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Abstract—A large number of studies on Graph Outlier De-
tection (GOD) have emerged in recent years due to its wide
applications, in which Unsupervised Node Outlier Detection
(UNOD) on attributed networks is an important area. UNOD
focuses on detecting two kinds of typical outliers in graphs: the
structural outlier and the contextual outlier. Most existing works
conduct experiments based on datasets with injected outliers.
However, we find that the most widely-used outlier injection
approach has a serious data leakage issue. By only utilizing
such data leakage, a simple approach can achieve state-of-the-art
performance in detecting outliers. In addition, we observe that
existing algorithms have a performance drop with the mitigated
data leakage issue. The other major issue is on balanced detection
performance between the two types of outliers, which has not
been considered by existing studies.

In this paper, we analyze the cause of the data leakage issue
in depth since the injection approach is a building block to
advance UNOD. Moreover, we devise a novel variance-based
model to detect structural outliers, which outperforms existing
algorithms significantly and is more robust at kinds of injection
settings. On top of this, we propose a new framework, Variance-
based Graph Outlier Detection (VGOD), which combines our
variance-based model and attribute reconstruction model to
detect outliers in a balanced way. Finally, we conduct extensive
experiments to demonstrate the effectiveness and efficiency of
VGOD. The results on 5 real-world datasets validate that VGOD
achieves not only the best performance in detecting outliers but
also a balanced detection performance between structural and
contextual outliers.

Index Terms—Graph Outlier Detection; Graph Neural Net-
work; Unsupervised Graph learning; Attributed Networks

I. INTRODUCTION

Graph Outlier Detection [1] (GOD, a.k.a. graph anomaly

detection) is a fundamental graph mining task. It has various

applications in high-impact domains and complex systems,

such as financial fraudster identification [2]. The detection

objects of GOD can be classified into different levels like

node, edge, community, and graph [3]. For example, detecting

abnormal users in a social network is the node-level GOD

task while detecting abnormal molecules can be regarded as a

graph-level GOD task.

Due to the high cost or unavailability of manually la-

beling the ground truth outliers, a large number of existing

GOD approaches are carried out in an unsupervised manner

[4, 5], which aims to detect the instances that significantly

* Liping Wang is the corresponding author.

deviate from the majority of instances in graphs [6]. At-

tributed networks (a.k.a. attributed graphs) are a powerful

data representation for many real-world complex systems (e.g.

a social network with user profiles), in which entities can

be represented as nodes with their attribute information; the

interaction or relationship between entities can be represented

as edges [7]. In recent years, the study of Unsupervised Node

Outlier Detection (UNOD) on attributed networks has been

blooming due to its wide applications [3, 8, 9]. Different

from traditional global outlier detection and time series outlier

detection, it defines two new typical types of outliers on

attributed networks, namely, structural outlier and contextual

outlier [4].

Fig. 1. An example of structural and contextual outliers in UNOD.

In Fig 1, there is a toy example for these two kinds

of basic outliers. Particularly, structural outliers are those

nodes structurally connected to different communities, i.e.,

their structural neighborhood is inconsistent. In other words,

a structural outlier has normal attributes while it may have

several abnormal links. For example, those people from dif-

ferent communities but have a strong connection with each

other can be regarded as structural outliers. As shown in Fig

1(a), there are two communities outlined with orange circles

and structural outliers are those nodes that have abnormal links

to other communities. On the other hand, a contextual outlier

has a consistent neighborhood structure while its attributes are

corrupted, noisy, or significantly different from its neighbor

nodes’ attributes. For example, in Fig 1(b), suppose that the

node in red is a football player while the nodes in green

are music teachers. In this case, the node in red is regarded

as a contextual outlier since it has a vast difference from
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its neighbors. In the real world, datasets are much more

complicated than this toy example and it is difficult to measure

the degree of inconsistency among nodes.

There have been various methods proposed to solve UNOD

[9]. They can be roughly divided into two categories, namely,

non-deep and deep-learning-based methods. Non-deep meth-

ods usually leverage traditional machine learning methods

such as matrix factorization [10], density-based clustering

[11], and relational learning [12] to encode the graph informa-

tion and detect outliers. However, these methods fail to address

the computational challenge with high-dimension data [13].

With the rapid prevalence of Graph Neural Networks (GNNs)

[14], more and more methods are based on deep learning

[15] and GNNs nowadays [3]. For example, DOMINANT [4]

employs two GNN autoencoders to reconstruct the attribute

information and structure information. According to the results

reported in PyGOD [9], most deep-learning-based methods

have a much better performance than non-deep methods in

detecting injected outliers. To unify the outlier injection pro-

cess, PyGOD [9] adopts the outlier injection approach from

[4] as the standard injection approach.

Challenge. Although the recent deep-learning-based methods

have achieved an excellent performance in UNOD, we find

that the most widely-used outlier injection approach, which

is adopted by [4, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24],

will cause a serious data leakage issue. Here, we refer to

the data leakage [25] in machine learning, which means the

information strongly associated with the labels is leaked to

the training dataset. After employing this approach to inject

outliers, structural outliers will have a larger node degree than

the average while attribute vectors of contextual outliers will

have a larger L2-norm (a.k.a. Euclidean norm) than expected.

As a result, a simple solution only utilizing node degree or

L2-norm of attribute vectors as the outlier score to detect the

corresponding type of outliers can acquire a quite satisfying

performance as shown in Fig 2. The metric of AUC [26] is

adopted here to measure the detection performance. Under

such a serious data leakage issue in injected datasets, most

existing algorithms cannot have a better performance than the

simple solution. In addition, it is observed that existing algo-

rithms have a performance drop in varied injection settings, in

which the data leakage issue caused by the current injection

approach is alleviated. Therefore, it is urgent to find out the

cause of data leakage and reduce its impact. On the other hand,

it is also necessary to exploit an effective UNOD algorithm,

which has a superior performance and is robust to the data

leakage issue. Moreover, the balance between structural and

contextual outliers detection performance is little considered

in existing works [9]. An algorithm with unbalanced detection

may only have detection ability for a certain type of outliers.

It is found that existing algorithms focus more on contextual

outliers than structural outliers when detecting them. To gain

more feasible algorithms, comprehensive metrics for balance

evaluation should be devised.

Our Solution. In this paper, we are devoted to analyzing the

Fig. 2. After injecting outliers in four datasets, node degree is employed to
detect structural outliers while L2-norm of attribute vector is employed to
detect contextual outliers. Both of them, compared to the random detector,
achieve unexpectedly high scores.

cause of data leakage and devising a superior outlier detection

method for UNOD to achieve better performance in both the

current injection setting and varied injection settings.

In particular, we propose a novel variance-based model

to detect structural outliers, which adopts the variance of

representations of neighbor nodes to detect structural outliers.

To the best of our knowledge, it is the first time to employ

the neighbor variance to detect outliers. Existing algorithms

are based on either reconstruction of adjacency matrix [4, 18]

or contrastive learning [16, 23] to detect structural outliers.

According to the definition, the essence of a structural outlier

is its inconsistent neighbors that come from different commu-

nities. However, existing algorithms cannot directly capture

this essence. In this case, we devise a deep graph model to

measure the inconsistency among neighbors by the variance

of latent representations of neighbors, which captures the

essence and gives a better utility for detection. On top of this,

a new framework, Variance-based Graph Outlier Detection

(VGOD), is also proposed to detect two types of outliers with

a variance-based model and an attribute reconstruction model.

To address the balance issue, we separately train two models

to avoid overtraining and normalize two types of outlier scores

to eliminate the scale difference. To evaluate the detection

balance on two outlier types, we introduce a new metric to

measure the gap in the performance score. The experiments are

conducted on 5 real-world datasets and the results demonstrate

that VGOD achieves the best detection performance.

Contribution. Our major contributions are as follows.

1) To the best of our knowledge, we are the first to identify

the data leakage issue in the most widely-used outlier

injection approach.

2) We analyze the cause of data leakage in depth, give

suggestions for the future design of the outlier injection

approach, and purpose a new approach for injecting

structural outliers.

3) We propose a novel variance-based model and a new

VGOD framework, which outperforms existing algo-

rithms in detecting outliers and alleviates the issue of

balanced detection.

4) Extensive experiments are conducted to demonstrate that

our approach achieves the best detection performance

and the detection balance.
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II. RELATED WORK

A. Graph Neural Network

GNNs [14] are a group of neural network models which

utilize the graph structure for network representation learning

and various tasks. Among GNNs, GCN [27] is one of the most

influential models, which extends the convolutional operation

in sequence or grid data to graph-structured data. Furthermore,

to aggregate messages from neighbors more flexibly, GAT [28]

introduces an attention mechanism to learn the importance

of each neighbor node. On the other hand, GraphSage [29]

adopts the sampling-based method to aggregate the neighbor

information to work in large-scale graphs. From a topological

learning perspective, GIN [30] is a more expressive model

than GCN and can achieve the same discriminative power

as the 1-WL graph isomorphism test [31]. In our proposed

framework, GNN plays a vital role in the network embedding

representation of nodes. Generally, the GNN module in our

framework can be set to any type of the above-mentioned

GNNs.

B. Unsupervised Node Outlier Detection on Attributed Net-
works

UNOD on attributed networks has attracted considerable

research interest in recent years due to its wide application in

complex systems. Radar [32] utilizes the residuals of attribute

information and its coherence graph structure for outlier de-

tection. ANOMALOUS [33] conducts attribute selection and

outlier detection jointly based on CUR decomposition and

residual analysis. However, these methods have computation

limitations in high-dimension attributes due to their shallow

mechanisms.

Quite a few studies based on the deep-learning technique

have emerged recently [3]. Dominant [4] builds deep autoen-

coders on top of GCN layers to reconstruct the adjacency

and attribute matrices. AnomalyDAE [18] employs dual au-

toencoder architecture with cross-modality interactions and

the attention mechanism to reconstruct the adjacency and

attribute matrices. CoLA [16] and SL-GAD [23] perform

the UNOD task via contrastive self-supervised learning and

random walk to embed nodes. AEGIS [17] studies UNOD in

the inductive setting by utilizing generative adversarial ideas to

generate potential outliers. DONE [34] employs deep unsuper-

vised autoencoders to generate the network embedding which

eliminates the effects of outliers at the same time. CONAD

[19] adopts four data augmentation strategies and contrastive

learning for outlier detection. GUIDE [21] replaces adjacency

reconstruction with higher-order structure reconstruction to

detect structural outliers. Under the manner of outlier injection,

all these above deep methods show superior performance than

non-deep methods in detecting these two types of outliers.

To evaluate UNOD algorithms, PyGOD [9] adopts the most

widely-used outlier injection approach from [4] as the standard

injection method and provides unified benchmarks for UNOD,

which facilitates fairness for comparing different methods.

Current UNOD methods have achieved an excellent per-

formance. However, as demonstrated in Fig 2, the widely-

used outlier injection approach exists a data leakage issue.

To our surprise, simply using the combination of L2-norm

and node degree to detect outliers can achieve state-of-the-

art performance. Therefore, our work focuses on analyzing

the cause of the data leakage issue and designing a superior

method. In addition, as mentioned in [9] that no current

method has a balanced detection performance on two outlier

types, we also consider the balance issue in our method.

III. PRELIMINARY

In this section, we formally present some concepts which

are used throughout this paper and define the problem. We

use lowercase letters (e.g. a), bold lowercase letters (e.g. x),

uppercase letters (e.g. X), and calligraphic fonts (e.g. V) to

denote scalars, vectors, matrices, and sets, respectively.

A. Graph Neural Network

GNNs stack L layers of message-passing layers. Each layer

performs a message passing through the given graph structure.

After the initial node feature h0 ∈ R
d0 is transformed by L

layers, the vector representation hL ∈ R
dL is learned for each

node v. Most message-passing layers can be expressed using

the following rule:

h(l)
v = σ(Ψ(l)(AGG({Φ(l)(h(l−1)

u ), u ∈ Nv ∪ {v}}))) (1)

where σ(·) is the active function, Ψ(l)(·) and Φ(l)(·) de-

note differentiable functions such as Multi-Layer Perceptrons

(MLP). AGG(·) denotes a differentiable, permutation invariant

function (e.g. sum, mean, max) and Nv denotes node v ’s

direct linked neighbors.

Here, we introduce three commonly used GNNs, namely

GCN, GAT, and GIN.

Graph Convolution Network (GCN) [27] is the most

widely-used GNN module, which adopts the propagation rule:

H(l+1) = σ(ÂH(l)W (l)) (2)

where Â is the symmetric normalized adjacency matrix, H(l)

is the lth hidden layer node representation, and W (l) is the

parameters in the lth hidden layer.

Graph Attention Network (GAT) [28] flexibly aggregates

messages from neighbors with calculated weight αij (vs.

average weight adopted by GCN) of each edge 〈i, j〉 as

αij =
exp(LeakyReLU(aT [Whi||Whj ]))∑

k∈Ni
exp(LeakyReLU(aT [Whi||Whk]))

(3)

where a and W are the learnable weights. Layer mask (l) is

omitted for simplicity.

Graph Isomorphism Network (GIN) [30] is the expres-

sively more powerful GNN model, which follows the rule to

propagate messages as

H(l) = σ(Ψ(l)(A+ (1 + ε) · I)H(l−1)) (4)

where ε can be a fixed or learnable scalar parameter, and I and

A is the identity matrix and adjacency matrix, respectively.
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B. Unsupervised Node Outlier Detection on Attributed Net-
works
Definition 1 (Attributed Network). An attributed network can
be denoted as G = (V, E , X), where V = {v1, v2, ..., vn} is
the set of nodes (|V| = n), E is the set of edges (|E| = m), and
X ∈ R

n×d is the attribute matrix. The ith row vector xi ∈ R
d

of the attribute matrix denotes the attribute information of the
ith node. Node i’s direct neighbors can be denoted as Ni.

With the aforementioned notations, the outlier detection

problem on attributed network can be formally stated as a

ranking problem.

Definition 2 (Outlier Detection on Attributed networks).
Given an attributed network G = (V, E , X), the goal is to
learn an outlier score function f(·) to calculate the outlier
score oi = f(vi) for each node. The higher the outlier score
oi is, the ith node is more likely to be a structural outlier or a
contextual outlier. By ranking all the nodes with their outlier
scores, the abnormal nodes can be detected according to their
ranking.

In this paper, we consider the setting of unsupervised node

outlier detection (UNOD), which is generally adopted by

previous works. In this setting, none of labels of nodes is

given in the training phase.

IV. DATA LEAKAGE ISSUE ANALYSIS

As shown in Fig 2, the current widely-used outlier injection

approach exists a serious data leakage issue. In this section, we

analyze the data leakage issue in detail. For these two types of

outliers, we first introduce the outlier injection approach from

[4]. Next, we theoretically analyze the cause of data leakage

and give our suggestions for a better design of the outlier

injection approach.

A. Structural Outlier
1) Injection Approach: The structural outliers are acquired

by disturbing the topological structure of the graph. In a

clique, nodes are fully connected. The intuition is that nodes

in a clique should have a strong correlation with each other.

Based on this, the outlier assumption is that a clique formed

by unrelated nodes is structurally abnormal. The process of

structural outlier injection is as followed. The first step is to

specify the clique size q and the number of cliques p. Next,

for each clique, q random nodes are chosen from the set of

normal nodes and made fully connected as structural outliers.

Therefore, total p × q structural outliers will be injected into

the dataset. In previous works, the clique size q is fixed to 15

for all datasets, and the value of p is set according to the size

of the dataset.
2) Cause Analysis: It is obvious that the chosen structural

outliers will have a higher node degree since additional edges

are added to them. Table I shows that none of the three citation

networks (Cora, Citeseer, PubMed) have an average node

degree greater than 3. However, due to the above injection

approach, all the outliers will have a node degree of at least

more than 15 (i.e. q) in previous work.

B. Contextual Outlier

1) Injection Approach: The contextual outliers are acquired

by disturbing the attributes of nodes. The injection process is

as followed. Firstly, total p×q normal nodes will be chosen as

contextual outliers, which have the same number as structural

outliers. Next, for each chosen outlier node vi, another k nodes

{vc1, vc2, ..., vck} are randomly sampled from V as a candidate

set Vc. For each vci in Vc, the Euclidean distance between the

attribute vector xci of vci and xi of vi will be calculated.

The attribute vector xci with the largest ‖xci − xi‖2 will be

used to replace xi as the new attribute vector of vi. The size

of candidate set k is set to 50, ensuring that the disturbance

amplitude is large enough.

2) Cause Analysis: To ensure a large enough disturbance of

attributes, the above injection approach changes the xi to xci

with the largest ‖xci − xi‖2. However, such a strategy will

lead to the L2-norm of the final chosen xci (i.e. ‖xci‖2) being

more likely to be large. We make the following assumptions.

Assumption 1. Suppose both xci ∈ R
d and xi ∈ R

d are
independently sampled from attribute matrix X . The rank of
matrix X is greater than 1.

Assumption 2. For xci ∼ X , xci = ‖xci‖2 · �eci, where
‖xci‖2 and �eci are the modulo and direction of xci, respec-
tively. We assumed that ‖xci‖2 and �eci are independently
distributed.

We use Pr(x) to denote the possibility of x, then we have

the following theorem.

Theorem 1. Pr(‖xci − xi‖2 > ‖xcj − xi‖2 ⇒ ‖xci‖2 >
‖xcj‖2) > 0.5

Proof. We define D(xci,xi) = ‖xci − xi‖2 . For notational

convenience, we use s to refer to xci and t to refer to xi.

Please note that both s and t are independently sampled from

X ∈ R
n×d.

D2(s, t) =

d∑
i

(si–ti)
2

=

d∑
i

s2
i − 2

d∑
i

siti +

d∑
i

t2i

= ‖s‖22 − 2‖s‖2‖t‖2cosα+ ‖t‖22
= f(‖s‖2)

where α is the angle between vector s and t, and ‖s‖2 is the

modulo of s. From the above Equation, we can regard D2(s, t)
as a quadratic function f(·) of ‖s‖2. Particularly, ‖s‖2 =
‖t‖2cosα is the symmetry axis for f(‖s‖2). According to the

properties of a quadratic function in one variable, the function

is monotonic on both sides of the symmetry axis. Therefore,

if ‖s‖2 > ‖t‖2cosα⇒ (f(‖s‖2) ↑ ⇒ ‖s‖2 ↑)
if ‖s‖2 < ‖t‖2cosα⇒ (f(‖s‖2) ↑ ⇒ ‖s‖2 ↓)

where ↑ means increase and ↓ means decrease. In this case,
we can draw the following conclusions.

Pr(‖s‖2 > ‖t‖2cosα) = Pr(f(‖s‖2) ↑ ⇒ ‖s‖2 ↑)
= Pr(D

2(s, t) ↑ ⇒ ‖s‖2 ↑)
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= Pr(‖xci − xi‖2 > ‖xcj − xi‖2 ⇒ ‖xci‖2 > ‖xcj‖2)
Since s and t are independently sampled from attribute

matrix X , we can draw

Pr(‖s‖2 > ‖t‖2) = 0.5.

Due to the assumption that the rank of X is greater than

1, the angle between s and t does not always equal zero.

Therefore, Pr(cosα ≡ 1) < 1. Note that cosα ≤ 1. Finally,

we draw the following

Pr(‖s‖2 > ‖t‖2cosα) > 0.5

which means

Pr(‖xci − xi‖2 > ‖xcj − xi‖2 ⇒ ‖xci‖2 > ‖xcj‖2) > 0.5

Fig 2 verifies our analysis that only utilizing the L2-norm of

attribute vectors of nodes can achieve nearly 0.98 AUC score

for all these four datasets when k = 50.

Further, we vary the parameter k of the above injection

approach. As k is set smaller, the data leakage issue is

mitigated, which is shown in the left part of Fig 3, indicating

the large k is the main cause for the serious data leakage

issue. In the right part of Fig 3, we also replace the Euclidean

distance by cosine distance in the injection approach. At

this time, not all datasets have a data leakage issue when k
becomes large. Therefore, Euclidean distance is also a key

cause for data leakage.

Fig. 3. AUC of L2-norm for contextual outliers injection with varying
parameter of k (size of candidate set) and different distance measurements.

C. Suggestion

Due to the serious data leakage issue, it is hard to figure

out whether the outlier detection algorithm has an effect

on detection or potentially exploits the leaked information

of labels. According to our experiment in Section VI-B, a

simple baseline only using the leaked information outperforms

existing deep-learning-based solutions that need a long time

to train. This can be explained from two aspects:

1) The data leakage issue caused by the current injection

approach is too serious, which results in little space for

these algorithms to improve.

2) Existing outlier detection algorithms are not effective

enough.

To mitigate data leakage caused by the current injection

approach, we give the following suggestions on designing

the new injection approach, better experiment, and parameter

setting.

Suggestions for experiments and outlier injection. We give

the suggestion for experiments and a new idea for outlier

injection:

• Firstly, the data leakage issue should be examined. If it

is hard to avoid data leakage, then the leaked information

should be compared to see the exact improvement.

• Secondly, some datasets contain category labels for the

node classification task. It is natural to think nodes with

different labels come from different communities. Can we

design a better injection approach based on this?

Suggestions for structural outliers injection. The size of the

structural outlier clique is much larger than the average node

degree of graph, which leads to node degree being a signal for

structural outliers. Therefore, we can set the injection clique

size q smaller for the current injection approach.

On the other hand, in real world, higher node degrees are

not a signal for structural outliers. For example, a famous

person has many friends, but these friends are all in his or

her community circle, so this person is not a structural outlier.

Therefore, to keep the distribution of node degree, replacing

edges can be considered for a new injection approach.

Suggestions for contextual outliers injection. We have ana-

lyzed that the size of candidate set k and Euclidean distance

are two key factors to cause data leakage. Based on this, we

give these suggestions:

• Firstly, simply setting k smaller can mitigate the data

leakage for the current injection approach.

• Secondly, replacing Euclidean distance with other dis-

tance measurements can be tried, such as cosine distance,

shortest path distance, and so on.

D. Summary

In summary, the current widely-used outlier injection ap-

proach will cause the data leakage issue, both in structural and

contextual outlier injection. We also give some suggestions

for designing a new injection approach, better experiment,

and parameter setting. Some of suggestions are applied in

our experiment to evaluate the effectiveness of existing outlier

detection solutions as well as our solution.

V. METHODOLOGY

In this section, we are going to illustrate our proposed

framework VGOD in detail. Since current UNOD algorithms

cannot outperform the simple baseline which only utilizes

data leakage information, we propose our new framework

VGOD, which combines a novel variance-based model and

attribute reconstruction model. Specifically, the former model

is for detecting structural outliers and the latter model is for

detecting contextual outliers. Then we standardize the outlier

scores outputted by two models and add them to get the

final score. Fig 4 presents the whole architecture of VGOD

framework.
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Fig. 4. The overview of our proposed unsupervised node-level graph outlier detection framework VGOD. For a given attributed network G, the variance-based
model and attribute reconstruction model are employed to calculate the structural and contextual outlier score, respectively. The final score is the sum of two
standardized scores. In the variance-based model (VBM), we use a negative edge sampling technique to generate a corresponding negative edge set E(−) per
epoch which has the same number of edges as E . VBM is trained by the contrastive learning of E and E(−).
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Fig. 5. (a) The MeanConv Layer. (b) The MinusConv Layer. We calculate
the variance of neighbor nodes’ low-dimension latent representation by (a)
and (b).

A. Variance-based Model

In order to effectively detect structural outliers, we propose

a novel Variance-Based Model (VBM). To the best of our

knowledge, this is the first time to utilize the variance of

neighbors to detect outliers. Neighbor variance measures the

consistency of neighbor nodes. The bigger the variance, the

less consistency it implies. In addition, our VBM has no bias

on nodes with larger node degrees.

Feature Transformation. Before calculation of neighbor vari-

ance, we conduct the feature transformation fθ(·) for the

original attribute matrix X and get the low-dimension hidden

representation matrix H of nodes:

H = fθ(X) (5)

where fθ(·) denotes a neural network, such as MLP (·).
The ith row vector hi of the hidden representation matrix

H denotes the latent representation of the ith node. In our

experiment, we implement it with a linear transformation and

L2-normalization as :

Ĥ = XW + b

hi =
ĥi

‖ĥi‖2
(6)

where W ∈ R
d×dh and b ∈ R

dh are the learnable parameters,

d and dh are the input dimension and hidden dimension of

representation, respectively.

Neighbor Variance. In order to capture the consistency of

neighbor nodes of a given node vi, we calculate the variance

of attribute vectors of neighbor nodes for vi:

hi =
1

|Ni|
∑
j∈Ni

hj (7)

var(vi) =
1

|Ni|
∑

j∈Ni

(hj − hi)
2 (8)

ostri = lossvar(vi) = ‖var(vi)‖1 (9)

where hi is the average of hidden representations of neighbor

nodes of vi. The L1-norm of var(vi) is applied as structural

outlier score ostri for node vi. Since all components of the

vector var(vi) are greater than 0, the L1 norm calculation

is to simply sum components of the var(vi). In order to

efficiently calculate variance for each node, we implement

the calculation of variance based on the message-passing

scheme [35] and design two message-passing layers without

parameters, namely MeanConv and MinusConv, as illustrated

in Fig 5. Concretely, MeanConv is employed to calculate Eq.
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(7) and MinusConv is used to calculate Eq. (8) as well as Eq.

(9).

Train. In order to train VBM to learn the representation that a

normal node has a low variance while a structural outlier has

a high variance, the train objective for VBM can be formally

defined as below:

min
θ

Evi∼V [lossvar(vi)− 1

|V−Ni |
∑

j /∈Ni

(hj− 1

|V−Ni |
∑

u/∈Ni

hu)
2]

(10)

where V−Ni = V \ Ni is the non-neighbor node set of vi.
We minimize the neighbor variance of a node while maxi-

mizing the variance of hidden representations of all the non-

neighbor nodes. In this case, the model will avoid generating

the same hidden representations for all nodes. However, it is

too expensive to maximize the variance of all non-neighbor

nodes every time. In this case, we apply negative edge sam-

pling each epoch to generate a network G(−) whose edge set

E(−) has the same number of edges as E .

Definition 3 (negative edge set). For a given attributed
network G = {V, E , X}, if E(−) is the negative edge set of
G, then 〈u, v〉 ∈ E(−) ⇒ 〈u, v〉 /∈ E , ∀ u, v ∈ V .

Definition 4 (negative network). For a given attibute network
G = {V, E , X}, we define the negative network G(−) =
{V, E(−), X}, where E(−) is the negative edge set of G.

Therefore, we can utilize such a negative graph to maximize

the variance of unrelated nodes. In other words, we randomly

sample the same number of negative neighbors for each node

vi and maximize the neighbor variance calculated by these

negative neighbors. Instead of maximizing the variance of all

non-neighbor nodes, fewer nodes are required for computation

by using negative sampling, which greatly saves time and

space.

Therefore, for each node vi, it has the “related vs unrelated”

neighbor nodes pair, and corresponding lossvar(vi)
(+) and

lossvar(vi)
(−) can be calculated respectively. The contrastive

learning of neighbor nodes pair can be formalized as:

loss(+)
var(vi) = ‖var(vi,G)‖1

loss(−)
var(vi) = ‖var(vi,G(−))‖1

lossstr(vi) = loss(+)
var(vi)− loss(−)

var(vi)

(11)

where var(vi,G) and var(vi,G(−)) means we calculate the

neighbor variance based on network G and G(−), respectively.

Finally, we minimize the above lossstr for all nodes in V
as:

min
θ

Ev∼V lossstr(v) (12)

Thus, trained VBM can output a larger neighbor variance

score for nodes with unrelated neighbor nodes and a relatively

small score for nodes with related neighbor nodes. Conse-

quently, we can utilize VBM to detect structural outliers.

Can neighbor variance help detect contextual outliers? We

employ a simple technique, self-loop edge, to make neighbor

variance have an effect on detecting contextual outliers besides

structural outliers. In specific, self-loop edges are added to all

nodes as

N̂i = Ni ∪ {vi}, ∀vi ∈ V (13)
where Ni is the neighbor set of node vi. As the attributes of a

contextual outlier are significantly different from its neighbors,

neighbor variance of it would be increased greatly after adding

the self-loop neighbor when |Ni| (i.e. node degree of node vi)
is small. This technique is optional and we employ it when

the average node degree of graph is small. Our experiment in

Section VI-E5 studies the effect of this technique.

B. Attribute Reconstruction Model

We employ attribute reconstruction in the detection of

contextual outliers. Our attribute reconstruction Model (ARM)

is flexible that any popular GNN model can be used as the

backbone to reconstruct the attributes of nodes.

Feature Transformation. Similar to VBM, we first transform

the original attribute matrix X to the low-dimension feature

representation matrix Z(0) as:

Ẑ = XW ′ + b′

z
(0)
i =

ẑi

‖ẑi‖2
(14)

where W ′ and b′ are the learning parameters, z
(0)
i is the ith

row vector of Z(0).

GNN Layers. Then we employ L GNN layers to transform

Z(0) to Z(L) to fully absorb the message from neighbor nodes.

The lth GNN Layer can be formalized as:

Z(l) = GNN (l)(Z(l−1),G) (15)

where lth operator GNN (l)(·) can be implemented by any

popular GNN model like GCN [27], GAT [28], GIN [30], and

so on.

Feature Retransformation. Finally, we retransform the Z(L)

to X̂ , where X̂ ∈ R
|V|×d has the same shape as original

attributes matrix X .

X̂ = Z(L)Ŵ + b̂ (16)

where X̂ is the reconstruction of the attribute matrix, Ŵ
and b̂ are the weight and bias parameters. Thus we can

use the reconstruction attribute matrix X̂ to calculate the

reconstruction error, which is denoted as

oattri = lossrecon(vi) = ‖x̂i − xi‖2 (17)

min
θ

Ev∼V loss
recon(v) (18)

By minimizing the above objective, trained ARM can detect

contextual outliers.

C. Outlier Detection

As mentioned in [9], current UNOD algorithms fail to

have balanced performance on two outlier types. During the

training stage, the previous practice that combines contextual

and structural loss with a fixed weight fails to balance the

optimization of model parameters. Similarly, during the in-

ference stage, combing the contextual and structural score
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with a fixed weight fails to achieve a balanced detection

performance. Therefore, we separately train our VBM and

ARM with different epochs to avoid unbalanced optimization.

Score combination. After both VBM and ARM are well-

trained, we employ the mean-std normalization on two types

of outlier scores outputted by two models and sum scores to

get the final score, which can be formalized as:

ôi
str =

ostri − μ(Ostr)

std(Ostr)

ôi
attr =

oattri − μ(Oattr)

std(Oattr)

oi = ôi
str + ôi

attr

(19)

whereOstr andOattr denote the set of structural outlier scores

and contextual outlier scores, respectively. μ(·) denotes the

mean function, std(·) denotes standard deviation function.

By adopting Eq. (19) as the final outlier score, our model

can have a more balanced performance in detecting two types

of outliers during the inference stage. The overall procedure

of our VGOD framework is described in Algorithm 1.

Algorithm 1 The overall procedure of VGOD framework

Input: Attributed Network: G = (V, E , X), Training epochs

for VBM: EpochV BM , Training epochs for ARM:

EpochARM

Output: Well-trained VBM and ARM, outlier scores O
1: // Training phase
2: for i ∈ 1, 2, ..., EpochV BM do
3: Generate the negative network G(−) = (V, E(−), X)

by negative edge sampling.

4: Compute the neighbor variance of nodes in G(+) and

G(−) via Eq. (6)-(9).

5: Update VBM with the loss function via Eq. (11).

6: end for
7: for i ∈ 1, 2, ..., EpochARM do
8: Compute the reconstruction node attributes via Eq.

(14)-(16).

9: Update ARM with the loss function via Eq. (17).

10: end for
11: // Inference phase
12: Compute the Ostr and Oattr via VBM and ARM, respec-

tively.

13: Compute the final outlier scores O via Eq. (19).

14: return VBM, ARM, O

D. Complexity Analysis

The complexity is mainly bounded by message-passing

layers. For simplicity, the number of layers and the number

of dimensions are considered constant. The space and time

complexity both are O(|E| + |V|). In addition, we are only

using GNN layers and two linear layers to build our model.

Since there are a large number of research on extending GNNs

to larger networks, we can make use of various mini-batch

training techniques such as [29, 36, 37] to extend our model

in a large-scale network without much effort.

TABLE I
DATASETS FOR UNOD EXPERIMENTS.

Dataset #nodes #edges #attrs #avg deg #outliers∗ %outlier∗

Cora 2,706 5,429 1,433 2.01 150 5.5%

Citeseer 3,327 4,732 3,703 1.42 150 4.5%

PubMed 19,717 44,338 500 2.25 600 3.0%

Flickr 7,575 239,738 12,407 31.65 450 5.9%

Weibo 8,405 407,963 64 48.5 868 10.3%
∗#outlier and %outlier are only for UNOD Experiments.

VI. EXPERIMENT

In this section, we conduct experiments to illustrate the

effectiveness of our proposed framework VGOD. Firstly, we

describe the experiment settings including datasets, baselines,

evaluation metrics, and computing infrastructures. Then, we

conduct the Unsupervised Node Outlier Detection (UNOD)

experiment to validate the effectiveness of our framework.

Next, we conduct two structural outlier detection experiments

under different injection parameters and a new injection ap-

proach, respectively. Finally, we make further analysis for our

approach, including efficiency and ablation study. Our code is

available at https://github.com/goldenNormal/vgod-github.

A. Experiment settings

1) Datasets: We evaluate the proposed framework on five

real-world datasets for UNOD on attributed networks, includ-

ing four widely-used benchmark datasets with injected outliers

and one dataset with labeled outliers. These datasets, shown

in Table I, include three citation networks1 (Cora, Citeseer,

PubMed) and two social networks (Flickr2 and Weibo3). Only

the Weibo dataset contains labeled outliers.

2) Baselines: We compare our proposed framework VGOD

with the recent five deep-learning-based SOTA models. These

baselines are summarized in Table II. Column time complexity

indicates the time complexity of inference. For simplicity, the

number of layers and the number of dimensions are considered

as constant. If the model outputs more than one score for

outliers like VGOD, then we consider that it has the feature

of score combination. If the hyperparameters of the model

(e.g., the number of layer units) are not coupled to the number

of nodes or edges of the training graph, then we regard

it can perform inductive inference, which means a trained

model can be directly used for detecting outliers on a new

graph with the same attribute schema. Since none of labels

is given in the training phase, our experiments are conducted

in the transductive setting, which is consistent with existing

unsupervised outlier detection works.

Due to data leakage in the outlier injection approach, we

also design a simple baseline for comparison and evaluation,

which only utilizes the leaked information (i.e. node degree

and L2-norm of attribute vectors). We name it DegNorm.

DegNorm adopts node degree as structural outlier score

while L2-norm of attribute vectors of nodes are adopted as

1https://linqs.org/datasets/
2https://github.com/mengzaiqiao/CAN
3https://github.com/zhao-tong/Graph-Anomaly-Loss/tree/master/data
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TABLE II
THE COMPARISON OF BASELINES.

Baseline Time Complexity Contrastive Learning Reconstruction Score Combination Inductive Inference

Dominant [4] O(|E|+ |V|2) × � � �
AnamalyDAE [18] O(|E|+ |V|2) × � � ×

DONE [34] O(|V|K)1 × � � �
CoLA [16] O(c|V|R(c+ δ))2 � × × �

CONAD [19] O(|E|+ |V|2) � � � �
VGOD (Ours) O(|E|+ |V|) � � � �

1 K denotes the number of sampling neighbors for each node
2 R denotes the number of sampling rounds, c denotes the number of nodes within the local subgraph, and δ denotes the average degree of the network.

contextual outlier score. The mean-std normalization is applied

to two scores. The final outlier score is the sum of these two

scores which have been normalized. The calculation of ostri

and oattri can be formalized as:

ostri = |Ni|
oattri = ‖xi‖2

(20)

whereNi is the neighbor node set of node vi, xi is the attribute

vector of node vi.
3) Evaluation Metrics: We use Area Under receiver op-

erating characteristic Curve (AUC) to measure. In specific,

AUC evaluates the degree of alignment between the outlier

score and the ground truth label under varying thresholds:

AUC =
1

|V+||V−|
∑

v+
i ∈V+

∑

v−
j ∈V−

(I(f(v+i ) < f(v−j ))) (21)

where V , V−, and V+ = V \ V− are the set of all nodes,

the set of all outlier nodes, and the set of all normal nodes

respectively, I(·) is the indicator function and f(vi) is the

outlier score of node vi given by one outlier detector. To

explore the utility of the model for different outliers, we extend

the concept of AUC. Generally, AUC(VL,O) means using VL
as the set of outliers to be detected, O as the outlier scores

to calculate the AUC. In other words, VL defines the outlier

labels. Particularly, AUC = AUC(V−,O). In addition, if a

model can output the structural and contextual outlier scores

like our VGOD, then AUC(V−,Ostr) and AUC(V−,Oattr)
can be calculated.

We also propose AucGap to evaluate the balanced detection

performance for different types of outliers, which can be

formalized as below:

AucGap = max{ AUC(Vstr,O)

AUC(Vattr,O)
,
AUC(Vattr,O)

AUC(Vstr,O)
} (22)

where Vstr and Vattr are structural outliers set and contextual

outliers set, respectively. AucGap aims to calculate the gap

between the model’s AUC score for two types of outliers.

The lower the AucGap is, the more balanced detection per-

formance it indicates.

4) Computing Infrastructures: Our proposed learning

framework is implemented using PyTorch 1.11.1 and PyTorch

Geometric 2.1.0. All experiments are conducted on a computer

with Ubuntu 16.04 OS, i7-9750H CPU, and a Tesla V100

(32GB memory) GPU.

B. Unsupervised Node Outlier Detection

We first conduct the UNOD experiment to verify the ef-

fectiveness of our proposed framework. UNOD experiment

hereinafter refers to this experiment.

1) Injection Setting: We adopt the most widely-used outlier

injection approach as mentioned in Section IV-A1 and Section

IV-B1. We keep the same injection parameter setting with [4,

16, 20, 21, 22, 23] to have a fair comparison (i.e., q = 15,

k = 50 for all datasets and p = 5, 5, 20, 15 for Cora, Citeseer,

PubMed, Flickr, respectively). The statistics of these datasets

are demonstrated in Table I. Only Weibo contains the labeled

outliers while other datasets contain injected outliers. Note that

AucGap can only be calculated on these injected datasets.

2) Parameter Setting: For each algorithm, we run 5 times

and calculate the average score. For our proposed framework

VGOD, we fix the embedding dimension to 128 for both the

Variance-Based Model (VBM) and Attribute Reconstruction

Model (ARM). We set the learning rate to 0.005 for all injected

datasets and 0.01 for Weibo. Two layers of GAT are adopted

as the GNN module in ARM and the row-normalization to

the attribute vectors is applied in Weibo. We employ self-

loop edge technique in Cora, Citeseer, PubMed, and Weibo

for VGOD. We directly run the code in [16] to inject outliers.

For all baselines, we adopt the default parameter setting in

their code except the number of training epochs. We stop

training their model as long as their AUC score reaches its

peak. In this case, the performance can be promised to be

better or equal to the performance of their default parameter

setting. For our approach, we train ARM 100 epochs and VBM

10 epochs for all datasets since it has already significantly

outperformed baselines in a fixed number of training epochs.

In fact, our two models require fewer epochs to converge.

Adam optimizer is employed to train our models. We adopt

the AUC score of Weibo published in [9] for the baseline

Dominant, AnomalyDAE, DONE, and CONAD.

3) Result Analysis: The AUC scores and AucGap scores

are shown in Table IV and Table III. AUC(V str,O) and

AUC(V attr,O) are listed in the column of str and context.
The best score is marked in bold while the second best

is underlined. The AUC scores lower than 0.7 are red and

italicized in Table III. According to the results, we have the

following observations:

• Our proposed framework VGOD achieves the highest

AUC score for all datasets while achieving the overall
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TABLE III
AUCGAP OF UNOD EXPERIMENT.

Model
Cora Citeseer PubMed Flickr

AucGap str context AucGap str context AucGap str context AucGap str context

Dominant 1.312 0.696 0.913 1.165 0.755 0.880 1.652 0.600 0.990 2.029 0.486 0.986

AnomalyDAE 1.161 0.895 0.771 1.070 0.864 0.808 1.118 0.933 0.834 1.860 0.521 0.969

DONE 1.217 0.922 0.758 1.016 0.872 0.886 1.217 0.836 0.687 1.557 0.578 0.900

CoLA 1.127 0.943 0.837 1.188 0.953 0.802 1.054 0.954 0.905 1.395 0.622 0.868

CONAD 1.877 0.513 0.964 2.236 0.434 0.972 2.417 0.404 0.976 2.066 0.478 0.987

DegNorm 1.132 0.936 0.827 1.116 0.979 0.877 1.093 0.861 0.941 1.822 0.527 0.960

VGOD 1.072 0.970 0.905 1.026 0.986 0.961 1.021 0.962 0.983 1.066 0.838 0.893

TABLE IV
AUC FOR UNOD EXPERIMENT.

Model Cora Citeseer PubMed Flickr Weibo

Dominant 0.8134 0.8250 0.7999 0.7440 0.925∗

AnomalyDAE 0.8433 0.8441 0.8898 0.7524 0.928∗

DONE 0.8498 0.8800 0.7664 0.7482 0.887∗

CoLA 0.8790 0.8861 0.9214 0.7530 0.748

CONAD 0.7456 0.7078 0.6930 0.7395 0.927∗

DegNorm 0.8928 0.9385 0.9074 0.7515 0.893

VGOD 0.9503 0.9845 0.9813 0.8773 0.9765
∗ denotes the result reported in [9]

highest AucGap among all datasets. There are several

reasons for such performance. Firstly, our variance-based

model significantly improves the ability to detect struc-

tural outliers. Secondly, we separately train two models to

prevent each component from being over-trained. Thirdly,

we adopt mean-std normalization to eliminate the scale

difference between the two scores which gives a more

balanced detection performance.

• DegNorm also achieves SOTA performance compared to

other baselines.

• In Table III, it is observed that all baselines can not have

a good detection performance on structural outliers in the

Flickr dataset and achieve a poorly balanced detection.

Though the AucGap of VGOD in Citeseer is slightly

lower than DONE, its detection performance is already bal-

anced. Moreover, both AUC(V str,O) and AUC(V attr,O)
of VGOD are much higher than that of DONE.

C. Structural Outlier Detection under different injection pa-
rameters

Further, we conduct the structural outlier detection experi-

ment with varied injection parameters to explore the effective-

ness of our variance-based model (VBM) in depth.

1) Injection Setting: We vary the parameter q of injected

clique size of structural outliers to Q = {3, 5, 10, 15}. For

each dataset Di, we inject 4 groups of structural outliers

{Vq=3,Vq=5,Vq=10,Vq=15} intoDi. Each group has the same

number of outliers, which is set to 2% of the total number

of nodes, i.e. |Vq=Qi | = 2% · |V|. The outlier set V− is

the union of 4 groups of structural outliers set. We report

the AUC(V−,Ostr) in Table V and the AUC score of each

group AUC(V q=Qi ,Ostr) is shown in Fig 6. Note that Ostr

of VGOD is the output of VBM. The injected outliers are all

structural outliers.
2) Parameter Setting: We keep the same parameter setting

for VBM and other baselines as the UNOD experiment except

that we train baselines and VBM until their AUC scores reach

the peak. Since we fail to get a reasonable result for CONAD,

we do not list the result of it. We also evaluate the performance

of simple baseline Deg, which only utilizes the node degree

as an outlier score for comparison. For all other baselines, if

their model outputs multiple scores (e.g., oi, o
str
i , oattri ), we

adopt the score with the highest AUC as its structural score.

TABLE V
AUC FOR STRUCTURAL OUTLIER DETECTION UNDER DIFFERENT

INJECTION PARAMETERS

Model Cora Citeser PubMed Flickr

Dominant 0.9227 0.9467 0.8878 0.5715

AnomalyDAE 0.9127 0.9219 0.8968 0.6253

DONE 0.9034 0.8985 0.8868 0.5516

CoLA 0.8073 0.8919 0.8698 0.5712

Deg 0.9467 0.9541 0.9333 0.5671

VBM 0.9815 0.9816 0.9893 0.8003

3) Result Analysis: According to results in Table V and Fig

6, we have the following observations:

• VBM achieves the best AUC score for all datasets in

Table V. In addition, VBM has a huge performance gain

in Flickr.

• As shown in Fig 6, when the clique size is reduced, the

performance of VBM declines the least compared to other

baselines. Therefore, the performance of VBM is the most

robust to varied injection settings.

• Deg that directly utilizes a node’s degree outperforms

other baselines in Cora, Citeseer, and PubMed.

D. Structural Outlier Detection under a new injection ap-
proach

In this subsection, we design a new approach to inject struc-

tural outliers without data leakage. We conduct the following

experiment for evaluation.
1) Injection approach: Since all these datasets have cate-

gory labels for the node classification task, it is natural to think

that the nodes with different labels are from different com-

munities. In our opinion, structural outliers do not necessarily

form clusters. We generate structural outliers by replacing their
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Fig. 6. Comparison of the detection performance with the varying clique size parameter. Each polyline represents the AUC values of a model on several
groups of structural outliers with different clique sizes.

original neighbors (both in and out) with nodes uniformly

sampled from other communities. In this manner, the degree

distribution of all outliers is not changed. The number of

outliers is set as 10% of the number of nodes. The injected

outliers are all structural outliers.

TABLE VI
AUC FOR STRUCTURAL OUTLIER DETECTION UNDER A NEW INJECTION

APPROACH

Cora Citeseer PubMed Flickr

Dominant 0.838 0.770 0.853 0.917

AnomalyDAE 0.770 0.673 0.566 0.898

DONE 0.762 0.664 0.659 0.541

CoLA 0.658 0.743 0.752 0.632

CONAD 0.793 0.770 0.779 0.495

VBM 0.935 0.907 0.858 0.958

2) Result Analysis: We keep the same parameter setting

for VBM and all baselines as the experiment in Section VI-C.

Table VI lists the AUC(V−,Ostr). Our VBM is still the most

effective model, which outperforms others with a significant

gap. This further verifies the effectiveness of neighbor variance

to detect structural outliers.

E. Further Analysis

In this subsection, we make further analysis of our proposed

framework.
1) Efficiency of model inference: We calculate the time for

each model to use the CPU for training and inference at the

setting of UNOD experiment. The training time per epoch of

all models (in seconds) is shown in Fig 7. In Table VII, we

list the inference time in seconds. The inference time of the

model is roughly the same as the training time per epoch,

except for CoLA. For all datasets, our VGOD framework

completes inference in a relatively short time. For datasets

with a large number of nodes, such as PubMed, our model

takes significantly less time than other models due to the linear

relationship to the number of nodes. Since CoLA requires

multiple rounds of sampling for inference, its computational

cost is much higher than other models.
2) Effect of the number of epochs for VBM: We investigate

the AUC variation trend of VBM during training. As shown

in Fig 8, VBM shows a high AUC score at the beginning,

and the AUC score reaches the peak after only a few epochs

of training. Afterward, as the training progresses, the AUC

Fig. 7. Training time per epoch in seconds.

TABLE VII
INFERENCE TIME OF MODELS (IN SECONDS).

Model Cora Citeseer PubMed Flickr

Dominant 0.102 0.235 3.021 4.183

AnomalyDAE 0.147 0.303 4.390 2.493

DONE 0.604 0.865 12.147 5.256

CoLA 413 752 3266 910

CONAD 0.093 0.201 2.823 1.379
VGOD 0.088 0.145 0.874 3.899

score slowly decreases due to overfitting. Different group of

structural outliers shows a similar trend while the group of

smaller clique size shows a later overfitting time point.

3) Effect of different GNN Layers for ARM: We investigate

the effect of different GNN layers in ARM. We replace differ-

ent GNN layers in the UNOD experiment for research. Table

VIII and Table IX show the AUC and AucGap respectively on

four datasets. It is observed that GAT outperforms other GNNs

significantly on the Weibo. For other datasets, their AUC and

AucGap scores are comparable.

TABLE VIII
AUC VALUES COMPARISON FOR DIFFERENT GNN LAYERS.

Model Cora Citeseer PubMed Flickr weibo

VGOD (GIN) 0.9503 0.9845 0.9801 0.8773 0.9093

VGOD (GCN) 0.9566 0.9867 0.9802 0.8735 0.9154

VGOD (GAT) 0.9560 0.9868 0.9813 0.8835 0.9765

TABLE IX
AUCGAP VALUES COMPARISON FOR DIFFERENT GNN LAYERS.

Model Cora Citeseer PubMed Flickr

VGOD (GIN) 1.0716 1.0261 1.0215 1.0655
VGOD (GCN) 1.0637 1.0278 1.0214 1.0713

VGOD (GAT) 1.0680 1.0268 1.0211 1.0672
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(a)  Cora (b)  Citeseer (c)  PubMed (c)  Flickr

Fig. 8. AUC variation trend of the variance-based model during the training. Each polyline represents a group of structural outliers with a certain clique size.

4) Labeled outlier study: We make the analysis on the

Weibo dataset. We compare VGOD with the second best

baseline AnomalyDAE in Table X. It reveals that the main

reason for VGOD’s superior performance is its improvement in

structural outlier detection. It is shown in Fig 9(b) that outliers

do not have a higher node degree distribution. In addition, we

find that attribute vectors of outliers are more diverse, as the

variance of attribute vectors among all outliers is 425.0 and

that of the inliers is 11.95.

From Fig 9(a), we find that both inliers (green points)

and outliers (red points) are quite cohesive. The homophily

[38] of the whole graph is 0.75. Note that a random graph

has a homophily of 0. In this case, these outliers, which

differ greatly from each other, are connected closely, forming

clusters of structural outliers. Therefore, it is easily detected

by the neighbor variance of VGOD. There are also a lot of

clusters formed by inliers. They are not regarded as outliers

since their attributes are close.

(a) (b)

Fig. 9. (a) A subgraph in Weibo. The nodes in red denote the outliers. (b)
Node degree distribution of Weibo.

TABLE X
AUC DETAIL IN THE WEIBO

AUC AUC(V−,Ostr) AUC(V−,Oattr)

VGOD 0.977 0.922 0.926

AnomalyDAE 0.925 0.796 0.925

5) Effect of the self-loop edge: We study the effect of the

self-loop edge technique, which enables neighbor variance to

detect contextual outliers besides structural outliers. In the first

step, we study the effect of variance-based model to detect

contextual outliers. We inject only contextual outliers into

the datasets, using the same injection parameters as Section

VI-B1. In Table XI and Table XII, “w/ SL” means employing

the self-loop edge technique. The result in Table XI shows

that neighbor variance with this simple technique indeed has

an effect on detecting contextual outliers, especially in those

citation networks with small node degrees.

TABLE XI
AUC OF VBM TO DETECT CONTEXTUAL OUTLIERS

Cora Citeseer PubMed Flickr

VBM 0.5026 0.5128 0.4883 0.4725

VBM w/ SL 0.7978 ↑ 0.8567 ↑ 0.8364 ↑ 0.6463 ↑

TABLE XII
AUC OF VGOD IN ABLATION OF SELF-LOOP EDGE

Cora Citeseer PubMed Flickr Weibo

VGOD 0.8911 0.9485 0.9592 0.8773 0.9707

VGOD w/ SL 0.9503 ↑ 0.9845 ↑ 0.9813 ↑ 0.8313 0.9765 ↑

In the second step, we do the ablation study of this technique

under the UNOD experiment. Table XII demonstrates that self-

loop edge also greatly improves the detection performance of

VGOD in those citation networks due to the extra utilities of

neighbor variance on contextual outlier detection.

VII. CONCLUSION

In this paper, we revisit the problem of unsupervised node

outlier detection. Firstly, we find that the current outlier

injection approach exists a serious data leakage issue and make

a theoretical analysis in depth. Secondly, we propose a new

framework, which consists of a novel variance-based model

and a more general attribute reconstruction model to detect

two types of outliers. Our model successfully outperforms

all previous SOTA models with the best outlier detection

performance and the detection balance.

We believe our insight into the data leakage issue will lead

to better outlier injection approaches and UNOD algorithms.

Moreover, the concept of neighbor variance may also exhibit

great potential in other research areas such as graph mining

and graph representation learning in the future.
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