truss is defined as the maximal subgraph in

which each edge is contained in at least 𝑘 − 2 triangles in the sub-

graph [10]. The relation between 𝑘-trine and 𝑘-truss is as follows.

Property 2. Each 𝑘-truss of 𝐺 is a subgraph of the (𝑘 − 2) ×
(𝑘 − 1)-trine of 𝐺 .

The above properties are tight since in some cases the 𝑘-truss

and (𝑘 − 1)-core can be all the same as the (𝑘 − 2) (𝑘 − 1)-trine.
Besides, we cannot derive bounds from the opposite direction since

for any non-trivial function 𝑓 (𝑥), we cannot ensure that 𝑥-core is
always a subgraph of 𝑓 (𝑥)-trine. And this also applies to 𝑘-truss.

The above properties imply that the structural cohesion of the

𝑘-trine subgraph lies between a 𝑘′-core and a 𝑘′′-truss.
Then, we give the diameter limit of 𝑘-trine.
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Algorithm 1: Compute 𝑘-Trine

Input: a graph𝐺 = (𝑉 , 𝐸 ) , an integer 𝑘

Output: the 𝑘-trine𝑇𝑘 (𝐺 )
1 𝐺 ′ ← ⌊

√
𝑘 + 0.25 + 0.5⌋-core;

2 for each 𝑣 ∈ 𝑉 (𝐺 ′ ) do
3 compute 𝑠𝑢𝑝𝐺 ′ (𝑣) = 2 × | {△(𝑢, 𝑣, 𝑤 ) | (𝑢, 𝑤 ) ∈ 𝐺 ′ } |;
4 𝐷𝑒𝑙 ← {𝑣 | 𝑣 ∈ 𝑉 (𝐺 ′ ) ∧ 𝑠𝑢𝑝𝐺 ′ (𝑣) < 𝑘 };
5 while 𝐷𝑒𝑙 ≠ ∅ do
6 𝑣 ← a vertex in 𝐷𝑒𝑙 ;

7 𝐷𝑒𝑙 ← 𝐷𝑒𝑙 − {𝑣};
8 for each (𝑢, 𝑤 ) ∈ { (𝑢, 𝑤 ) | 𝑢, 𝑤 ∈ 𝑁𝐺 ′ (𝑣) ∧ (𝑢, 𝑤 ) ∈ 𝐸} do
9 𝑠𝑢𝑝𝐺 ′ (𝑢 ) ← 𝑠𝑢𝑝𝐺 ′ (𝑢 ) − 2 if 𝑠𝑢𝑝𝐺 ′ (𝑢 ) ≥ 𝑘 ;

10 𝑠𝑢𝑝𝐺 ′ (𝑤 ) ← 𝑠𝑢𝑝𝐺 ′ (𝑤 ) − 2 if 𝑠𝑢𝑝𝐺 ′ (𝑤 ) ≥ 𝑘 ;

11 𝐷𝑒𝑙 ← 𝐷𝑒𝑙 ∪ {𝑢 | 𝑢 ∈ 𝑁𝐺 ′ (𝑣) ∧ 𝑠𝑢𝑝𝐺 ′ (𝑢 ) < 𝑘 };
12 𝐸 (𝐺 ′ ) ← 𝐸 (𝐺 ′ ) − { (𝑢, 𝑣) | 𝑢 ∈ 𝑁𝐺 ′ (𝑣) };
13 𝑉 (𝐺 ′ ) ← 𝑉 (𝐺 ′ ) − {𝑣};

Return:𝐺 ′

Property 3. Given a 𝑘-trine with 𝑛 vertices, the diameter of

the 𝑘-trine, denoted by 𝑑 , is at most
⌊

3𝑛

3+⌊
√
𝑘+0.25−0.5⌋

⌋
− 1, i.e., 𝑛 ≥

𝑑 + 1 + ⌈𝑑+1
3
⌉ × ⌊
√
𝑘 + 0.25 − 0.5⌋.

4 Trine Compution on Static Graphs

4.1 Compute 𝑘-Trine

Definition 5. 𝑘-Trine Computation Problem. Given a graph
𝐺 and an integer 𝑘 , compute the 𝑘-trine of 𝐺 .

We firstly compute the ⌊
√
𝑘 + 0.25+0.5⌋-core, because it contains

the 𝑘-trine by Prop. 1 and the 𝑘-core computation runs in linear

time. Then, we can compute the 𝑘-trine by iteratively removing

each vertex with insufficient support value.

Alg. 1 shows the pseudo-code of 𝑘-trine computation. First, we

quickly exclude the non-𝑘-trine vertices by ⌊
√
𝑘 + 0.25 + 0.5⌋-core

computation and re-construct the adjacency list of each vertex

(Line 1). Then, we compute the support of each vertex by triangle

counting and store the to-delete vertices in 𝐷𝑒𝑙 (Lines 2-4). Next,

we recursively delete vertices with insufficient supports and update

supports of other vertices for the deletion, until the remaining

subgraph satisfies the definition of 𝑘-trine (Lines 5 - 13).

Analysis. The dominated time cost of Alg. 1 is from the triangle

enumeration in Lines 3 and 8, which is effectively restricted by

the computation of the ⌊
√
𝑘 + 0.25 + 0.5⌋-core. Therefore, by using

hash table in triangle mantenance, the time complexity of Alg. 1 is

𝑂 (𝑚 + |𝐸 (⌊
√
𝑘 + 0.25 + 0.5⌋-core) |1.5).

4.2 Trine Decomposition

Definition 6. Trine Decomposition Problem2. Given a graph
𝐺 , compute the triness of every vertex in 𝐺 .

Due to Obs. 2 and 3, the trine decomposition can be naturally

computed by computing the 𝑘-trines with an increasing input 𝑘 .

The framework is proposed in [13] for finding the densest subgraph.

2
The problem is the same as (𝑘,Φ)-core decomposition in [13] and 𝑘-clique core

decomposition in [11, 40] when the basic unit is the triangle.

Algorithm 2: TrineD

Input: a graph𝐺 = (𝑉 , 𝐸 )
Output: the triness of each vertex 𝑡 ( ·) in𝐺

1 𝐺∗ ← 𝐺 ; 𝑘 ← 0;

2 for each 𝑣 ∈ 𝑉 (𝐺∗ ) do
3 compute 𝑠𝑢𝑝𝐺∗ (𝑣) = 2 × | {△(𝑢, 𝑣, 𝑤 ) | (𝑢, 𝑤 ) ∈ 𝐺∗} |;
4 while𝑉 (𝐺∗ ) ≠ ∅ do
5 𝑣 ← argmin𝑢∈𝑉 (𝐺∗ ) 𝑠𝑢𝑝𝐺∗ (𝑢 ) ;
6 𝑘 ←𝑚𝑎𝑥 {𝑘, 𝑠𝑢𝑝𝐺∗ (𝑣) };
7 𝑡 (𝑣) ← 𝑘 ;

8 for each (𝑢, 𝑤 ) ∈ { (𝑢, 𝑤 ) | 𝑢, 𝑤 ∈ 𝑁𝐺∗ (𝑣) ∧ (𝑢, 𝑤 ) ∈ 𝐸} do
9 𝑠𝑢𝑝𝐺∗ (𝑢 ) ← 𝑠𝑢𝑝𝐺∗ (𝑢 ) − 2 if 𝑠𝑢𝑝𝐺∗ (𝑢 ) > 𝑘 ;

10 𝑠𝑢𝑝𝐺∗ (𝑤 ) ← 𝑠𝑢𝑝𝐺∗ (𝑤 ) − 2 if 𝑠𝑢𝑝𝐺∗ (𝑤 ) > 𝑘 ;

11 𝐸 (𝐺∗ ) ← 𝐸 (𝐺∗ ) − { (𝑢, 𝑣) | 𝑢 ∈ 𝑁𝐺∗ (𝑣) };
12 𝑉 (𝐺∗ ) ← 𝑉 (𝐺∗ ) − {𝑣};

Return: 𝑡 ( ·)

To ease the understanding of the maintenance algorithms in Sec.

5, we show the pseudo-code of trine decomposition (named TrineD)

in Alg. 2. Let 𝐺∗ be a subgraph of 𝐺 and 𝑘 be the lower bound of

triness for vertices in the current𝐺∗. The algorithm initializes with

𝐺∗ = 𝐺 , 𝑘 = 0 and calculates the support of every vertex in 𝐺∗

by triangle counting (Lines 1 - 3). Then, the algorithm recursively

chooses the vertex 𝑣 with the smallest 𝑠𝑢𝑝𝐺∗ (·) in𝐺∗, and increases
𝑘 to 𝑚𝑎𝑥{𝑘, 𝑠𝑢𝑝𝐺∗ (𝑣)} (Lines 5 - 6). We assign 𝑡 (𝑣) = 𝑘 (Line 7)

because i) the vertices with triness less than 𝑘 have been deleted

in previous iterations, ii) 𝐺∗ now is a subgraph of the 𝑘-trine of 𝐺

that contains 𝑣 , and iii) 𝑠𝑢𝑝𝐺∗ (𝑣) is no larger than 𝑘 now. Next, we

update the supports of other vertices for the deletion of 𝑣 (Lines

8-10), and 𝑣 will be removed from 𝐺∗ (Lines 11-12).
Since 𝑠𝑢𝑝𝐺∗ (·) is only used to compare with 𝑘 (Line 6), we do

not need to update 𝑠𝑢𝑝𝐺∗ (·) if it is already no larger than 𝑘 .

Analysis. As discussed in Appx A.3, Alg. 2 runs in 𝑂 (𝑚1.5) time.

5 Trine Maintenance on Dynamic Graphs

Definition 7. Trine Maintenance Problem. Given a graph
𝐺 , the result of trine decomposition on 𝐺 , and a set of edges 𝐸+ (resp.
𝐸−), the problem of trine maintenance is to update the triness of each
vertex in 𝐺 after inserting 𝐸+ to 𝐺 (resp. removing 𝐸− from 𝐺).

Inspired by the studys on 𝑘-core and 𝑘-truss [49, 50], we first

show the challenge of the problem by proving the (un)boundedness.

(Sec. 5.1). Then, we introduce the edge batch insertion algorithm

(Sec. 5.2) and an effective pruning technique (Sec. 5.3). We also

propose a batch deletion algorithm for the problem (Sec. 5.4).

5.1 Theoretical Analysis

Definition 8. Boundedness. The trine maintenance problem
is bounded if and only if there exists at least one locally persistent
algorithm that can solve the problem in 𝑂 (𝑓 ( | |𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑐 )) time,
where 𝐶𝐻𝐴𝑁𝐺𝐸 is the set of vertices whose trinenesses needs to re-
compute, or who are endpoints of 𝑒 ∈ 𝐸+ (or 𝐸−), | |𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑐
denotes the size of𝐶𝐻𝐴𝑁𝐺𝐸’s 𝑐-hop neighbors for a constant positive
integer 𝑐 , and 𝑓 (·) is a polynomial function.
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Theorem 1. The trine maintenance problem is bounded for edge
removals but is unbounded for edge insertions.

The unboundedness of edge insertions. To prove this, we can

construct a graph 𝐺 and two specific updates Δ𝐺1 and Δ𝐺2 such

that (i) inserting either Δ𝐺1 or Δ𝐺2 to 𝐺 results in 𝑂 (1) changes
of triness, i.e., the corresponding 𝐶𝐻𝐴𝑁𝐺𝐸 is of constant size; (ii)

inserting both two Δ results in changes different with inserting

one; and (iii) the distance between Δ𝐺1 and Δ𝐺2 is at least 𝑙 , where

𝑙 is not a constant but related to 𝐺 .

The first point states that assuming the problem is bounded,

there should be a locally persistent algorithm that can insert Δ𝐺1

or Δ𝐺2 in 𝑂 (1) time since 𝑂 (𝑓 ( | |𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑐 )) = 𝑂 (1). However,
because of the second point, when Δ𝐺2 is inserted, the locally

persistent algorithm has to spend extra time to confirm whether

Δ𝐺1 has already been inserted before Δ𝐺2, even if Δ𝐺1 is indeed not

inserted. Since the third point, the above extra time overhead causes

the time complexity of any locally persistent algorithm to insert

Δ𝐺2, denoted as𝑂 (A(Δ𝐺2)), alone to be at least𝑂 (𝑙)−𝑂 (A(Δ𝐺1)),
i.e., 𝑂 (𝑓 ( | |𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑐 )) insertion cannot hold for both A(Δ𝐺1)
and A(Δ𝐺2). Thus, the trine maintenance problem is unbounded.

In Appx. A.2, we further give an instance to support the above

analysis.

The boundedness of edge removal. We present a batch-edge-

removal algorithm in Sec. 5.4 and show it is bounded.

5.2 Edge Insertion

The intuition of the edge-insertion algorithm is transforming the

problem into a vertex-order maintenance problem. Specifically, for

edge insertions, the propagation of triness change is dependent on

the deletion sequence of vertices, i.e. T-order, in TrineD (Alg. 2).

Definition 9. T-order. Given a graph 𝐺 , the T-order, denoted
by ⪯, is defined as an ordered vertex set 𝑉 (𝐺) that satistifies the
following conditions: (i) ∀𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢 ⪯ 𝑣 → 𝑡 (𝑢) ≤ 𝑡 (𝑣); and
(ii) Let ⪯𝑣 = {𝑢 | 𝑣 ⪯ 𝑢 ∨ 𝑢 = 𝑣} be a subset of 𝑉 (𝐺), then ∀𝑣 ∈
𝑉 (𝐺), 𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣) ≤ 𝑡 (𝑣) holds. We may also use ⪯ to represent the
sequence of vertex ordering satisfying the above conditions.

The vertex deletion sequence in TrineD is a ⪯, and the vertices

with equal triness occur consecutively in ⪯. Regarding T-order,

there are three key notations used in our algorithm:

• ⪯𝑣 denotes a subset of ⪯ formed by vertex 𝑣 and the vertices

behind 𝑣 in ⪯, i.e., ⪯𝑣 = {𝑢 | 𝑣 ⪯ 𝑢 ∨ 𝑢 = 𝑣};
• Φ𝑘 (𝐺) denotes a subset of ⪯ formed by every vertex 𝑣 ∈ ⪯
with 𝑡 (𝑣) = 𝑘 , i.e., Φ𝑘 = {𝑣 | 𝑣 ∈ ⪯ ∧ 𝑡 (𝑣) = 𝑘};
• 𝑟𝑒𝑚(𝑣) denotes 2 times the number of triangles formed by 𝑣

and the vertices in ⪯𝑣 , i.e., 𝑟𝑒𝑚(𝑣) = 𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣).
Let 𝐺 ′ be the updated 𝐺 after inserting a set of edges. The ini-

tial ⪯ may no longer satisfy the definition of T-order in 𝐺 ′, since
𝑠𝑢𝑝𝐺 ′ [⪯𝑣 ] (𝑣) of a vertex 𝑣 may increase and become larger than 𝑡 (𝑣)
in 𝐺 ′. Therefore, we need to update the T-order ⪯ (along with Φ𝑘 ,
𝑟𝑒𝑚(·)), which essentially maintains the trinesses. We denote the

homonymous notions on the updated 𝐺 ′ by ⪯′, 𝑡 ′ (·) and 𝑟𝑒𝑚′ (·).
The main idea of our algorithm (Alg. 3) is maintaining the tri-

nesses of vertices by maintaining their positions in Φ𝑘 (𝐺).
Theorem 2. The trine maintenance problem can be reduced to

maintaining the T-order which is to update each Φ𝑘 (𝐺).

Algorithm 3: BatchInsertion

Input:𝐺 , 𝐸+, T-order ⪯, 𝑟𝑒𝑚 ( ·) : ∀𝑣 ∈⪯, 𝑟𝑒𝑚 (𝑣) = 𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣)
Output: the triness of each vertex after inserting 𝐸+

1 According to Def. 9-12, ⪯∗←⪯; P ← ∅; 𝑒𝑥𝑡 ( ·),𝑢𝑏𝑟 ( ·) ← {0};
2 for each 𝑒 = (𝑢, 𝑣) ∈ 𝐸+ do
3 for each △(𝑢, 𝑣, 𝑤 ) ∈ 𝐺 ∪ 𝐸+ do
4 𝑥 ← the vertex in {𝑢, 𝑣, 𝑤} with 𝑥 ⪯ 𝑢 ∧ 𝑥 ⪯ 𝑣 ∧ 𝑥 ⪯ 𝑤;

5 𝑒𝑥𝑡 (𝑥 ) ← 𝑒𝑥𝑡 (𝑥 ) + 2;

6 𝑣∗ ← the first vertex in ⪯ s.t. 𝑒𝑥𝑡 (𝑣∗ ) ≠ 0;

7 while 𝑣∗ ≠ 𝑡𝑎𝑖𝑙 ∨ P ≠ ∅ do
8 𝑘 ←𝑚𝑖𝑛{𝑡 (𝑣∗ ),𝑚𝑖𝑛𝑣∈P𝑢𝑏𝑟 (𝑣) }

/* Reposition Some Vertices in P to ⪯∗ */

9 for each 𝑣 ∈ P with 𝑢𝑏𝑟 (𝑣) ≤ 𝑘 do

10 move 𝑣 from P to Φ∗
𝑘
at the position before 𝑣∗;

11 𝑡 (𝑣) ← 𝑘 ; 𝑟𝑒𝑚 (𝑣) ← 𝑢𝑏𝑟 (𝑣) ; 𝑢𝑏𝑟 (𝑣) ← 0;

12 for each △(𝑢, 𝑣, 𝑤 ) ∈ 𝐺 ′ [⪯∗𝑣 ∪ P] do
13 𝑢𝑏𝑟 (𝑢 ) ← 𝑢𝑏𝑟 (𝑢 ) − 2 if 𝑢 ∈ P;
14 𝑢𝑏𝑟 (𝑤 ) ← 𝑢𝑏𝑟 (𝑤 ) − 2 if 𝑤 ∈ P;
15 𝑒𝑥𝑡 (𝑢 ) ← 𝑒𝑥𝑡 (𝑢 ) − 2 if 𝑢 ∈⪯∗;
16 𝑒𝑥𝑡 (𝑤 ) ← 𝑒𝑥𝑡 (𝑤 ) − 2 if 𝑤 ∈⪯∗;

17 if 𝑘 = 𝑡 (𝑣∗ ) then
/* Check 𝑣∗ for the Pending Set */

18 if 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) > 𝑘 then

/* case-1: move 𝑣∗ from ⪯∗ to P */

19 for each △(𝑢, 𝑣∗, 𝑤 ) ∈ 𝐺 [⪯∗
𝑣∗ ] do

20 𝑒𝑥𝑡 ( ·) ← 𝑒𝑥𝑡 ( ·) + 2 for 𝑢 and 𝑤;

21 𝑢𝑏𝑟 (𝑣∗ ) ← 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) ;
22 𝑒𝑥𝑡 (𝑣∗ ) ← 0; 𝑟𝑒𝑚 (𝑣∗ ) ← 0;

23 move 𝑣∗ from Φ𝑘 (𝐺 ) to P;
24 else if 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) ≤ 𝑘 then

/* case-2: 𝑣∗ stays its position in ⪯∗ */

25 𝑟𝑒𝑚 (𝑣∗ ) ← 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) , 𝑒𝑥𝑡 (𝑣∗ ) ← 0;

26 for each △(𝑢, 𝑣∗, 𝑤 ) ∈ 𝐺 [⪯∗
𝑣∗ ∪P] with

𝑢 ∈ P ∨ 𝑤 ∈ P do

27 Update 𝑢𝑏𝑟 ( ·) and 𝑒𝑥𝑡 ( ·) by Lines 13-16;

28 𝑣∗ ← the next vertex in ⪯∗ s.t. 𝑒𝑥𝑡 (𝑣∗ ) ≠ 0;

29 Execute Lines 9 - 16 with above 𝑣∗ if case-2 was invoked;

Return: 𝑡 ( ·)

Proof. Whenever 𝑣 is moved from Φ𝑘 (𝐺) to Φ𝑘 ′ (𝐺 ′) in the

T-order, we can update 𝑡 (𝑣) to 𝑘′. Since ⪯′ is a vertex deletion

sequence of TrineD(𝐺 ′), the trineness are correctly maintained. □

Let ⪯∗ be an intermediate state between ⪯ and ⪯′ in the mainte-

nance of T-order (Similarly for Φ∗
𝑘
). The key points of a fast T-order

maintenance are to quickly identify every vertex 𝑣 that satisfies

𝑠𝑢𝑝𝐺 ′ [⪯∗𝑣 ] (𝑣) > 𝑡 (𝑣), move it out of ⪯∗, and reposition it to the cor-

rect place in ⪯∗. The challenge is, in addition to the new triangles

produced by 𝐸+, the move of the vertices in front of 𝑣 to the behind

will also affect 𝑠𝑢𝑝𝐺 ′ [⪯∗𝑣 ] (𝑣).
To overcome the above challenge, we propose a novel framework

to maintain the T-order (Alg. 3), which ensures that each vertex will

be moved at most once, even if the insertion includes multiple edges.

The algorithm first calculates the direct effect of inserted 𝐸+ on
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𝑠𝑢𝑝𝐺 ′ [⪯∗𝑣 ] (𝑣) by enumerating each edge (Lines 1 - 5). Next, consider

that all the to-move vertices will only be moved backward in T-

order, the algorithm uses the variable 𝑣∗ to traverse each vertex

in ⪯∗ from front to back s.t. a longer prefix of ⪯∗ is gradually
computed and eventually it becomes ⪯′ (Lines 6 - 29).

During the maintenance, the algorithm repeatedly performs two

procedures: a) determining whether 𝑣∗ should be removed from its

original position (Lines 18 - 27), and if so, moving it to a pending

set P (Def. 10) (Line 23); and b) determining whether vertices in P
now can be put back into the position before 𝑣∗ without violating
the constraint of T-order (Lines 9 - 16 and 29).

Definition 10. Pending Set. Given 𝐺 and 𝐸+, the algorithm
maintains a Pending Set, denoted by P, during the traversal of ⪯,
which stores the vertices that have been removed from ⪯ and pending
for being inserted to the correct positions, in the current iteration.

Check 𝑣∗ for the Pending Set. The following notion is to deter-

mine whether 𝑣∗ should be removed and put into the pending set.

Definition 11. Extra Vertex Support. Given a graph 𝐺 ′ =
𝐺 ∪𝐸+, when the algorithm is pointing to the position of 𝑣∗, the Extra
Vertex Support of a vertex 𝑣 ∈ ⪯∗

𝑣∗ , denoted by 𝑒𝑥𝑡 (𝑣), is defined as
𝑒𝑥𝑡 (𝑣) = 𝑠𝑢𝑝𝐺 ′ [⪯∗𝑣∪P] (𝑣) − 𝑟𝑒𝑚(𝑣).

Since 𝑟𝑒𝑚(𝑣) = 𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣), by comparing the definitions of

𝑟𝑒𝑚(·) and 𝑒𝑥𝑡 (·), it can be seen that 𝑒𝑥𝑡 (𝑣) comes from two sources:

a) the triangle formed by 𝑣 with 𝐸+; and b) the triangle formed by

𝑣 with the vertices in P. The specific maintenance of 𝑒𝑥𝑡 (·) is
described later. When the algorithm completes the reposition from

Lines 8 - 16 and then visits Line 17, for the 𝑣∗ currently visited by

the algorithm, we have 𝑟𝑒𝑚(𝑣∗) + 𝑒𝑥𝑡 (𝑣∗) = 𝑠𝑢𝑝𝐺 ′ [⪯∗
𝑣∗∪P] (𝑣

∗) =
𝑠𝑢𝑝𝐺 ′ [⪯′

𝑣∗ ] (𝑣
∗), because the vertices in P will behind 𝑣∗ when they

are repositioned into ⪯∗. Thus, 𝑣∗ should be removed from ⪯∗ if
and only if 𝑟𝑒𝑚(𝑣∗) + 𝑟𝑒𝑥 (𝑣∗) > 𝑡 (𝑣∗) (Line 18).
Reposition Some Vertices in P to ⪯∗. The following notion is

used to check whether 𝑣 ∈ P can be repositioned before 𝑣∗.

Definition 12. The Upper Bound of 𝑟𝑒𝑚′ (·). Given a graph
𝐺 ′ = 𝐺 ∪ 𝐸+, when the algorithm is pointing to the position of 𝑣∗,
the Upper Bound of 𝑟𝑒𝑚′ (𝑣) for a vertex 𝑣 ∈ P, denoted by 𝑢𝑏𝑟 (𝑣),
is defined as 𝑢𝑏𝑟 (𝑣) = 𝑠𝑢𝑝𝐺 ′ [⪯∗

𝑣∗∪P] (𝑣).

𝑢𝑏𝑟 (·) is an upper bound of 𝑟𝑒𝑚′ (·) since for each 𝑣∗, ∀𝑣 ∈ P we

have ⪯′𝑣 ⊆ (⪯∗𝑣∗ ∪ P). When 𝑢𝑏𝑟 (𝑣) ≤ 𝑘 ≤ 𝑡 (𝑣∗), we can put 𝑣 into

the last position in Φ∗
𝑘
and front of 𝑣∗ since repositioning 𝑣 here can

make ⪯′ satisfy the definition of T-order (Lines 9 - 10). 𝑘 is gradually

increased from𝑚𝑖𝑛𝑣∈P𝑢𝑏𝑟 (𝑣) to 𝑡 (𝑣∗) to ensure multiple vertices

that need to be repositioned are repositioned in the correct order

and their 𝑡 ′ (·) are maintained correctly. When 𝑣 is repositoned, we

have 𝑟𝑒𝑚′ (𝑣) = 𝑢𝑏𝑟 (𝑣), since the vertices still in P will only be put

in the positions behind 𝑣 in later iterations.

Maintain the Above Functions.The initial value of 𝑒𝑥𝑡 (·) is com-

puted from Lines 1-5. Since P = ∅ and ⪯∗ = ⪯ (Line 1), 𝑒𝑥𝑡 (·)
contains only the new triangles generated by 𝐸+, i.e. 𝑒𝑥𝑡 (𝑣) =

𝑠𝑢𝑝𝐺 ′ [⪯𝑣 ] (𝑣) −𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣). The initial value of𝑢𝑏𝑟 (·) is computed

from Line 21. Comparing the definitions of 𝑒𝑥𝑡 (·) and 𝑢𝑏𝑟 (·), it is
easy to conclude that 𝑢𝑏𝑟 (𝑣∗) after 𝑣∗ is just removed from ⪯∗ is
equal to 𝑟𝑒𝑚(𝑣∗) + 𝑒𝑥𝑡 (𝑣∗) before it is removed from ⪯∗.

1)When the algorithmmoves 𝑣∗ toP, 𝑒𝑥𝑡 (·) of the vertices in ⪯𝑣∗
sharing triangles with 𝑣∗ should be updated (Lines 19-20), because

we assume 𝑣∗ will be moved to a position behind its neighbors;

2) When the algorithm moves 𝑣 from P to the position before 𝑣∗

in ⪯, i.e., the final position of 𝑣 , for the vertices that share triangles

with 𝑣 , the 𝑒𝑥𝑡 (·) of the vertices in ⪯𝑣∗ and the𝑢𝑏𝑟 (·) of the vertices
in P should be updated (Lines 12-16).

Furthermore, if the current 𝑣∗ pointed by the algorithm satisfies

𝑟𝑒𝑚(𝑣∗) + 𝑒𝑥𝑡 (𝑣∗) ≤ 𝑘 (Line 24), some triangles for 𝑒𝑥𝑡 (𝑣∗) may

contain the vertices in P. In this case, these triangles should be

eliminated from 𝑢𝑏𝑟 (·) of the corresponding vertices (Lines 26-27)

before the algorithm points to the next vertex.

A running example of the algorithm is given in Appx. B.1.

Analysis. Let Pℎ𝑖𝑠 be the set of vertices that were moved into P
throughout the whole process (regardless of the move-out) and

| |Pℎ𝑖𝑠 | |𝑐 be the number of 𝑐-hop neighbors of Pℎ𝑖𝑠 . The time com-

plexity of Alg. 3 is 𝑂 (( | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1)𝑙𝑜𝑔( | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1) +
| |Pℎ𝑖𝑠 | |2). The proof is given in Appx. A.3.

Since the trinesses of some vertices in Pℎ𝑖𝑠 do not change, we

have 𝐸+ ∪ 𝑃ℎ𝑖𝑠 ⊈ 𝐶𝐻𝐴𝑁𝐺𝐸𝑐 for any constant 𝑐 . Thus, Alg. 3 is

unbounded with | |𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑐 , consistent with Thm. 1.

5.3 Pruning for Edge Insertion

Delaying Impact. Alg. 3 may have redundant computations in

enumerating the triangles of each vertex. As the final position of

𝑣∗ is not determined during the Pending Set check, the algorithm

enumerates 𝑣∗’s every neighbor 𝑢 and 2-hop neighbor𝑤 satisfying

𝑣∗ ⪯ 𝑢,𝑤 to determine whether △(𝑢, 𝑣∗,𝑤) exists (Lines 17 - 18)
and update their 𝑒𝑥𝑡 (·). Similarly, when 𝑣 moves from P to ⪯∗, a
process is used to eliminate the impact of 𝑣 on 𝑢𝑏𝑟 (·) or 𝑒𝑥𝑡 (·) for
every 𝑢 ∈ 𝑁𝐺 ′ (𝑣) ∩ (⪯∗𝑣 ∪ P) (Lines 12 - 16). Thus, we propose a
novel pruning technique, named Delaying Impact, to reduce the

enumeration of triangles by delaying the update of 𝑒𝑥𝑡 (·) for a part
of 𝑣∗’s neighbors when the algorithm moves 𝑣∗ from ⪯∗ to P.

The pseudo-code (Algo 5) and running example of the algorithm

equipped with the Delaying Impact pruning is shown in Appx. B.

When the algorithm moves 𝑣∗ from ⪯∗ to P, it does not imme-

diately update 𝑒𝑥𝑡 (·) for all neighbors (which belong to ⪯∗
𝑣∗ and

share triangles with 𝑣∗), but only those belong to Φ∗
𝑡 (𝑣∗ ) . In contrast,

the effect for other neighbors (their 𝑡 (·) > 𝑡 (𝑣∗)) is updated with a

delay. That is, only when 𝑘 is changed, the algorithm calculates P’s
effect on the 𝑒𝑥𝑡 (·) of their neighbors belonging to Φ∗

𝑘
. In this way,

only the vertices belonging to ⪯∗
𝑣∗ ∩(

⋃
𝑘≤𝑡 ′ (𝑢∗ ) Φ𝑘 (𝐺)), as well

as the triangles they share with 𝑣∗, are enumerated in the combo

of case-1 of Pending Set Check and Delay Impact. Similarly, each

time 𝑣 is moved from P to ⪯∗, the algorithm only enumerates the

vertices belonging to Φ𝑡 ′ (𝑣) (𝐺 ′) and the triangles they share with

𝑣 to eliminate the impact of 𝑣 on 𝑒𝑥𝑡 (·).
Even though we delay updating a part of 𝑒𝑥𝑡 (·), the whole al-

gorithm still executes correctly, since whenever the algorithm exe-

cutes to Pending Set Check, for 𝑣∗ now, 𝑒𝑥𝑡 (𝑣∗) complies with Def.

11. This ensures the accuracy of 𝑢𝑏𝑟 (·) and algorithmic flow.

5.4 Edge Removal

Trine maintenance against edge removals is relatively simpler be-

cause the algorithm can be bounded (Sec. 5.1). Unlike the insertion
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Algorithm 4: BatchRemoval

Input:𝐺 , 𝐸− , T-order ⪯, 𝑡𝑠 ( ·) , 𝑟𝑒𝑚 ( ·)
Output: the triness of each vertex after removing 𝐸−

1 𝑄 ← an empty queue;

2 for each 𝑒 = (𝑢, 𝑣) ∈ 𝐸− do

3 for each △(𝑢, 𝑣, 𝑤 ) ∈ 𝐺 do

4 for each 𝑥 ∈ 𝑢, 𝑣, 𝑤 do

5 𝑡𝑠 (𝑥 ) ← 𝑡𝑠 (𝑥 ) − 2 if 𝑡 (𝑥 ) ≤ 𝑚𝑖𝑛 (𝑡 (𝑢 ), 𝑡 (𝑣), 𝑡 (𝑤 ) )
6 if 𝑡𝑠 (𝑥 ) < 𝑡 (𝑥 ) ∧ 𝑥 ∉ 𝑄 then

7 𝑄.𝑝𝑢𝑠ℎ (𝑥 ) ;

8 𝐺 ← 𝐺 \ {𝑒 };
9 while𝑄 ≠ ∅ do
10 𝑣 = 𝑄.𝑡𝑜𝑝 ( ) ;𝑄.𝑝𝑜𝑝 ( ) ;

/* | △𝑘𝑣 | ← 𝑠𝑢𝑝𝐺 [{𝑣}∪{𝑥 |𝑡 (𝑥 ) ≥𝑘}] (𝑣) */

11 𝑡𝑛𝑒𝑤 ← max{𝑘 | |△𝑘𝑣 | ≥ 𝑘 };
12 for △(𝑢, 𝑣, 𝑤 ) ∈ 𝐺 [ {𝑥 | 𝑡 (𝑥 ) > 𝑡𝑛𝑒𝑤 } ] with

𝑡 (𝑢 ) ≤ 𝑡 (𝑣) ∨ 𝑡 (𝑤 ) ≤ 𝑡 (𝑣) do
13 𝑡𝑠 (𝑢 ) ← 𝑡𝑠 (𝑢 ) − 2 if 𝑡 (𝑢 ) ≤ 𝑡 (𝑣) ;
14 𝑡𝑠 (𝑤 ) ← 𝑡𝑠 (𝑤 ) − 2 if 𝑡 (𝑤 ) ≤ 𝑡 (𝑣) ;
15 𝑄.𝑝𝑢𝑠ℎ (𝑢 ) if 𝑡𝑠 (𝑢 ) < 𝑡 (𝑢 ) ∧𝑢 ∉ 𝑄 ;

16 𝑄.𝑝𝑢𝑠ℎ (𝑤 ) if 𝑡𝑠 (𝑤 ) < 𝑡 (𝑤 ) ∧ 𝑤 ∉ 𝑄 ;

17 move 𝑣 to the tail of Φ𝑡𝑛𝑒𝑤 (𝐺 ) ;
18 𝑡 (𝑣) ← 𝑡𝑛𝑒𝑤 (𝑣) ;
19 𝑡𝑠 (𝑣) ← | △𝑡 (𝑣)𝑣 |;

Return: 𝑡 ( ·)

algorithm, we can directly identify the vertices with triness changes

by 𝑡𝑠 (·) defined in the following, without relying on T-order.

Definition 13. Vertex Support in Trine Subgraph. Given a
graph𝐺 , the vertex support in the trine subgraph of a vertex 𝑣 ∈ 𝑉 (𝐺),
denoted by 𝑡𝑠 (𝑣), is defined as 𝑡𝑠 (𝑣) = 𝑠𝑢𝑝𝑇𝑡 (𝑣) (𝑣).

Algorithm Overview. When edges in 𝐺 are removed, some tri-

angles that contain these edges inevitably disappear. Thus, we

enumerate these triangles, maintain 𝑡𝑠 (·) based on Def. 13, and

push vertices into a queue 𝑄 if 𝑡𝑠 (·) < 𝑡 (·) (Lines 1-8). These ver-
tices await subsequent modifications to 𝑡 (·). Next, for each ver-

tex 𝑣 ∈ 𝑄 , we determine its new triness 𝑡𝑛𝑒𝑤 based on △𝑘𝑣 =

𝑠𝑢𝑝𝐺 [ {𝑣}∪{𝑥 |𝑡 (𝑥 )≥𝑘 } ] (𝑣) and maintain the new 𝑡𝑠 (𝑣) (Lines 11, 18
and 19). Additionally, due to the changing of 𝑡 (𝑣), 𝑡𝑠 (·) of a vertex
𝑢 ∈ 𝑁𝐺 (𝑣) ∩

⋃
𝑡𝑛𝑒𝑤<𝑘≤𝑡 (𝑣) Φ

∗
𝑘
that forms a triangle with 𝑣 may

also decrease, which may lead to an update for 𝑡 (𝑢). The algorithm
adds 𝑢 to𝑄 if 𝑡 (𝑢) needs an update, i.e., 𝑡𝑠 (𝑢) < 𝑡 (𝑢) (Lines 12-16).
Analysis. Alg. 4 runs in 𝑂 ( | |𝐶𝐻𝐴𝑁𝐺𝐸 | |2 · max𝑣∈𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑣 | |2)
time, which validates that the trinemaintenance problem is bounded

for edge removals. The proof is given in Appx. A.3.

6 Experimental Evaluation

Datasets. 10 datasets are used (see Tab. 2), in which Yelp is from

[1] Wiki and Facebook are from Konect[18] and the others are

from SNAP [19]. We use SN, CN, and WG to denote social network,

comment network, and web graph, respectively. We remove self-

loops and multiple edges. For multiple edges in temporal graphs,

we only reserve the earliest timestamp. We use 𝑘𝑐𝑜𝑟𝑒𝑚𝑎𝑥 to represent

the maximal 𝑘 for 𝑘-core, and 𝑘𝑡𝑟𝑢𝑠𝑠𝑚𝑎𝑥 , 𝑘𝑡𝑟𝑖𝑛𝑒𝑚𝑎𝑥 correspondingly.

Table 2: Statistics of Datasets

Dataset 𝑛 𝑚 type temporal 𝑘𝑐𝑜𝑟𝑒𝑚𝑎𝑥 𝑘𝑡𝑟𝑢𝑠𝑠𝑚𝑎𝑥 𝑘𝑡𝑟𝑖𝑛𝑒𝑚𝑎𝑥

Superuser(SU) 192K 715K CN Yes 61 35 2228

Facebook(FA) 64K 817K SN Yes 52 36 1770

Youtube(YO) 1.1M 3.0M SN No 51 19 1104

Google(GO) 875K 4.3M WG No 44 44 1890

Wiki(WI) 2.8M 8.1M CN Yes 210 85 22010

Yelp(YE) 2.0M 9.5M SN No 188 103 18214

Pokec(PO) 1.6M 22M SN No 47 29 1112

Stackoverflow(ST) 2.6M 28M CN Yes 198 79 14756

Orkut(OR) 3.1M 117M SN No 253 78 14234

Friendster(FR) 65.6M 1.8G SN No 304 129 16510

Algorithms. We evaluate 𝑘-core decomposition [5], 𝑘-truss de-

composition [41], 𝑘-trine computation (Comp. 𝑘-trine, Alg. 1), trine
decomposition (TrineD, Alg. 2), and trine maintenance (BatchInser-
tion by Alg. 3, BatchInsertion+ by Alg. 5, and BatchRemoval by Alg.

4). For fairness, we use the same triangle computation method in

all the algorithms.

Executions. The algorithms are implemented using C++ and com-

piled with GCC (version 11.4.0) under O3 optimization. The com-

puter has an Intel Xeon 2.1GHz CPU and 512G of RAM.

6.1 Effectiveness Results

Exp-1: Statistical Results. Fig. 2 shows the effectiveness of tri-

ness in modeling user activities in the Yelp network. Each point

in the figure shows the average number of fans (resp. reviews) of

the users with the same degree, coreness, trussness, and triness,

respectively. It was validated that the correlation of coreness with

user activity level is the best, compared with degree and centrality

metrics [45]. Our result shows that triness provides a finer gran-

ularity than coreness and trussness. The disturbance of triness is

due to the over-fine granularity and the sensitivity to small data

samples in each value. Therefore, we recommend using a slightly

rougher granularity on modeling/estimating user engagement.

We also tested the Pearson correlation coefficient between dif-

ferent Metrics and node activity values (#Fans or #Reviews). The

result in Tab. 3 shows that a) triness is more correlated with node

activity value than degree; b) If we divide the whole range of all the

metrics to 𝑘𝑡𝑟𝑢𝑠𝑠𝑚𝑎𝑥 , i.e., using the same granularity for a fair compari-

son, triness is more correlated with #Fans than coreness, indicating

its potential in user activity analysis. Therefore, We can design

different strategies according to the triness values s.t. the overall

user engagement can be improved.

Beside, we report the average degree (𝑑𝑎𝑣𝑔) of the (𝑘 − 1)-core,
𝑘-truss, and (𝑘 − 1) (𝑘 − 2)-trine in Tab. 4, respectively, where

𝑘 = 𝑘𝑡𝑟𝑢𝑠𝑠𝑚𝑎𝑥 (the parameter is decided by Prop. 1 and 2). The bold

values are the best. We can observe that: a) for all datasets, 𝑑𝑎𝑣𝑔 of

trine is no smaller than 𝑑𝑎𝑣𝑔 of truss; and b) for datasets other than

Facebook, Google and Friendster, 𝑑𝑎𝑣𝑔 of trine is the highest.

Exp-2: Case Study on DBLP.We evaluate the𝑘-trine of the DBLP

collaboration network, compared with 𝑘-truss. We extract the net-

work of all authors where an edge connects two authors if they

collaborate on at least one KDD paper with no larger than 6 authors.

We find there are 12 authors in the 20-trine who are excluded by

the 6-truss (note that 6-truss is always a subgraph of 20-trine). Fig.

3 depicts the 12 authors by the red nodes, and their neighbors in
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Figure 2: #Fans and #Review in Yelp with Different Metrics

Table 3: Result of Pearson Correlation Coefficient 𝜌

Metric

Different granularities Same granularity

#Fans #Reviews #Fans #Reviews

Degree 0.454 0.358 0.695 0.576

Coreness 0.921 0.958 0.910 0.975

Trussness 0.872 0.865 0.872 0.865

Triness 0.551 0.382 0.925 0.884

20-trine by the yellow nodes. We find that the 12 authors are well

connected with the yellow nodes but excluded by the 6-truss. A

similar result is observed in the SIGMOD subgraph in Fig. 4.

For both KDD and SIGMOD cases, we find the average degree

(resp. the average number of publications in the corresponding con-

ference) of the authors in the 20-trine is higher than that observed

in the 6-truss: 6.75 vs 6.72 in KDD, and 7.26 vs 7.10 in SIGMOD (resp.

2.65 vs 2.64 in KDD, and 3.91 vs 3.80 in SIGMOD). These indicate

that (𝑘 − 1) (𝑘 − 2)-trine may further contain some well-engaged

nodes with more weak ties compared with 𝑘-truss.

Table 4: Average Degrees of Different Subgraphs (𝑘 = 𝑘𝑡𝑟𝑢𝑠𝑠𝑚𝑎𝑥 )

Dataset (𝑘 − 1)-core 𝑘-truss (𝑘 − 1) (𝑘 − 2)-trine
SU 89.55 61.85 105.50

FA 81.65 50.62 73.30

YO 56.67 63.04 82.65

GO 48.79 46.71 46.71

WI 276.27 208.48 350.49

YE 284.61 149.47 334.22

PO 62.76 30.75 64.84

ST 237.96 143.24 354.91

OR 240.63 110.71 426.95

FR 333.79 130.94 138.96
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Figure 3: A Case Study on KDD Subgraph of DBLP (induced

by the red nodes in 20-trine\6-truss and their neighbors)

Yufei Tao 0001
Dimitris Papadias

Zhenjie Zhang

Reynold Cheng

Anthony K. H. Tung

Jennifer Widom

Rajeev Motwani 0001Bolin Ding

Silu Huang

Surajit Chaudhuri

Kaushik Chakrabarti

Chi Wang 0001

Volker Markl

Guy M. Lohman

Hamid Pirahesh

Meihui Zhang 0001

Marios Hadjieleftheriou
Beng Chin Ooi

Cecilia M. Procopiuc

Divesh Srivastava

Gautam Das 0001

Nick KoudasYannis Papakonstantinou

Zechao Shang

Aaron J. Elmore

Sanjay Krishnan

Alin Deutsch

Bogdan Cautis

Ioana Manolescu
Cyrus Shahabi

Yin Yang 0001

Yannis E. Ioannidis

Chee Yong Chan

Raghav Kaushik

Arvind Arasu

Kris Ganjam

Kian-Lee Tan

Vivek R. Narasayya

Ihab F. Ilyas

Jun Rao

K. Seluk CandanWen-Syan Li

Qiong Luo 0001

Wang-Pin Hsiung

Divyakant Agrawal

Jeffrey D. Ullman

Aditya G. Parameswaran

Philip BohannonJeffrey F. Naughton

Rajeev Rastogi

Wenfei FanShuai Ma 0001

Jianzhong Li 0001

Nan Tang 0001

Wenyuan Yu

Jun'ichi Tatemura

Oliver Po

Hakan Hacigms

Minos N. Garofalakis

Graham Cormode

Michael J. Franklin

Joseph M. Hellerstein

Xiaokui Xiao

Sharad Mehrotra

Jun Zhang 0063

Marianne Winslett

Ada Wai-Chee Fu

James Cheng

Jeffrey Xu Yu

Francesco Bonchi

Panos Kalnis

Cheng Long

Minhao Jiang

Raymond Chi-Wing Wong

Raghu Ramakrishnan 0001

Svetlozar Nestorov

Serge Abiteboul

Sihem Amer-Yahia

Christos Faloutsos

Venkatesh Ganti

Bingsheng He

Dongqing Yang

Samuel Madden 0001

Amol Deshpande

Johannes Gehrke

Ke Yi 0001Guoliang Li 0001

Shuo Chen

Jianhua Feng

Junhao Gan

H. V. Jagadish

Theodoros Rekatsinas

Lise Getoor

Sibo Wang 0001

Yu Xu

Mingxi Wu

Val Tannen

Mayank Bawa

Hector Garcia-Molina

Jian Pei

Xuemin Lin 0001

Feifei Li 0001

Nicolas Bruno

Kaiyu Feng

Gao Cong

Sourav S. Bhowmick

Dongxiang Zhang

Jiannan Wang 0001

Jian Li 0015

Vasilis Vassalos

Miao Qiao

Liqi Xu

Stamatis Zampetakis

Calisto Zuzarte

Xiaohui Yu 0001

Neoklis Polyzotis

Xin Luna DongJohn McPherson

Chun Zhang

David J. DeWitt

Zhifeng Bao

Shixuan Sun

Mourad Ouzzani

Ashraf Aboulnaga

Yuchen Li 0001

Ju Fan

Juliana Freire
Michalis Petropoulos

Ion Stoica

Dan Suciu

Zhiwei Zhang

Hong Cheng 0001

S. Sudarshan 0001

Bin Cui 0001
Yuanyuan Tian

Yannis Katsis

S. Muthukrishnan 0001

Robert Christensen

Lu Qin 0001
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Figure 4: A Case Study on SIGMOD Subgraph of DBLP
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Table 5: Decomposition Time (in second)

Dataset 𝐶𝑜𝑟𝑒 𝑇𝑟𝑢𝑠𝑠 𝑇𝑟𝑖𝑛𝑒 𝑇𝑟𝑖𝑛𝑒𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑒𝑥

SU 0.072 1.723 1.190 1.429

FA 0.048 1.933 0.546 0.850

YO 0.724 10.605 4.707 5.819

GO 1.289 11.891 5.035 7.041

WI 1.236 281.70 136.40 148.47

YE 1.964 41.415 16.520 23.626

PO 6.466 153.21 27.519 38.221

ST 6.987 1020.0 124.18 147.79

OR 38.098 2394.5 333.95 427.43

FR 1177.2 27306.1 14070.7 16088.8

6.2 Efficiency Results

Exp-3: Time Cost of Decompositions. Tab. 5 reports the time

cost of core, truss, and trine decompositions on all the datasets. The

time cost of core decomposition is linear which is certainly smaller

than truss and trine decomposition. Note that our target is not to

outperform 𝑘-core in efficiency and the 𝑘-core runtime is reported

as a reference. In the table, trine decomposition is faster than truss

decomposition, e.g., it is 7.2× faster on orkut. This is because 𝑘-

trine is a vertex-oriented model s.t. triangle enumeration on some

edges can be pruned. We also evaluate the trine decomposition

with indexing, i.e., T-order, 𝑟𝑒𝑚(·), and 𝑡𝑠 (·) for the input of trine
maintenance. The cost of initializing these functions is minor.

Exp-4: Time Cost of Computation and Maintenance.Weeval-

uate the impact of Δ𝐺 on the efficiency of maintenance algorithms.

Given an integer 𝑏 as the number of edges to insert/remove, and

a dataset 𝐺 , Δ𝐺 is formed by the 𝑏 edges in 𝐺 with the largest

timestamps if 𝐺 has timestamps, or randomly 𝑏 edges if 𝐺 has no

timestamps. We first evaluate BatchRemoval by deleting Δ𝐺 from

𝐺 , and then evaluate BatchInsertion/BatchInsertion+ by inserting

Δ𝐺 back to recover 𝐺 , which produces one plot for each algorithm

in Fig. 5. For comparison, we also report the runtime of TrineD and

Comp. 𝑘-trine where 𝑘𝑚𝑎𝑥 = 𝑘𝑡𝑟𝑖𝑛𝑒𝑚𝑎𝑥 as given in Tab. 2.

Fig. 5 shows that a) the 𝑘-trine computation algorithm is faster

than the decomposition (TrineD) as 𝑘-trine can be computed on the

⌊
√
𝑘 + 0.25 + 0.5⌋-core; b) BatchInsertion+ runs in less time than

BatchInsertion by 2 − 4×, which validates the effectiveness of the

pruning technique in Sec. 5.3; and c) The maintenance algorithms

are efficient and scalable, e.g., they run in much less time than

TrineD when |Δ𝐺 | ≤ 5000, the speedup ratio is 1 − 3 orders of

magnitude for |Δ𝐺 | = 500, and processing 5000 edges only costs 10

- 20x time of processing 500 edges.

7 Conclusion

This paper introduces and studies the𝑘-trine cohesive subgraph and

efficient algorithms for computing 𝑘-trine on static and dynamic

graphs. We analyze the properties of 𝑘-trine to optimize the algo-

rithms. Extensive experiments on large real-world networks vali-

date the effectiveness of 𝑘-trine and the efficiency of our algorithms.

For future studies, it is interesting to study parallel algorithms, and

the hierarchical structure formed by different 𝑘-trines.
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Figure 5: Maintenance Time with Different |Δ𝐺 |
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A Theoretical Proofs

A.1 The Properties of 𝑘-Trine

Proof of Prop. 1.Given a 𝑘-trine subgraph𝑇𝑘 , according to Lemma

1 and Obs. 3, we have ∀𝑣 ∈ 𝑇𝑘 , 𝑑𝑒𝑔𝑇𝑘 (𝑣)× (𝑑𝑒𝑔𝑇𝑘 (𝑣)−1) ≥ 𝑡 (𝑣) ≥ 𝑘 ,

i.e., ∀𝑣 ∈ 𝑇𝑘 , 𝑑𝑒𝑔𝑇𝑘 (𝑣) ≥
√
𝑘 + 0.25 + 0.5. Thus, 𝑘-trine of 𝐺 is a

subgraph of the (

√
𝑘 + 0.25 + 0.5)-core of 𝐺 .

Proof of Prop. 2.Given a𝑘-truss 𝑆 , we have i) 𝑆 is also a (𝑘−1)-core
[10], i.e., ∀𝑣 ∈ 𝑉 (𝑆), 𝑑𝑒𝑔𝑆 (𝑣) ≥ 𝑘−1, and ii) ∀𝑒 ∈ 𝑆, 𝑠𝑢𝑝𝑆 (𝑒) ≥ 𝑘−2.
Thus, ∀𝑣 ∈ 𝑉 (𝑆), 𝑠𝑢𝑝𝑆 (𝑣) ≥ (𝑘 − 2) × (𝑘 − 1), i.e., each 𝑘-truss is a
subgraph of the (𝑘 − 2) × (𝑘 − 1)-trine of 𝐺 .
Proof of Prop. 3. Let 𝑇𝑘 be the 𝑘-trine, and 𝑣0 ∈ 𝑉 (𝑇𝑘 ) be an

endpoint of one of the longest short paths in 𝑇𝑘 . We can divide

𝑉 (𝑇𝑘 ) into 𝑑 + 1 parts (i.e., 𝑉0, ...,𝑉𝑑 ) where 𝑉𝑖 contains all vertices
whose distance from 𝑣0 is 𝑖 . Based on above definitions, we have

∀𝑣 ∈ 𝑉𝑖 , 𝑁𝑇𝑘 (𝑣) ⊆ 𝑉𝑖−1 ∪𝑉𝑖 ∪𝑉𝑖+1\{𝑣}.
Next, we use induction to prove the theorem holds for any 𝑑 ≥ 1.

Since, for 𝑑 = 1, 2, 3, the above property holds obviously, we

prove if the property holds at𝑑 = 𝑥 ≥ 1, it also holds at𝑑 = 𝑥+3 ≥ 4.

Assume that the property holds at 𝑑 = 𝑥 but does not hold at

𝑑 = 𝑥 + 3, i.e, one can not construct a 𝑇 ′′
𝑘
, which diameter is 𝑥

and satisfies |𝑇 ′′
𝑘
| = ∑𝑥

𝑖=0 |𝑉 ′′𝑖 | < 𝑥 + 1 + ⌈𝑥+1
3
⌉ · ⌊
√
𝑘 + 0.25 − 0.5⌋

but can construct a 𝑇 ′
𝑘
, which diameter is 𝑥 + 3 and satisfies |𝑇 ′

𝑘
| =∑𝑥+3

𝑖=0 |𝑉
′
𝑖
| < 𝑥 + 4 + ⌈𝑥+4

3
⌉ · ⌊
√
𝑘 + 0.25 − 0.5⌋.

https://www.yelp.com/dataset
http://snap.stanford.edu/data
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Figure 6: A Graph for Proving Unboundedness

First, it is obviously that if we can construct a 𝑇 ′
𝑘
that satisfies

the above conditions, 𝑇 ′
𝑘
can further satisfy |𝑉 ′

0
| = |𝑉 ′

𝑥+3 | = |𝑉
′
2
| =

|𝑉 ′
𝑥+1 | = 1 and |𝑉 ′

1
| = |𝑉 ′

𝑥+2 | = ⌈
√
𝑘 + 0.25 + 0.5⌉, i.e., |𝑉 ′

0
| + |𝑉 ′

1
| +

|𝑉 ′
2
| = |𝑉 ′

𝑥+1 | + |𝑉
′
𝑥+2 | + |𝑉

′
𝑥+3 | = ⌈

√
𝑘 + 0.25− 0.5⌉ + 3. And then, let

(𝑉 ′
𝑖−1,𝑉

′
𝑖
,𝑉 ′

𝑖+1) = argmin(𝑉 ′
𝑖−1,𝑉

′
𝑖
,𝑉 ′

𝑖+1 ) |𝑉
′
𝑖−1 | + |𝑉

′
𝑖
| + |𝑉 ′

𝑖+1 |.
i) If 𝑖 − 1 = 0 ∨ 𝑖 + 1 = 𝑥 + 3, since |𝑉 ′

0
| + |𝑉 ′

1
| + |𝑉 ′

2
| = |𝑉 ′

𝑥+1 | +
|𝑉 ′
𝑥+2 | + |𝑉

′
𝑥+3 | = ⌈

√
𝑘 + 0.25 − 0.5⌉ + 3, ∀𝑖 ∈ [1, 𝑥 + 2], |𝑉 ′

𝑖−1 | +
|𝑉 ′
𝑖
| + |𝑉 ′

𝑖+1 | ≥ ⌈
√
𝑘 + 0.25 − 0.5⌉ + 3. Thus for (𝑥 + 4) mod 3 = 0,

𝑛 ≥ 𝑥+4
3
· ( |𝑉 ′

0
| + |𝑉 ′

1
| + |𝑉 ′

2
|) = 𝑥 + 4 + ⌈𝑥+4

3
⌉ · ⌈
√
𝑘 + 0.25 − 0.5⌉ ≥

𝑥 + 4 + ⌈𝑥+4
3
⌉ · ⌊
√
𝑘 + 0.25 − 0.5⌋. It is easy to show that the above

conclusion also holds for (𝑥 + 4) mod 3 ≠ 0. Therefore, we cannot

construct 𝑇 ′
𝑘
that satisfies the assumption in this case.

ii) Then we continue our discussion with the minimal tried,

(𝑉 ′
𝑖−1,𝑉

′
𝑖
,𝑉 ′

𝑖+1), satisfies 𝑖 − 1 ≠ 0 ∧ 𝑖 + 1 ≠ 𝑥 + 3. Due to its

minimality, we have 𝑉 ′
𝑖+1 ≤ 𝑉 ′

𝑖−2 and 𝑉 ′
𝑖−1 ≤ 𝑉 ′

𝑖+2. Further, by
deleting 𝑉 ′

𝑖−1, 𝑉
′
𝑖
and 𝑉 ′

𝑖+1 from 𝑇 ′
𝑘
and connect each vertex in 𝑉 ′

𝑖−2
and 𝑉 ′

𝑖+2, we can construct a graph of diameter 𝑥 which is still

a 𝑘-trine, call it 𝑇 ′′
𝑘
. In addition, since ∀𝑣 ∈ 𝑉 ′

𝑖
can only obtain

𝑠𝑢𝑝𝑇 ′
𝑘
(𝑣) by forming triangles with vertices in𝑉 ′

𝑖−1∪𝑉
′
𝑖
∪𝑉 ′

𝑖+1\{𝑣},
we have |𝑉 ′

𝑖−1 ∪𝑉
′
𝑖
∪𝑉 ′

𝑖+1 | ≥ ⌊
√
𝑘 + 0.25− 0.5⌋ + 3. This resulted in

|𝑇 ′′
𝑘
| = |𝑇 ′

𝑘
| − |𝑉 ′

𝑖−1 ∪𝑉
′
𝑖
∪𝑉 ′

𝑖+1 | < 𝑥 + 1 + ⌈𝑥+1
3
⌉ · ⌊
√
𝑘 + 0.25 − 0.5⌋

which contradicts the assumption that the property holds when

𝑑 = 𝑥 . Thus, We have proved that𝑇 ′
𝑘
can be constructed if and only

if 𝑇 ′′
𝑘

can be constructed, i.e., if the property holds at 𝑑 = 𝑥 ≥ 1, it

also has at 𝑑 = 𝑥 + 3 ≥ 4.

Therefore, the property holds for any possible values of 𝑘 and 𝑑 .

A.2 Unboundedness of Edge Insertion

Fig. 6 conforms to the description in Sec. 5.1, where 𝑒1 and 𝑒2
correspond to Δ𝐺1 and Δ𝐺2 respectively. First, the triness of all

vertices in 𝐺 is 8. Moreover, when inserting 𝑒1 into 𝐺 , none of the

vertices’ triness changes. For the insertion of 𝑒2, the situation is

similar to 𝑒1. However, when we insert both 𝑒1 and 𝑒2, trinesses of

all vertices in 𝐺 become 12.

Assume that there exists a bounded locally persistent insertion

algorithm A for trine maintenance, i.e., there exists a polynomial

function 𝑓 and a const 𝑐 such that for any 𝐺 and Δ𝐺 , A runs in

𝑂 (𝑓 | |𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑐 )) time. Let 𝑡𝑟𝑎𝑐𝑒 (𝐺,Δ𝐺) denote the sequence

of vertices A visits when Δ𝐺 is inserted. Under our assumption,

we have 𝑂 (𝑡𝑟𝑎𝑐𝑒 (𝐺, 𝑒1)) = 𝑂 (𝑡𝑟𝑎𝑐𝑒 (𝐺, 𝑒2)) = 𝑂 (1). Since whether

𝑒1 has been inserted makes the result of the insertion of 𝑒2 dif-

ferent, there exists a vertex 𝑥 in 𝑡𝑟𝑎𝑐𝑒 (𝐺, 𝑒1), 𝑡𝑟𝑎𝑐𝑒 (𝐺 + 𝑒1, 𝑒2)
and 𝑡𝑟𝑎𝑐𝑒 (𝐺, 𝑒2) such that A can not recognizes whether 𝑒1 is

inserted until it traverses 𝑥 and gets the message. However, since

𝑂 (𝑡𝑟𝑎𝑐𝑒 (𝐺, 𝑒1)) = 𝑂 (1), 𝑥 must be the 𝑐 −ℎ𝑜𝑝 neighbor of 𝑢0 or 𝑣0
and the length of the path between 𝑥 and 𝑢𝑙 (or 𝑣𝑙 ) is 𝑂 (𝑙) which
means 𝑂 (𝑡𝑟𝑎𝑐𝑒 (𝐺, 𝑒2)) = 𝑂 (𝑙) and contradicts the first point. In

summary, the trine maintenance problem is unbounded for edge

insertions under the model of locally persistent algorithms.

A.3 Complexity Analysis

TrineD Algorithm. To find the vertex with the smallest 𝑠𝑢𝑝𝐺∗ (·)
in𝐺∗, we can use a bin sort to sort the vertices in𝑂 (𝑚) time. As the

core decomposition algorithm in [5], we maintain the bin-sort order

once 𝑠𝑢𝑝𝐺∗ changes. For Lines 2-3, we employ the SOTA triangle

listing algorithmwith time complexity of𝑂 ( |𝐸 | ·𝛼 (𝐺)), where 𝛼 (𝐺)
is the arboricity of 𝐺 , and |𝐸 | · 𝛼 (𝐺) has a bound of 𝑂 ( |𝐸 |1.5) [9].
Resembling the truss decomposition algorithm in [41], a hash table

is constructed to store 𝐸 (𝐺) for 𝑠𝑢𝑝𝐺∗ (·) maintenance. Thus, the

time complexity of Lines 5 - 12 is 𝑂 ( |𝐸 |1.5).
In summary, the time complexity of Alg. 2 is 𝑂 ( |𝐸 |1.5).

BatchInsertion Algorithm. We follow the structure of maintain-

ing ⪯ in [6], making the operations of modifying ⪯ and comparing

the order of vertices both 𝑂 (1). Thus Time complexity of Alg. 3 is

mainly dominated by maintaining vertices where 𝑒𝑥𝑡 (·) ≠ 0, and

the triangle enumeration operations during maintenance.

Lemma 2. If 𝑣∗ causes the algorithm to branch into Lines 24 - 27,
there must exist a vertex 𝑢 ∈ 𝑁𝐺 ′ (𝑣∗), s.t. 𝑢 ∈ P ∨ (𝑢, 𝑣∗) ∈ 𝐸+.

First, Lines 1 - 5 enumerate triangles by traversing 1-hop neigh-

bors of 𝐸+, such that the time complexity is 𝑂 ( | |𝐸+ | |1). Next, Lines
12 - 16 and 19 - 20 enumerate triangles containing 𝑣 ∈ Pℎ𝑖𝑠 , such
that the time complexity is 𝑂 ( | |Pℎ𝑖𝑠 | |2). Then, as for Lines 26 -

27, we enumerate 𝑢 ∈ P ∩ 𝑁𝐺 ′ (𝑣) first since lemma 2 holds, and

then enumerate only the triangles containing (𝑢, 𝑣), making the

time complexity 𝑂 ( | |Pℎ𝑖𝑠 | |2). As for maintaining vertices where

𝑒𝑥𝑡 (·) ≠ 0, since lemma 2 holds, all the elements that once hold

𝑒𝑥𝑡 (·) ≠ 0 belong to | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1. The time complexity is

𝑂 (( | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1)𝑙𝑜𝑔( | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1)). Thus Alg. 3 runs in
𝑂 (( | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1)𝑙𝑜𝑔( | |Pℎ𝑖𝑠 | |1 ∪ ||𝐸+ | |1) + | |Pℎ𝑖𝑠 | |2) time.

BatchRemoval Algorithm. Firstly, Lines 2 - 8 in Alg. 4 runs

in 𝑂 ( | |𝐸− | |1) since the dominating cost is enumerasing triangles

for edges in 𝐸− . And | |𝐸− | |1 ⊆ ||𝐶𝐻𝐴𝑁𝐺𝐸 | |1 ⊆ ||𝐶𝐻𝐴𝑁𝐺𝐸 | |2.
Secondly, each loop iteration in Lines 10 - 19 costs only 𝑂 ( | |𝑣 | |2)
where 𝑣 is the vertex at the top of 𝑄 now. Thirdly, Only vertices in

𝐶𝐻𝐴𝑁𝐺𝐸 can be pushed into 𝑄 and each one can be pushed into

𝑄 at most 𝑂 (𝑡 (𝑣)) ≤ 𝑂 ( | |𝑣 | |2) times. By combining the above, we

have Alg. 4 runs in 𝑂 ( | |𝐶𝐻𝐴𝑁𝐺𝐸 | |2 ·max𝑣∈𝐶𝐻𝐴𝑁𝐺𝐸 | |𝑣 | |2).

B Algorithm Examples and Pesudo-code

B.1 An Example of BatchInsertion Algorithm

Example 1. We illustrate the process of our maintenance algo-
rithm by the running example in Fig. 7. Let𝐺 be the graph in Fig. 7 ex-
cluding edge (𝑣3, 𝑣4) and (𝑣4, 𝑣5), i.e. edges indicated by the dotted line.
The initial ⪯ is { 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣0, 𝑣1, 𝑣2, 𝑣3 }, whileΦ0 ={𝑣4},Φ2 ={𝑣5,
𝑣6, 𝑣7} and Φ6 ={ 𝑣0, 𝑣1, 𝑣2, 𝑣3}. In the initialization phase (Line 1
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Figure 7: An Example for Trine Maintenance

- 5), Algorithm 3 enumerates all edges in 𝐸+ = {(𝑣3, 𝑣4), (𝑣4, 𝑣5)}
and calculates 𝑒𝑥𝑡 (·) and only 𝑒𝑥𝑡 (𝑣4) = 4 ≠ 0. Then, the algorithm
enumerates each 𝑘 and 𝑣∗ (Line 7).

First, 𝑘 = 0. When 𝑣∗ = 𝑣4, the algorithm moves 𝑣4 from Φ0 (𝐺)
to P and calculate 𝑢𝑏𝑟 (𝑣4) = 4 (Lines 18 - 23) since 𝑟𝑒𝑚(𝑣4) +
𝑒𝑥𝑡 (𝑣4) = 4 > 𝑡 (𝑣4) = 0. Meanwhile, by enumerating △(𝑣0, 𝑣3, 𝑣4)
and △(𝑣3, 𝑣4, 𝑣5) the algorithm modifies 𝑒𝑥𝑡 (𝑣0) to 2, 𝑒𝑥𝑡 (𝑣3) to 4

and 𝑒𝑥𝑡 (𝑣5) to 2 (Line 19 - 20).
Next, 𝑘 = 2. When 𝑣∗ = 𝑣5, the algorithm moves 𝑣5 from Φ2 (𝐺) to

P and calculate 𝑢𝑏𝑟 (𝑣5) = 4 since 𝑟𝑒𝑚(𝑣5) + 𝑒𝑥𝑡 (𝑣5) = 4 > 𝑡 (𝑣5) =
2. Meanwhile, by enumerating △(𝑣5, 𝑣6, 𝑣7) the algorithm modifies
𝑒𝑥𝑡 (𝑣6) and 𝑒𝑥𝑡 (𝑣7) to 2. When 𝑣∗ = 𝑣6, the algorithm keeps 𝑣6 in
Φ2 (𝐺) since 𝑒𝑥𝑡 (𝑣6) = 2 ≤ 𝑘 = 2 (Line 24 - 27). Meanwhile, by
enumerating △(𝑣5, 𝑣6, 𝑣7) the algorithm decreases 𝑢𝑏𝑟 (𝑣5) to 2 and
𝑒𝑥𝑡 (𝑣7) to 0 (Line 26 - 27).

Then, the algorithm executes Line 29. Since 𝑢𝑏𝑟 (𝑣5) = 2 ≤ 𝑘 = 2,
the algorithm repositions 𝑣5 into the tail of Φ2 (𝐺), and the algorithm
enumerates △(𝑣3, 𝑣4, 𝑣5) thus modifying 𝑒𝑥𝑡 (𝑣3) to 2 and 𝑢𝑏𝑟 (𝑣4) to
2. Since the above process makes 𝑢𝑏𝑟 (𝑣4) = 2 ≤ 𝑘 = 2, the algorithm
repositions 𝑣4 into the tail of Φ2 (𝐺), and the algorithm enumerates
△(𝑣4, 𝑣0, 𝑣3) thus modifying 𝑒𝑥𝑡 (𝑣0) and 𝑒𝑥𝑡 (𝑣3) to 0.

Throughout the execution of the algorithm, only 𝑡 (𝑣4) is modified
to 2 while 𝑣7, 𝑣0, 𝑣1, 𝑣2 and 𝑣3 are skipped by the 𝑣∗ since their 𝑒𝑥𝑡 (·)
become zero before they are pointed to by 𝑣∗ (Line 29).

B.2 An Example of BatchInsertion+ Algorithm

Example 2. We also use Fig. 7 as the running example. The
algorithm first enumerates 𝐸+ = {(𝑣3, 𝑣4), (𝑣4, 𝑣5)} and calculates
𝑒𝑥𝑡 (𝑣4) = 4 ≠ 0 (Lines 1 - 5). And then it enumerates each 𝑘 (Line 6).

First, 𝑘 = 0. When 𝑣∗ = 𝑣4, Alg. 5 moves 𝑣4 from Φ0 to P and
calculate 𝑢𝑏𝑟 (𝑣4) = 4 (Lines 23, 27 - 28). But unlike Alg. 3, Alg. 5 does
not enumerate any △, since ∀𝑢 ∈ 𝑁 (𝑣4), 𝑡 (𝑢) > 𝑘 .

Next, 𝑘 = 2. The first step of Alg. 5 is to raise the lower bound of
𝑡 (𝑣4) to 2 and compute the impact of 𝑣4 on Φ2 (Line 7 - 9). At this
time, by enumerating △(𝑣3, 𝑣4, 𝑣5) the algorithm modifies 𝑒𝑥𝑡 (𝑣5) to
2. The algorithm ignores 𝑣3 since 𝑡 (𝑣3) = 6 > 𝑘 . And then 𝑣∗ = 𝑣5,
and the algorithmmoves 𝑣5 from Φ2 (𝐺) to P and calculate𝑢𝑏𝑟 (𝑣5) =
4. Meanwhile, by enumerating △(𝑣5, 𝑣6, 𝑣7) the algorithm modifies
𝑒𝑥𝑡 (𝑣6) 𝑒𝑥𝑡 (𝑣7) to 2 (Line 24 - 26). When 𝑣∗ = 𝑣6, the algorithm keeps
𝑣6 in Φ2 (𝐺) and calculate 𝑟𝑒𝑚(𝑣6) = 0+ 2 since 𝑟𝑒𝑚(𝑣6) +𝑒𝑥𝑡 (𝑣6) =
2 ≤ 𝑘 (Line 29 - 30). Meanwhile, by enumerating △(𝑣6, 𝑣7, 𝑣5) the
algorithm modifies 𝑢𝑏𝑟 (𝑣5) to 2 and 𝑒𝑥𝑡 (𝑣7) to 0 (Line 31 - 32).

Then, the algorithm executes Line 33. Since 𝑢𝑏𝑟 (𝑣5) = 2 ≤ 𝑘 , the
algorithm repositions 𝑣5 into Φ2 (𝐺) and before 𝑣7, and by enumerat-
ing △(𝑣3, 𝑣4, 𝑣5) the algorithm modifies 𝑢𝑏𝑟 (𝑣4) to 2. Since the above

Algorithm 5: BatchInsertion+

Input:𝐺 , 𝐸+, T-order ⪯, 𝑟𝑒𝑚 ( ·) : ∀𝑣 ∈⪯, 𝑟𝑒𝑚 (𝑣) = 𝑠𝑢𝑝𝐺 [⪯𝑣 ] (𝑣)
Output: the triness of each vertex after inserting all new edges

1 P ← ∅, 𝑢𝑏𝑟 ( ·) = {0}, 𝑒𝑥𝑡 ( ·) = {0};
2 for each 𝑒 = (𝑢, 𝑣) ∈ 𝐸+ do
3 for each △(𝑢, 𝑣, 𝑤 ) ∈ 𝐺 ∪ 𝐸+ do
4 𝑥 ← the vertex in {𝑢, 𝑣, 𝑤} with 𝑥 ⪯ 𝑢 ∧ 𝑥 ⪯ 𝑣 ∧ 𝑥 ⪯ 𝑤;

5 𝑒𝑥𝑡 (𝑥 ) ← 𝑒𝑥𝑡 (𝑥 ) + 2;

6 for each 𝑘 ∈ N from small to large, s.t. P ≠ ∅ ∨ Φ𝑘 (𝐺 ) ≠ ∅ do
/* Delay Impact */

7 for 𝑣 ∈ Φ𝑘 shares triangles with vertices in P do

8 for △(𝑢, 𝑣, 𝑤 ) ∈ P ∪⋃𝑖≥𝑘 Φ𝑖 with 𝑢 ∈ P ∨ 𝑤 ∈ P do

9 𝑒𝑥𝑡 (𝑣) ← 𝑒𝑥𝑡 (𝑣) + 2;

10 𝑣∗ ← the first vertex in Φ𝑘 (𝐺 ) ;
/* Reposition Some Vertices in P to ⪯∗ */

11 for 𝑣 ∈ P ∧𝑢𝑏𝑟 (𝑣) ≤ 𝑘 do

12 move 𝑣 from P to Φ𝑘 (𝐺 ) and before 𝑣∗;

13 𝑡 (𝑣) ← 𝑘 ; 𝑟𝑒𝑚 (𝑣) ← 𝑢𝑏𝑟 (𝑣) ; 𝑢𝑏𝑟 (𝑣) ← 0;

14 for △(𝑢, 𝑣, 𝑤 ) ∈ ⪯𝑣 ∪ P with
𝑢 ∈ (⪯𝑣 ∩ Φ𝑘 ) ∪ P ∨ 𝑤 ∈ (⪯𝑣 ∩ Φ𝑘 ) ∪ P do

15 𝑢𝑏𝑟 (𝑢 ) ← 𝑢𝑏𝑟 (𝑢 ) − 2 if 𝑢 ∈ P;
16 𝑢𝑏𝑟 (𝑤 ) ← 𝑢𝑏𝑟 (𝑤 ) − 2 if 𝑤 ∈ P;
17 𝑒𝑥𝑡 (𝑢 ) ← 𝑒𝑥𝑡 (𝑢 ) − 2 if 𝑢 ∈ Φ𝑘 ;

18 𝑒𝑥𝑡 (𝑤 ) ← 𝑒𝑥𝑡 (𝑤 ) − 2 if 𝑤 ∈ Φ𝑘 ;

19 while 𝑣∗ ≠ 𝑛𝑖𝑙 do

20 𝑣∗𝑛𝑒𝑥𝑡 ← the vertex next to 𝑣∗ in Φ𝑘 (𝐺 ) ;
/* Check 𝑣∗ for the Pending Set */

21 if 𝑒𝑥𝑡 (𝑣∗ ) = 0 then

22 no process;

23 else if 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) > 𝑘 then

/* case-1: move 𝑣∗ from ⪯∗ to P */

24 for △(𝑢, 𝑣∗, 𝑤 ) ∈⪯𝑣∗ with 𝑢 ∈ Φ𝑘 ∨ 𝑤 ∈ Φ𝑘 do

25 𝑒𝑥𝑡 (𝑢 ) ← 𝑒𝑥𝑡 (𝑢 ) − 2 if 𝑢 ∈ Φ𝑘 ;

26 𝑒𝑥𝑡 (𝑤 ) ← 𝑒𝑥𝑡 (𝑤 ) − 2 if 𝑤 ∈ Φ𝑘 ;

27 𝑢𝑏𝑟 (𝑣∗ ) ← 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) ; 𝑒𝑥𝑡 (𝑣∗ ) ← 0;

28 move 𝑣∗ from Φ𝑘 (𝐺 ) to P;
29 else if 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) ≤ 𝑘 then

/* case-2: 𝑣∗ stays its position in ⪯∗ */

30 𝑟𝑒𝑚 (𝑣∗ ) ← 𝑒𝑥𝑡 (𝑣∗ ) + 𝑟𝑒𝑚 (𝑣∗ ) ; 𝑒𝑥𝑡 (𝑣∗ ) ← 0;

31 for △(𝑢, 𝑣∗, 𝑤 ) ∈ ⪯∗𝑣 ∪ P with 𝑢 ∈ P ∨ 𝑤 ∈ P do

32 Execute Lins 15 - 18 to update 𝑢𝑏𝑟 ( ·) and 𝑒𝑥𝑡 ( ·) ;
33 Replace 𝑣∗ with 𝑣∗𝑛𝑒𝑥𝑡 and do Lines 20-25;

34 𝑣∗ ← 𝑣∗𝑛𝑒𝑥𝑡 ;

Return: 𝑡 ( ·)

process makes 𝑢𝑏𝑟 (𝑣4) = 2 ≤ 𝑘 , the algorithm repositions 𝑣4 into
Φ2 (𝐺) and before 𝑣7, and the algorithm enumerates none of △ since
all the neighbors are either not in Φ2 (𝑣0 and 𝑣3) or before 𝑣4 in (𝑣5).

Throughout the execution of the Alg. 5, 𝑣∗ enumerates the same
vertices as Alg. 3, i.e., 𝑣4,𝑣5 and 𝑣6. However, in traversing these ver-
tices, Alg. 5 enumerates only △(𝑣3, 𝑣4, 𝑣5) and △(𝑣5, 𝑣6, 𝑣7) (twice
each), while Alg. 3 additionally enumerates △(𝑣0, 𝑣3, 𝑣4) (also twice).
It is evident that Delaying Impact reduces the number of triangles
enumerated by the algorithm.
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