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Abstract—Hop-constrained s-t simple path (k-st path) enu-
meration is a fundamental problem in graph databases and
plays an important role in many real-world applications. Given a
dynamic graph G, a source-target pair s-t, and a hop constraint
k, we aim to efficiently compute k-st paths: list all simple
paths within length k from s to t, and then continuously
maintain the results against edge updates. Although the k-st path
enumeration has been well studied in static setting, the existing
works on static graphs cannot be applied or adapted to handle
dynamic graphs efficiently. To address the challenges on dynamic
computation, we propose a partial path-based index structure and
an efficient enumeration algorithm based on the index. We also
propose several well-designed techniques to efficiently maintain
the index and locate the affected results with graph updates.
Comprehensive experiments verify that our proposed CPEupdate
algorithm outperforms the state-of-the-art methods by up to 4
orders of magnitude on dynamic graphs. The experiment results
also show that the time cost of our initialization step CPEstartup
(including index construction) is similar to the state-of-the-art
static method.

I. INTRODUCTION

Given a source vertex s, a target vertex t and a hop

constraint k, the hop-constrained s-t simple path enumeration

aims to list every simple path from s to t with length not

exceeding k, where a simple path is a path in which all vertices

are distinct. In this paper, we use k-st path enumeration for

short to denote the hop-constrained s-t simple path enumera-

tion.

Due to the importance of k-st path enumeration, a series

of solutions [1]–[6] have been proposed. However, all of the

existing works are designed for static graphs. In real-world

applications, graphs are usually dynamic and can be updated

frequently [7], [8], e.g., an update in a social network can be

triggered by a simple “Like” click and new transactions are

continuously submitted to E-commerce networks. Efficiently

maintaining the path enumeration results on dynamic graphs

is critical for various applications. We demonstrate the impor-

tance from the following three examples.

• Financial Crimes Detection. Financial networks are usu-

ally modeled as directed graphs and the transaction from

user A to user B can be represented by an edge from

A to B. Some known Red Flag Indicators of money

laundering are reported in [9]–[12], such as the use of

multiple bank accounts as well as that of intermediaries
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without appropriate reasons. As they reported, many

cases of money laundering are observed along transaction

cycle and short flow paths, which can be detected by

enumerating k-st paths between suspected accounts. With

the help of k-st paths, we can compute a value to reflect

the total risk level, which could be a crucial measure

in crime detection. As reported in [8], the graph of the

Alibaba E-commerce platform is being updated at an

average rate of 3,000 edges per second, and over 20,000

new edges are added per second at the peak. When the

edge update happens, it is necessary to update the risk

level value by accessing the new paths so that the property

loss can be avoided to the most extent.

• Social Network. In social networks [13], a path that

connects two users reflects that there is a relationship

between these two users, and all paths between these

users can reflect the strength of such relationships. For

social network applications, evaluation of the relationship

between users is one of the most important tasks [13]. It

relies on materialized k-st paths to measure the relation-

ship between vertex pairs.Social network platforms can

achieve such goals by issuing the k-st path enumeration

queries. Online social networks are changing every single

second, instead of using the complete set of k-st paths

to recompute the result, the evaluation result can also be

updated by querying the new/deleted k-st paths, which

can avoid unnecessary computation and improve the

efficiency significantly.

• Communication Network. The communication network

can be seen as a large dynamic graph, where each edge

indicates the communication between two terminals on

the Internet. With the movement of communication nodes

(e.g. smart phones and IoT devices join or leave the

network) and the changing environmental conditions (e.g.

DDos attack caused network disconnection), the graph

changes rapidly and constantly. Path enumeration has

been used for communication network analysis for a

long history. For instance, enumeration of all simple

paths between a terminal pair is used while computing

the terminal reliability in communication networks [14].

Besides, path enumeration can also be adopted to measure

the robustness of the communication network.
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For many applications, such as fraud detection, we usually

have a list of suspects/candidates, and the k-st path enumer-

ation algorithm on dynamic graphs aims to monitor the sus-

pect/candidate pairs and access the new/deleted paths in a real

time manner. On dynamic graphs, when the graph is updated,

instead of recomputing the complete set, the downstream

applications prefer to access the new/deleted paths, which not

only is enough to support downstream applications but also can

save the query processing time. But the existing works focus

on enumerating the complete set of paths on a static setting.

Even if the existing approaches can be used to processing

dynamic graphs, we have to either compare the complete set

of the latest result with the previous to find the changed part or

feed the complete set of paths to the downstream applications.

Therefore, directly adopting the existing approaches to solve

the k-st path enumeration problem on dynamic graphs will be

costly and introducing redundant computations. For instance,

on dense or large-scale dynamic graphs, it may take a few

hours to update the result against a slight graph update.

We also examine two of the most representative existing

solutions for static k-st path enumeration, i.e., PathEnum [5]

and BC-JOIN [3]. PathEnum is the state-of-the-art method

on static graphs and there is no intermediate result to list

paths. Thus, it is infeasible to utilize existing intermediate

computations and we have to recompute the result from scratch

when the graph changes, which is cost-prohibitive. BC-JOIN is

an algorithm with a bidirectional search-based join paradigm,

in which the intermediate results can be regarded as an index

and maintained. However, compared to PathEnum, it is much

more costly in path enumeration and the index cannot be

efficiently maintained to handle graph updates.

Besides, since k-st path enumeration problem can be con-

sidered as a special case of subgraph matching problem, which

enumerate all instances of a given pattern in a data graph, the

problem of enumerating k-st paths on dynamic graphs can be

transformed into the problem of continuous subgraph matching

(CSM) [15]–[20] (set the query graph as paths with length up

to k). Although these methods performs well on enumerating

general patterns, it does not consider the possible pruning

opportunities to reduce unnecessary computation specific to

k-st path, thus it is inefficient and unscalable to the k-st path

enumeration problem.

Motivated by this, we design a partial path-based index

structure and associated techniques to efficiently maintain

k-st paths on dynamic graphs. With the help of the pro-

posed index, we can easily enumerate the proportion of paths

that are affected by the graph update without redundant

computation. Moreover, we carefully design corresponding

maintenance methods to update the index on the basis of

previous computation. For the index construction, we adapt the

bidirectional search-based join paradigm and design powerful

pruning techniques to build the index efficiently. According

to the experiment results on dynamic graphs, our proposed

method can compute the updated results instantly (often less

than 1 ms) given graph updates while the existing methods

have to re-compute the results. Although our algorithm is

designed for dynamic graphs, our initialization step (including

the index construction) can answer the k-st path enumeration

query as efficient as the state-of-the-art method PathEnum on

static graphs.

Contributions. The contributions are summarized as follows.

• To the best of our knowledge, this is the first work to

study the k-st path enumeration problem on dynamic

graphs.

• We design a novel partial path-based index structure and

the corresponding techniques to efficiently maintain the

k-st paths.

• We also propose efficient bidirectional search-based index

construction algorithm and index maintenance methods

with several powerful pruning techniques. Comprehensive

complexity analysis is also provided.

• Extensive experiments are conducted with a variety of

workloads. The experimental results demonstrate that our

proposed algorithms significantly outperform the state-

of-the-art methods by up to 4 orders of magnitude on

dynamic graphs. We also show that, even on static graphs,

benefiting from our powerful pruning techniques, the per-

formance of our initialization (bidirectional search-based

method) is as efficient as the state-of-the-art method.

Organization. The rest of the paper is organized as follows.

In Section II, we introduce the preliminaries, formulate k-st
path enumeration problem on dynamic graphs, and give an

overview of our solution. Section III proposes a partial path-

based index and corresponding methods to enumerate the com-

plete set and the new/deleted part of k-st paths, respectively.

Section IV illustrates the index construction algorithm and in-

dex maintenance algorithm against edge insertion and deletion.

After that, we present the comprehensive experimental results

in Section V. Finally, we survey related works in Section VI

and conclude the paper in Section VII.

II. BACKGROUND

A. Preliminaries

G = (V,E, U) denoted as a dynamic directed graph where

(1) V (G) is a set of n vertices; (2) E(G) ⊆ V (G) × V (G)
is a set of m static edges that exists in G before the update

of dynamic edges, in which e(u, v) denotes a directed edge

from the vertex u to the vertex v; (3) U denotes the set of

updated edges. Each edge update is denoted using e(u, v,+)
or e(u, v,−) where + (−) means it’s an inserted (deleted)

edge from vertex u to v. Note that we only consider edge

updates in this paper. This is because insertions or deletions of

the graph vertices can also be expressed using edge updates. In

this paper, the dynamic graph G is initialized by an initial static

graph with all vertices and static edges. Then it is continuously

updated upon the arrival and expiration of edges.

Let Nin(v) = {u|e(u, v) ∈ E}(Nout(v) = {u|e(v, u) ∈
E}) represents the in-going (out-going) neighbors of v. If the

context is clear, we use “neighbor” to refer to the “out-going

neighbor”. By Gr = (V (G), Er(G)), we denote the reverse

graph of G, where V (Gr) = V (G) and for each directed
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Fig. 1. An Overview of Our Solution

edge e(u, v) ∈ E(G), there is a corresponding edge e(v, u) ∈
Er(G). Dists[v] (Distt[v]) denotes the shortest distance from

s to v(from v to t). We say a path p is a k-hop constrained

path if len(p) ≤ k where len(p) is the number of edges in

p and k is the hop constraint. For presentation simplicity, we

denote k-hop constrained s-t simple path by k-st path.

Problem Statements. In this paper, we study the k-st path

enumeration problem on dynamic graphs. Given a dynamic

directed graph G = (V,E, U), a specific source-target pair

s-t and a hop constraint k, a k-st path enumeration will

continuously report all k-st paths resulting from each edge

update e(u, v,+/−) on the dynamic graph G.

B. Solution Overview

Figure 1 gives an overview of our solution for k-st path

enumeration problem on dynamic graphs which is naturally

divided into start-up and update stages.

Start-up stage (Initialization): Given a graph G and a k-

st query q(s, t, k), we first initialize the partial path-based

index on the original graph using a bidirectional search-based

method. After the index construction, we can conduct the start-

up enumeration on the index to list all k-st paths.

Update stage: When each edge e ∈ U is continuously

inserted to or deleted from the graph, index maintenance is

conducted to update the index. Therefore, the update enumer-

ation can continuously report the new/deleted paths resulting

from the edge update. After that, users are free to use the

updated results individually or merge them with all results of

the given query.

III. A PARTIAL PATH-BASED INDEX

In Section III-A, we propose a partial path-based index

to solve the k-st path enumeration problem on dynamic

graphs. In Section III-B, we propose index-based algorithms

to efficiently enumerate k-st paths on the initial graph and

update the result against edge updates.

Fig. 2. An Example of Partial Path Index with q(s, t, 4) and l = r = 2

A. Index Structure

In order to store the previous intermediate result and use

it to get the new/deleted paths quickly, we proposed a partial

path-based index, which is inspired by the middle vertices cut.

Definition 1: Middle vertices cut (Vc). Given a path p =
{v1, ..., vk}, its middle vertex is the �k/2�-th vertex along the

path, denoted by vc. The middle vertices set of all k-st paths

are the middle vertices cut and denoted by Vc.

Following the bidirectional search-based join paradigm [3],

we can find the middle vertices cut for any query q(s, t, k)
so that each k-st path contains at least one vertex in the

middle vertices cut. Then each path p = {s, ..., vc, ..., t} can

be divided into a left partial path lp = {s, ..., vc} and a right

partial path rp = {t, ..., vc}. Due to the density of real-world

graphs, if we can find out all left and right partial paths, all k-

st paths can be easily enumerated by joining each left partial

path with each right partial path in each middle vertex. More

importantly, the size of all partial paths can be much smaller

than the size of all k-st paths.

Motivated by this, a naive solution is to utilize partial paths

to build a index, then we can get all k-st paths from the index

for a query q(s, t, k). Specifically, we store all left partial paths

and right partial paths in the index LP and RP , respectively.

In detail, we store each left partial path lp = {s, ..., vc} that

satisfied len(lp) + Distt[vc] ≤ k and with length up to l =
�k/2� in index LP , and store each right partial path rp =
{t, ..., vc} satisfied len(rp) + Dists[vc] ≤ k and with length

up to r = �k/2� in index RP . By storing the partial paths with

the above constraint, we can make sure that all partial paths

in the index can be joined to a path from s to t. Moreover,

we use LPi(vc) to store paths from s to vc with length i, and

use RPj(vc) to store paths from vc to t with length j. Thus

LP = ∪�k/2�
i=1 ∪vc∈Vc LPi(vc), RP = ∪�k/2�

j=1 ∪vc∈Vc RPj(vc).
By joining LPi(vc) and RPj(vc) for each i, j pair that satisfied

i = j or i = j + 1 for each middle vertex vc, we can make

sure vc is the middle vertex and output all k-st paths with

length from 2 to k.
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An example of the partial path index is given in Figure 2.

Given a query q(s, t, 4) and a graph G, we store each left

partial path lp = {s, ..., vc} with length up to l = 2 and

satisfied len(lp) + Distt[vc] ≤ k and each right partial path

rp = {t, ..., vc} with length up to r = 2 and satisfied len(rp)+
Dists[vc] ≤ k in index LP and RP , respectively. Note that

we don’t store every simple path from s to vc. That’s why

the partial path {s, v2, v1} is not in our index in Figure 2, the

distance from v1 to t is 3 and the hop-constraint is 4, thus

there is no s-t path contains {s, v2, v1}.
According to our experimental result in Section V, using the

proposed partial path index to deal with k-st path enumeration

query on dynamic graphs can not only speed up the result

updating by only listing the changed part of paths, but also

help us to save a large proportion of storage space.

B. Enumeration on Index

1) Start-up Enumeration: According to Definition 1, the

dynamic graph G is initialized by a static graph Gstatic. Given

the partial path index on the Gstatic, we use Algorithm 1 to

enumerate all k-st paths by joining the partial paths.

We use a list Plan to store all (i, j) pairs, in which the

sum of i and j is from 2 to k. Given a query q(s, t, k), the

list Plan is generated in the process of index construction

(Section IV-A). For example, consider the case in Figure 2

and use the �k/2�-th vertex as the middle vertex, there are

(1, 1), (2, 1), (2, 2) in Plan. And then we join the partial paths

according to the order in Plan (line 1-2). Given LP , RP and

the join length pair (i, j), for each middle vertex vc, we join

paths from s to vc with length i with paths from t to vc with

length j and checking the repetitions of vertices (line 3-7).

The correctness is proved as follows:

Theorem 1: Given a query q(s, t, k) and corresponding

partial path index LP with paths length from 1 to l and RP
with paths length from 1 to r where (l, r) is the biggest (i, j)
pair in Plan and satisfies l+ r = k, all the k-st paths can be

listed by Algorithm 1.

Proof 1: For each path p in the result of query

q(s, t, k), we have p = {s, ..., vc, ..., t} that can be de-

composed to p1 = {s, ..., vc} and p2 = {t, ..., vc} where

pair((len(p1), len(p2)) ∈ Plan. Recall that all left-side paths

end at vc with length len(p1) and all right-side paths end

at vc with length len(p2) are in the index. After joining by

Algorithm 1, p = {s, ..., vc, ..., t} will be listed. Thus, the

correctness of Algorithm 1 follows.

Moreover, there is no duplicate detection cost in our join-

based enumeration algorithm as proved in the following the-

orem.

Theorem 2: Given partial path index LP with paths that

length from 1 to l and RP with paths that length from 1 to r
where l + r = k, Algorithm 1 only list each k-st path once.

Proof 2: For the (i, j) pairs list Plan, we have ∀(i, j) ∈
Plan, � ∃(i′, j′) ∈ Plan satisfied i′ �= i, j′ �= j and i′ +
j′ = i+ j. And there is no duplicate path in our partial path

index LP and RP . Thus it’s impossible for Algorithm 1 to

list duplicate paths.

Algorithm 1: Enumeration on Index

Input: The join list Plan, the partial path index LP
and RP

Output: all k-st paths

1 foreach pair(i, j) ∈ Plan do
2 Join(LP,RP, i, j);
3 Procedure Join(LP,RP, i, j):
4 foreach vc ∈ Vc do
5 foreach lp ∈ LPi(vc) do
6 foreach rp ∈ RPj(vc) do
7 if there’s no repeated vertex in lp and

rp (except vc) then list lp⊕ rp ;

When enumerating k-st paths, each left-side path lp ∈
LP (vc) can match at least one right-side path rp ∈ RP (vc)
to form a path. So the time complexity of the start-up enumer-

ation is bounded by O(k× |P |), where the |P | is the number

of s-t paths with length up to k.

2) Update Enumeration: After the arrival or expiration of

edges, we can access the latest result of k-st paths with the

help of the start-up enumeration. Nonetheless, the time cost of

re-querying the complete set of results is expensive, especially

for queries that have a big hop constraint k on relatively dense

graphs. Hence, a better strategy is to enumerate the changed

part of result instead of all the results, which we call it the

update enumeration. Benefit by our partial path index, we can

easily enumerate all new/deleted paths on the basis of the

following theorem:

Theorem 3: After the insertion or deletion of edge, for each

changed path p′ which is new or deleted, it can be divided

into two parts, left-side path lp′ and right-side path rp′. After

maintaining the index, at least one of them is in LP ′ or RP ′,
where LP ′ (RP ′) is the changed part of LP (RP ) after edge

update.

Proof 3: Assume there is a new (deleted) path p′ and its left

partial path lp′ /∈ LP ′ and right partial path rp′ /∈ RP ′, then

the path p′ can be enumerated before (after) the edge update,

which contradicts the fact that p′ is new (deleted), thus the

theorem holds.

According to Theorem 3, we can specifically enumerate all

new/ deleted k-st paths by Algorithm 1 with a constraint that

ensures at least one side of partial path is new or deleted. Note

that Vc in the update enumeration are easily got from LP ′ and

RP ′.
As a result, the time and space complexity of joining

and enumerating the new/deleted paths are both bounded by

O(k×Δ|P |), where Δ|P | is the number of new/deleted hop-

constrained s-t paths with length up to k resulting from the

edge update.

IV. INDEX CONSTRUCTION AND MAINTENANCE

In this section, we propose algorithms to efficiently con-

struct the index on the initial graph and maintain it against

edge updates.
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Fig. 3. An Example About Distance Pruning

A. Index Construction

By using the partial path index, we can store intermediate

results with reasonable space and speed up the result updating

for graph updates. However, the only existing solution [3]

that can be directly adopted to compute all partial paths

is time consuming. Therefore, we propose a well-designed

algorithm with powerful pruning techniques to construct the

index efficiently.

1) Preprocessing: Straightforwardly searching partial paths

and building the index in the original graph is costly in time,

because there are some vertices that will never appear in the

index. In other words, we can find an induced subgraph Gsub

which is equivalent to the original graph G for index construc-

tion but can reduce the search space. In the preprocessing step,

we use the following theorem to find an induced graph Gsub.

Theorem 4: For the graph G, we have the shortest distance

map Dists (Distt) that records the Dists[v] (Distt[v]) for

each v ∈ V (G). Performing k-st path query on graph G is

equivalent to doing it on a subgraph Gsub, where Gsub is

induced by the vertex set Vsub = {u|u ∈ V (G) ∧Dists[u] +
Distt[u] ≤ k}.

Proof 4: Assume there exists a k-st path p = {s, ..., v, ...,
t}, where u is a vertex that u /∈ V (Gsub). Thus Dists(v) +
Distt(v) > k holds, which contradicts the premise len(p) ≤
k. Hence the theorem is tenable.

According to this, we can eliminate vertices that are not in

Gsub. The distance map for vertices within k-1 hops can be

computed by a bidirectional (k-1)-hop BFS. After computing

the shortest distance map, we can find all vertices in Vsub and

build the Gsub.

The worst-case time and space complexity are both O(|V |+
|E|) of the above operation because we conduct bidirectional

BFS to compute distance map and then build the induced

subgraph, which is at most the same size as the original graph

G.

2) Bidirectional Search-based Index Construction: Ac-

cording to the above discussion, we can construct the partial

path index by bidirectional search. The bidirectional search

follows the BFS paradigm and two optimization techniques

are proposed to further reduce the search space.

After the preprocessing, we prune the search space by

eliminating those vertices that will never appear in the query

result, but there still are some edges that may lead to invalid

results. Consider the following observation.

Observation: For example, given a induced subgraph Gsub

and a query q(s, t, 5) as shown in Figure 3, we can see that all

the vertices in Gsub is already satisfied Dists[v]+Distt[v] ≤
k so that most of them will lead to at least one k-st path. How-

ever, we can see those edges drawn in red dashed line, which

will lead to some invalid paths, such as {s, v1, v2, v4, v3, v5}
and {s, v2, v4, v1, v3, v5}. If these edges can be eliminated in

advance, we can avoid considerable invalid searching cost.

Motivated by this, we introduce the pruning rule as follows.

Optimization 1: (Distance Pruning) In the process of the

BFS-based search in Gsub, assume we have arrived at vertex

u passed by path p. Then in the next step, we can prune

the search space by eliminating vertices in {v|v ∈ Nout(u)
satisfied len(p) + 1 +Distt[v] > k}.

When performing a single directional BFS starting from s in

Figure 3 and we have arrived at v4 pass by v1, v2. The existing

path length is 3. Then the out-neighbors are v1, v3, v5, t, we

can remove v1 and v3 from candidates by Optimization 1.

In addition to pruning techniques, there’s another optimiza-

tion technique in our solution. The basic reason why we adopt

a bidirectional search paradigm is that the size of partial paths

cut by the middle vertices cut is smaller than the final results

to a great extent. In [3], the cut position of the middle vertices

cut is the �k/2�-th vertex along the path. Due to the uneven

density of graphs, the exact middle position of a query may not

be the optimal position to minimize the size of partial paths.

Benefit from our BFS-based method, we can dynamically find

a optimal position instead of the �k/2�-th position which is

used by BC-JOIN for each query q to store the index.

Optimization 2: (Dynamic Mechanism) In each time of

BFS search, we compare the number of paths in both forward

and reverse direction and greedily continue the search in the

direction with fewer paths. When the sum number of search

levels in two directions reaches k, we use the meet position

as the cut position of the partial path index.

By introducing the dynamic mechanism, we can signifi-

cantly reduce the size of the partial path index. More im-

portantly, this optimization can be applied to our BFS-based

algorithm without any overheads.

Algorithm Description. Following the above ideas, our

bidirectional BFS-based index construction algorithm, which

traverses the search tree in level order, is shown in Algorithm

2. For each direction of the search, we use queues to store

vertices and paths in the current level, and search for the next

level based on them. Specifically, l (r) means left(right) and

v(p) means vertex (path). Then we start two level search from

s and t respectively (line 4-5). In the process of the level

search (line 11-18), we eliminate some edges by Optimization

1, and if the path we passed by is simple, we store it in the

index and push the vertex and corresponding path to queues

for subsequent path search (line 16-18). After the first-time

level search from both directions, we adopt Optimization 2 that

compares the number of paths in two directions and continues

the search in the direction that have fewer paths (line 7-10).

After each BFS search, we record the (i, j) pairs in Plan.
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Algorithm 2: Bidirectional Index Construction

Input: The induced subgraph Gsub and reverse of

induced subgraph Gr
sub, source vertex s, target

vertex t, current level i, hop constraint k
Output: Partial path index LP and RP and the join

plan Plan
1 i← 0, j ← 0;

2 lQ0
v ← {s}, rQ0

v ← {t};
3 lQ0

p ← {p(s)}, rQ0
p ← {p(t)};

4 level search(G, t, k, ++i, lQi
v , lQi

p, LP , Distt);
5 level search(Gr, s, k, ++j, rQj

v , rQj
p, RP , Dists);

6 Add pair(i, j) in Plan;

7 while i+ j < k do
8 if |rQj

p| ≤ |lQi
p| then level search(G, t, k, ++i,

lQi
v , lQi

p, LP , Distt);
9 else level search(Gr, s, k, ++j, rQj

v , rQj
p, RP ,

Dists);

10 Add pair(i, j) to Plan;

11 Procedure level search(G, t, k, i, Qi−1
v , Qi−1

p , P ,

Dist):
12 Qi

v, Q
i
p ← ∅;

13 while Qi−1
v �= ∅ do

14 u← Qi−1
v .pop();

15 p← Qi−1
p .pop();

16 foreach v ∈ {v|v ∈ N(u) ∧ v �=
t ∧Dist[v] + i ≤ k ∧ v /∈ p} do

17 Push v to Qi
v;

18 Push p⊕ v to Qi
p and Pi(v);

3) Complexity Analysis: The time cost of index construc-

tion is (l×|Pl|+ r×|Pr|), where |Pl| and |Pr| is the number

of l-hop paths starting from s and the number of r-hop paths

starting from t, respectively, where l and r are parameters

generated by Algorithm 2 and l + r = k. The space cost is

(l×|LP |+r×|RP |), where |LP | and |RP | is the number of

paths in LP and RP , respectively. Note that paths in LP (RP )
are all simple paths, but paths in Pl (Pr) may not be simple.

And the time and space complexity of index construction are

both O(k × |P |), where |P | is the number of k-hop st paths

from s to t.

B. Index Maintenance

Another challenging task is how to correctly and efficiently

maintain the index against graph updates. More specifically,

after the insertion of an edge, for each newly generated path,

it should be ensured that all new left partial paths are in LP
and right partial paths are in RP after the index maintenance.

Consequently, we can quickly report the updated results from

index without accessing the original graph and querying from

scratch.

Similar to most of problems on dynamic graphs, only a

part of updates will affect the query result. For the k-st
path enumeration problem, we can check whether an edge

update may affect the result by a simple inequality: For each

edge update e(u, v,+/−), if Dists[u] + Distt[v] + 1 ≤ k
holds, then it may affect the result. In this paper, we only

Fig. 4. Example of Edge Insertion

Fig. 5. Search Space of Index Maintenance

consider the situation that this inequality holds. Otherwise,

the problem is trivial. And for simplicity, we only discuss the

maintenance corresponding to the change of Dists. Because

the maintenance corresponding to Distt is the same but in the

reverse graph. Specially, we denote the changed part of LP
(RP ) that are newly inserted or deleted after the edge update

as LP ′ (RP ′). Similarly, we denote the distance map after

the edge update as Dist′s and Dist′t.
When an edge is inserted into (deleted from) the graph G,

both the distance map and the index might be influenced.

Firstly, it may lead to changes for both Dists and Distt.
Specifically, for a vertex v′ that Dists[v

′] decreases (increases)

after the edge update, we call it is relaxed (tightened). Sec-

ondly, for a vertex v′ that Dists[v
′] (Distt[v

′]) changes,

both LP (v′) and RP (v′) can be affected, where LP (v′) and

RP (v′) denote all paths end at v′ in LP and RP , respectively.

Consider the following example.

Example 1: As shown in Figure 4, consider a query

q(s, t, k = 7) and l = 4, r = 3, an edge e(u, v) is inserted to

the graph, then Dists[v] is decreased from 4 to 3 because

of the insertion. As a result of the relaxation of v, the

successors of v may also be relaxed. In this example, v2, v3
are relaxed by Dists[v], and v6 is further relaxed by v2.

Particularly, v6 is not in the induced graph initially, but it

satisfies Dists[v6] + Distt[v6] ≤ k after the relaxation, thus

v6 should be added to Gsub. Then to maintain the index

corresponding to v, paths from s passed by u to v with length

3 and paths from v to t with length 3 should be added to

LP (v) and RP (v), respectively.

In the above example, we only discuss how to maintain

the index for a single vertex, but the index should also be

maintained for each vertex v′ for which Dists[v
′] changes and

similar maintenance should also be considered in the reverse

direction that Distt[v
′] changes. Hence, the changes brought

by an edge update can be very complicated, and it’s quite

challenging to maintain both RP and LP for every changed

vertex efficiently.

To address the above challenge, we propose efficient tech-

niques to maintain the shortest distance map and index. We

first introduce the key idea of our techniques. In Figure 5,

e(u, v) is the edge update, and we divided vertices in all k-

761



st paths excluding s, t, u, v into two parts. Let V (C1) and

V (C2) denote vertices between s and u and between v and t
in all k-st paths, respectively. Due to the complex influence

and subsequent chain reaction brought by the edge update, we

should find an appropriate order that can make sure that the

distance map and index are maintained correctly and we only

maintain the LP and RP for each vertex once. It means that

the priority is to maintain the part of the index that won’t

be affected by the subsequent. According to this, we process

maintenance in the following order. (1) updating distance map

Dists and RP for vertices in V (C2) ∪ {v}; (2) updating

distance map Distt and LP for vertices in V (C1) ∪ {u};
(3) updating RP for vertices in V (C1) ∪ {u}; (4) updating

LP for vertices in V (C2) ∪ {v}.
1) Edge Insertion: We explain how to maintain the dis-

tance map and partial path index against edge insertion in

detail.

Distance Map Update. As we mentioned, the distance map

may be changed after the insertion of edges. For example in

Figure 5, an edge insertion e(u, v,+) may reduce the distance

from s to vertices in V (C2). Based on the above observation,

we introduce the following theorem.

Theorem 5: If a vertex v′ is relaxed and v′ �= v, then ∃u′ ∈
Nin(v

′) is relaxed.

Proof 5: Suppose on the contrary there is a relaxed vertex

v′ such that ∀u′ ∈ Nin(v
′), u′ is unrelaxed, and we have

Dists[v
′] = minu′∈Nin(v′) Dists[u

′]+1 before the insertion of

e(u, v), then we have Dist′s[v
′] < minu′∈Nin(v′) Dists[u

′]+1
after the insertion. And Dists[u

′] = Dist′s[u
′] holds because

u′ is unrelaxed. It contradicts the fact that Dist′s[v
′] =

minu′∈Nin(v′) Dist′s[u
′] + 1, thus the theorem holds.

According to Theorem 5, we can find that the relaxation

of Dists is spread from v in a tree form. Only when

Dists[u] + 1 < Dists[v] holds, Dists[v] should be updated

to Dists[u] + 1 and we continue to check the relaxation of

follow-up vertices. After traversing all vertices following the

inequality, the maintenance of the distance map is finished.

Algorithm Description. Algorithm 3 illustrates the method

of finding relaxed vertices and updating the shortest distance

map in detail. In the process of BFS, we use a set Srelax to

store relaxed vertices. Also, we use a set Sedge to store vertices

that are unrelaxed but at least one of their in-neighbors are

relaxed. If v is relaxed by u, we add vertex v into set Snxt

and Srelax, and we update the Dist′s (line 3-5). Then we start

the level search and check the relaxation of v’s successors. If

there are no subsequent relaxed vertices, we add v’s successors

into Sedge (line 13). If a successor v′ is relaxed, it’s necessary

to continue the BFS by adding the relaxed successor to Snxt

and Srelax, and then we update the distance map Dist′s (line

14-16). Note that for each vertex v′ that is not in the induced

subgraph before and satisfied Dists[v] +Distt[v
′] ≤ k after

Algorithm 3, we add it to Gsub.

Index Update. According to the index structure proposed

in Section III-A, for each relaxed vertex v that Dists[v]
decreases, right-side paths from v to t with length from

k−Dists[v] to k−Dist′s[v] and left-side paths from s passed

Algorithm 3: Update the distance map after insertion

Input: Graph G, the inserted edge e(u, v), distance

map Dists and Distt, hop constraint k
Output: the updated distance map Dists, relaxed

vertices set Srelax, edge vertices set Sedge

1 foreach v′ ∈ G do visited[v′]← false;

2 Sedge, Srelax, Scur← ∅;
3 if Dists[u] + 1 < Dists[v] then
4 Scur ← {v};
5 Dist′s[v]← Dists[u] + 1;

6 level i← Dists[u] + 1;

7 while Scur �= ∅ ∧ i < k do
8 Snxt ← ∅;
9 i++;

10 foreach u′ ∈ Scur do
11 foreach v′ ∈ {v|v ∈ Nout(u

′) ∧ i+ 1 ≤
k ∧ visited[v] = false} do

12 visited[v′]← true;

13 if Dists[v
′] +Distt[v

′] ≤ k then add v′ to

Sedge;

14 if i < Dists[v
′] then

15 add v′ to Snxt and Srelax;

16 Dist′s[v
′] = min(Dists[v

′], i);
17 Scur ← Snxt;

by u to v with length up to l and should be added to RP (v)
and LP (v), respectively. Similar to the traversing order of

index construction, we naturally use a hop-constrained BFS

to maintain the LP . And to maintain the RP , we design a

DFS-based method to maintain RP starting from unrelaxed

vertices. The details are shown in Algorithm 4.

Algorithm Description. After updating the distance map

and getting relaxed vertices Srelax and edge vertices Sedge,

we conduct a hop-constrained DFS search named UDFS. The

UDFS starts from vertices in Sedge and search in vertices

Srelax to maintain the RP ′ for vertices in V (C2) ∪ {v} (line

1-6 in Algorithm 4). In detail, UDFS searches each vertex

v′′ ∈ {v|v ∈ Nin(v
′) ∧ i + 1 + Dist′s[v] ≤ k ∧ v ∈

Srelax∧Dists[v]+i+1 > k} and add p⊕v′⊕v′′ to the index

RP ′
i+1(v

′′), and it terminates when arriving r hops away from

t. Note that ⊕ is a path concatenating operation.

To update the left partial path index LP for vertices in

V (C2), we perform a hop-constrained BFS from v, traversing

the vertices within l hops from s, and updating the LP for

them with the paths in their predecessors’ index (line 9-18).

After all these updates, all changes of the index for vertices

in V (C2) are well maintained. Similar to above process, if

Distt[v] + 1 < Distt[u] holds, we also need to update the

distance map Distt and index for vertices in C1 as the order

we mentioned before.

2) Edge Deletion: Different from the strategy against edge

insertion, it is hard to maintain the distance map after edge

deletion. To maintain the distance map against insertion, we

can easily find relaxed vertices and directly update the shortest

distance from s and v′ ∈ V (C2) with its predecessors respec-

tively. But after the edge deletion, the increase of Dists[v
′]
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Algorithm 4: Maintain the index after insertion

Input: Induced subgraph Gsub, the inserted edge

e(u, v), edge vertices set Sedge, relaxed

vertices set Srelax, distance map Dists and

Distt, hop constraint k
Output: the updated index LP ′, RP ′

1 foreach u′ ∈ Sedge do
2 foreach {i|Distt[u

′] ≤ i < r} do
3 foreach

v′ ∈ {v|v ∈ {Nin(u
′) ∧ i+ 1 +Dist′s[v] ≤

k ∧ v ∈ Srelax ∧Dists[v] + i+ 1 > k} do
4 foreach p ∈ RPi(u

′) do
5 if v′ /∈ p then add p⊕ v′ to RP ′

i+1(v
′);

6 if v′ �= v ∧ i+ 1 < r then
UDFS(i+ 1, p⊕ v′, v′);

7 foreach {i|Distt[v] ≤ i < r} do
8 foreach p ∈ RP ′

i (v) do add p⊕ u to RP ′
i+1(u);

9 Scur ← {v};
10 foreach {i|Dists[u] + 1 ≤ i < l} do
11 Snxt ← ∅;
12 foreach u′ ∈ Scur do
13 foreach

v′ ∈ {v|v ∈ Nout(u
′) ∧ i+ 1+Dist′t[v

′] ≤ k}
do

14 add v′ to Snxt;

15 foreach p ∈ LP ′
i (u

′) do
16 if v′ /∈ p then add p⊕ v′ to LP ′

i+1(v
′);

17 if LP ′
i+1(v) �= ∅ then add v to Snxt;

18 Scur ← Snxt;

only happens in the situation that the shortest path from s to v′

passed by the expired edge e(u, v), which is hard to be directly

computed. Thus the maintenance strategy we used against edge

insertion is invalid because we can’t straightforwardly know

the shortest distance between s and v′ after edge expiration.

It is obviously inefficient to re-compute the distance map for

each update.

Distance Map Update. To overcome this challenge, we

design a BFS-based algorithm to update the distance map

without re-computation. Firstly, although we can’t directly find

the tightened vertices like Algorithm 3, we can find all the

possible tightened vertices by their Dists. After the expiration

of e(u, v), Dists[v] may be increased. If Dists[v] ≤ Dists[u],
then the expiration of e(u, v) makes no difference to Dists[v],
because all the shortest paths from s to v don’t pass by e(u, v).
Otherwise, v is a possible tightened vertex, and we can find

a possible tightened vertices set Stighten according to the

inequality Dists[v
′] = Dists[u

′] + 1.

After that, an observation is that for each vertex v′ ∈
V (C2) ∪ {v}, Dists[v

′] should be equal to Dists[u
′
min] + 1,

where u′
min = argminu′∈Nin(v′) Dists[u

′]. But only when

u′
min is not a tightened vertex, we can use Dists[u

′
min] + 1

to update Dists[v
′] . If u′

min is a tightened vertex after the

edge deletion, we can’t update Dists[v
′] until Dists[u

′
min]

is updated. In a worse case, for example, when all tightened

vertices are in a loop, then the above check will fall in the

Algorithm 5: Update distance map after deletion

Input: Graph G, the deleted edge e(u, v), distance

map Dists and Distt, hop constraint k
Output: the updated distance map Dist′s, Dist′t

1 if Dists[u] + 1 �= Dists[v] then return;

2 foreach v′ ∈ G do visited[v′]← 0;

3 Sedge ← ∅, Stighten ← ∅, Scur ← {v};
4 level i← Dists[u] + 1;

5 while Scur �= ∅ ∧ i < k do
6 Snxt ← ∅;
7 i++;

8 foreach u′ ∈ Scur do
9 foreach v′ ∈ {v|v ∈ Nout(u

′) ∧ i+ 1 ≤
k ∧ visited[v] = false} do

10 visited[v′]← true;

11 if Dists[u
′] + 1 = Dists[v

′] then
12 add v′ in Stighten;

13 foreach
u′′ ∈ {v|v ∈ Nin(v

′) ∧ v /∈ Stighten}
do

14 add u′′ in Sedge;

15 Scur ← Snxt;

16 Initialize k-1 buckets B0,...,k−2 with vertices in Sedge;

17 while Stighten �= ∅ do
18 u′ ← the vertex with minimal Dists in B;

19 Remove u′ from B;

20 foreach v′ ∈ Nout(u
′) do

21 if v′ ∈ Stighten then
22 Dist′s[v

′]← Dist′s[u
′] + 1;

23 add v′ into B;

24 Stighten ← Stighten \ {v′};

loop and makes it hard to update the distance map. To solve

this, we find all the predecessors of possible tightened vertices

that are not in Stighten and add them to a set Sedge. We

straightforwardly start a one-hop BFS from vertices in Sedge,

to search for the possible tightened vertices and update their

distance map.

Algorithm Description. In Algorithm 5, we use a set

Stighten to store the vertices that will probably be tightened.

If Dists[v] = Dists[u] + 1 holds, we conduct a level search

starting from v to find possible tightened vertices (line 2-15).

In the level search, for each v’s out-going neighbor v′, if v′ is

a possible tightened vertex, we add v′ to the set Stighten and

Snxt (line 11-12). Then we add all unrelaxed vertices in v′’s
in-going neighbors to Sedge (line13-14). The process repeats

until the level search arrives k-1 hops away from s.

We assign vertices in Sedge to k-1 buckets according to

Dists[v
′] (line 16). For example, we insert the vertex v′ with

Dists[v
′] = 1 into B1. Then we traverse buckets in increasing

order of Dists (line 18-19). For each vertex v′, if its out-

neighbor u′ ∈ Stighten, the shortest distance from s to u′

passes by v′. So we update the Dists[u
′] and move u′ from

Stighten to BDist′s[u′] (line 20-24). The process terminates

when Stighten is empty.

Index Update. After updating the distance map, we can
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maintain the index accordingly. For each tightened vertex v′,
we remove all paths that in RPi(v

′), k − Dist′s[v
′] < i ≤ r

and remove v′ from Gsub if Dist′s[v
′] +Dist′t[v

′] > k. After

that, we have maintained RP for vertices in {v} ∪ V (C2).
To maintain LP for vertices in {v} ∪ V (C2), we start a (k-

Dists[v])-hop BFS from v, and check all vertices we visited

in this BFS search. For each vertex v′ we visited, we check

RP (v′) and remove all the paths that passed by e(u, v).
After all these updates, all the changes of the index in

V (C2) are well maintained. Similar to the above process,

we also should update the distance map Distt and index for

vertices in C1. Note that to enumerate deleted paths after edge

deletion, we keep the paths that should be removed and delete

them after finishing the update enumeration.

3) Complexity Analysis: To maintain the distance map

against insertion, we visit each out-going edge of each relax

vertices at most once, which costs O(|E|) time in the worst

case. And when searching in relaxed vertices Srelax to main-

tain the index, we visit each path that is new/deleted at most

once and add it to our index if it is simple. Thus the time

cost is k times the number of new/deleted partial paths in LP
and RP , which is less than 2 × Δ|P |, where Δ|P | is the

number of new/deleted hop-constrained s-t paths with length

up to k resulting from the edge update. Hence the time cost

of maintaining the index against insertion is O(k ×Δ|P |),
To maintain the distance map against deletion, we visit each

(in-going and out-going) edge of each vertices in Stighten at

most once, which costs O(|E|) time in the worst case. After

that, it takes O(k+|V |) to add vertices in Sedge to k-1 buckets.

The rest cost of updating distance map against deletion is

to traverse all vertices in buckets B, which costs at most

O(|E|). Thus the time cost of maintaining the distance map

against deletion is O(|E|+k) and index update for deletion is

O((k+davg)×Δ|P |).As removing a path in our index passed

by e(u, v), we need to remove paths passed by e(u, v) in its

successors, which costs davg ×Δ|P |.
The space cost of maintenance is O(k×Δ|P |), which is the

size of new/deleted parts in the index. Thus after maintenance,

the index still follows the overall O(k×|P |) space complexity.

V. EVALUATIONS

A. Experimental Setting

1) Datasets: 14 real-world graphs are utilized to evaluate

the effectiveness and efficiency of our proposed techniques.

All datasets are downloaded from three public websites:

Konect [21], NetworkRepository [22] and SNAP [23]. TABLE

I demonstrates the details of the datasets. Note that davg
denotes the average degree, D denotes the diameter, and D90

denotes the 90-percentile effective diameter of the graph.

2) Settings: We obtain the source code of BC-JOIN from

the original authors, PathEnum [24], CSM∗ [25] and pro-

posed algorithms [26] are open-source. All programs are

implemented in C++ and compiled by g++ 8.3.1 with -O3

enabled. All experiments are performed on a machine with 32

Intel Xeon 2.1GHz and 256GB main memory running Linux

(CentOS 7.0).

TABLE I
DATASETS USED IN EXPERIMENTS

Dataset Name |V | |E| davg D D90

Reactome RT 6.3K 294K 46.64 24 5.39
soc-Epinions1 EP 75K 1.01M 13.42 14 5
Slashdot0922 SD 82K 1.89M 23.08 11 4.7
Amazon AM 334K 2.26M 6.76 44 15
twitter-social TS 465K 1.79M 3.86 8 4.96
Baidu BD 425K 6.72M 15.8 32 8.54
BerkStan BS 685K 15.2M 22.18 208 9.79
web-google WG 875K 10.2M 11.6 24 7.95
Skitter SK 1.6M 20.8M 13.08 31 5.85
WikiTalk WK 2M 8.4M 4.2 9 4
soc-pokec PK 1.6M 30M 18.4 11 5.2
LiveJournal LJ 4M 113.6M 28.4 16 6.5
DBpedia DP 18M 339M 18.85 12 4.98
Twitter (WWW) TW 42M 2.96B 70.51 23 3.97

3) Comparisons: We study the following algorithms in

comparison with our algorithms.

• BC-JOIN [3]: The most competitive bidirectional search-

based solution for k-st path enumeration on static graphs.

• PathEnum [5]: The state-of-the-art method for k-st path

enumeration on static graphs.

• CSM∗: The state-of-the-art solutions on dynamic graphs

as we mentioned in Section I. According to [27], there

is no absolute winner in CSM problem, so we report

the most efficient algorithm (denoted by CSM∗) among

SJ-Tree [15], Graphflow [19], IEDyn [17], TurboFlux

[16] and SymBi [20] in each experiment. Since CSM∗

only support undirected graph, so we only report its

performance on undirected datasets AM , SK and LJ .

• CPEstartup: Our solution including the index construction

and start-up enumeration algorithms.

• CPEupdate: Our solution including the index maintenance

and update enumeration algorithms.

B. Efficiency of Start-up Stage.
In Section III-B1 and Section IV-A, we introduce how

we build the index and enumerate k-st paths on the initial

graph, which can be adopted to deal with the traditional static

k-st path enumeration problem [3]. Therefore, we evaluate

the running time of our CPEstartup algorithm to answer the

traditional k-st path enumeration problem on different datasets

and compare it with two existing SoTA algorithms, PathEnum

and BC-JOIN. We set k = 6 and randomly generate 1,000

queries for each dataset. As shown in Figure 6, the query time

on different graphs varies greatly, which ranges from less than

one millisecond to hundreds of seconds.
Although our solution needs to store the partial paths

to support subsequent maintenance on dynamic graphs and

PathEnum is an online algorithm that focuses on static graphs

and doesn’t store the intermediate results, our start-up stage

algorithm still can achieve similar performance to the state-of-

the-art algorithm PathEnum. And compared to BC-JOIN, we

achieve up to three orders of magnitude speedup. Although the

barrier-based pruning of BC-JOIN can provide a theoretical

guarantee, the maintenance of barrier is quite expensive in

practice. Furthermore, our pruning technique can prune the

majority of invalid paths which further improve the efficiency

of the proposed CPEstartup. In addition, we also can see that
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Fig. 6. Efficiency of Start-up Stage on different datasets.

Fig. 7. Efficiency of Update Stage on different datasets.

the general proposed continuous subgraph matching method

CSM∗ is less efficient on the start-up stage. Note that

the running time of index construction is included in both

CPEstartup and CSM∗.

C. Efficiency of Update Stage.

In this subsection, we evaluate the efficiency of our update

stage algorithm CPEupdate (includes both index maintenance

and update enumeration) against edge updates on 14 different

datasets with k = 6.

In our experiments, we continuously process the query,

maintain the index and update the result instead of adopting

sliding window model or batch strategy to deal with the update

of edges. Because of graph sparsity, when more than one edge

arrives at the same time, there is few computation shared by

dealing with them in a batch. Therefore, we process the update

on the fly. As we mentioned in Section IV-B, we only consider

edges that actually affect the result of k-st paths.

1) Efficiency on Different Datasets: We randomly generate

10 queries from vertices within the top 10% in the descending

order of degree for each dataset, and 200 random edge updates

(100 insertions and 100 deletions) are generated for each query

pair (s, t). Then we report the average running time that be

spent to maintain the index and enumerate the new/deleted

k-st paths in Figure 7.

CPEupdate vs. Baselines. The CPEupdate algorithm signif-

icantly outperforms PathEnum and CSM∗ on all datasets,

especially those with long query time. For example, CPEupdate

runs 33985 times faster than PathEnum on TW in terms of

running time. As a result of the sparsity that real-world graphs

have, when we randomly generate the insertion or deletion of

an edge for a random query, the most common situation is

that the edge only incurs a few changes for the k-st paths.

So the CPEupdate algorithm with Δ|P |-related time cost is

significantly faster than PathEnum with |P |-related time cost,

especially for those query pairs costly in static graphs. And

compared to CSM∗, which is also an index-based method, we

still achieve better performance because our proposed pruning

techniques can significantly reduce the search space and fruit-

less exploration is avoided. And owing to our efficient index

structure, the time cost of update enumeration is negligible,

and the majority of the running time of CPEupdate is spent to

maintain the index.

Effect of Dataset. As shown in the Figure 7, the running

time on different datasets with different graph topology varies

greatly, which ranges from tens of microseconds to over

milliseconds. The running time of CPEupdate depends on graph

size, graph density, and the specific query q(s, t, k). What

stands out in Figure 7 is that the CPEupdate running time on

BD is much more than on TS. Although they have a similar

number of vertices, the davg of BD is bigger than TS. This

implies that BD is a graph with considerable local density.

In Figure 7, We also examine the 99.9% latency of CPEupdate,

CSM∗ and PathEnum in terms of the response time. We can

find that the latency of CPEupdate is much smaller than CSM∗

and PathEnum on most graphs. But in some of graphs, they

are close in latency. This is because in these graphs and some

query pairs, an arrival or expiration of edge may lead a large

proportion of paths to be changed that making Δ|P | be close

to |P |, thus the cost of computing new/deleted paths is close

to the cost of re-computing all paths in these queries.

2) Insertion vs. Deletion: As shown in Figure 8, the

running time of CPEupdate for dealing with the insertion and

deletion of edges are quite close. And we can find that the

running time is highly relevant to the number of new/deleted

paths, which is consistent with our analysis about time com-
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(a) time (b) count

Fig. 8. Performance for CPEupdate against insertion and deletion with k = 6.

(a) AM (b) WG

Fig. 9. Update Stage on AM and WG with k varied.

plexity in Section IV-B.

3) Effect of k: We conduct more extensive experiments

on WG and AM with k varied. Figure 9 presents the

average query time and 99.9% latency of CPEupdate, CSM∗ and

PathEnum algorithm with different k. As shown in the Figure

9, CPEupdate significantly outperforms CSM∗ and PathEnum,

which further proves the efficiency of our CPEupdate algorithm.

In particular, it demonstrates the great scalability of our

CPEupdate algorithm regarding the growth of the hop constraint

k. As shown in Figure 9, the number of k-st paths grows

exponentially w.r.t k. But the number of new/deleted paths

is not fully consistent with it, which is more relevant to the

density of the induced subgraph w.r.t the specific query as we

mentioned before and shows that the superiority of conducting

maintenance and update instead of re-computing.

4) Efficiency on Hot Query Pairs: To testify the efficiency

of CPEupdate algorithm on hot query pairs, we evaluate our

algorithms on queries that s and t are randomly selected from

vertices within the top 1% in the descending order of degree,

which produce extremely dense induced graphs and a huge

number of results. The query time, 99.9% latency and the num-

ber of new/deleted paths are presented in Figure 10. We can

find that CPEupdate still can significantly outperforms CSM∗

and PathEnum in both running time and 99.9% latency, which

shows the efficiency and scalability of our CPEupdate algorithm.

As shown in Figure 10, the running time of CPEupdate on hot

query pairs still grows w.r.t the number of new/deleted paths.

(a) EP (b) SK

Fig. 10. Update Stage on hot query pairs with k varied.

(a) Running Time (b) Number of Results

Fig. 11. Scalability evaluation on TW with k varied.

D. Scalability Evaluation.

We evaluate the scalability of our algorithms on TW dataset

that has over two billion edges. As shown in Figure 11, we

report the average running time of each individual component

of our algorithm in 10 random queries and 200 edge updates

(100 insertions and 100 deletions). “Prep” denotes the time

spent on building the shortest distance map and the induced

subgraph. “IC” denotes the time spent on building our partial

path index. After that, “SE” is the time spent on enumerating

all k-st paths in the initial graph. “Overall” is the sum running

time of “Prep”, “IC”, and “SE”, which is the running time of

a whole static path enumeration query. Then we use “Update”

to represent the sum running time of index maintenance and

update enumeration. Similar to the result in Figure 9, the

overall number of results grows exponentially w.r.t k in Figure

11. Because the induced subgraph wouldn’t be denser in TW
when the k grows, the count of new/deleted paths is insensitive

to k, which demonstrates great scalability again.

(a) BS (b) AM
Fig. 12. Average main memory usage.
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E. Main Memory Usage.
Figure 12 shows the main memory usage of the partial path

index on 2 datasets over 1,000 random queries with different

k. To better show the tendency of our solution, we exclude

memory usage of the graph storage. “AvgIdx” shows the

average memory usage of our index. The memory usage grows

exponentially w.r.t k due to the number of results growing

exponentially w.r.t k. Note that after the construction of the

index, when edges arrive or expire continuously, the space cost

of our solution changes following the change of paths number

Δ|P |.
We use “AvgRst” to denote the average size of all k-st

paths. Compared with the space cost of storing all k-st paths,

our partial path index always uses much less main memory.

Especially when k is not that small, compared to store all

paths, our partial path index only occupies less than 1% of

memory space. And the blue line shows the average index

memory usage of CSM∗, which grows linearly w.r.t k because

its space complexity is directly proportional to k.

VI. RELATED WORKS

k-st Path Enumeration on Static Graphs. Existing ap-

proaches [1]–[3], [5] adopt a DFS-based backtracking strategy,

but introduce different pruning techniques to reduce the search

space. T-DFS [2] and T-DFS2 [1] prune the search space by

ensuring that each search branch in the search tree leads to a

result. BC-DFS [3] is a barrier-based method, which prunes

the search space by dynamically maintaining the distance from

each vertex to t to avoid repeatedly falling into the same sub-

tree contains no result. A bidirectional search-based method

BC-JOIN is also proposed by [3], which is the combination of

BC-DFS and the bidirectional search paradigm. It significantly

reduces the search space and avoids enumerating duplicate

paths. Although T-DFS, T-DFS2 and BC-JOIN all achieve

O(k×|E|) polynomial delay, it was shown in [3] that BC-JOIN

runs much faster than T-DFS and T-DFS2 in practice because

their pruning strategy incurs lower overhead. Additionally,

PEFP [4] is a FPGA method based on BC-DFS. HybridEnum

[6] is a scalable distributed k-st path enumeration algorithm.

Sun et al. proposed PathEnum [5], which designs an online

index to prune invalid branches, adopts a single directional join

strategy based on the index, and then develops a cost-based

query optimizer to further improve the performance. Different

from previous algorithms, the time complexity of PathEnum

is O(k × |P |), where |P | is number of path from s to t.
In general, the existing two most competitive algorithms

BC-JOIN and PathEnum are both join-based methods but

adopt two different join paradigms:

BC-JOIN employs a bidirectional search-based join

paradigm. It first computes all the middle vertices. Then it

applies BC-DFS to compute paths with length at most k/2
starting from s and t respectively. Finally, it joins the paths

starting from s and t in middle vertices to obtain the final

results. BC-JOIN produces enough intermediate results with

the potential to support subsequent updates. However, the BC-

DFS method is time consuming, especially for large graphs.

PathEnum adopts a single directional search-based join

paradigm. For a specific query, it first conducts a cardinality

estimator to decide whether to make an full-fledged estimation

and do a join operation or not. Then it computes the paths

on the online index and performs the join operation with a

check for path simplicity according to the estimation result.

Because of the single directional paradigm and cardinality

estimators, PathEnum produces either none or only a portion of

intermediate results, which is unhelpful to avoid recomputing

the result from scratch for graph updates.

Continuous Subgraph Matching. The k-st path enumer-

ation problem on dynamic graphs can be addressed by con-

tinuous subgraph matching (CSM) methods [15]–[20], which

aims to report newly generated/deleted matches on insertion

or deletion of edges. [27] conducts an in-depth study about the

state-of-art CSM methods, which are adopted as the baseline

in the paper. However, as demonstrated in the experiments,

these methods are inefficient and unscalable for k-st path

enumeration.

Other Related Works. Besides, the related problems such

as succinct presentation of s-t simple paths [28], [29], enumer-

ating hop-constrained cycles against the arrival of incoming

edges in dynamic graphs [8], enumerating all s-t simple paths

without the hop constraint [30]–[33], finding all constrained

or diversified shortest paths [34]–[38] and top-k′ shortest path

problem [39]–[47] are also studied in the literature. There

are some works [48]–[52] on the problem of computing the

shortest path when the input graph is dynamically updated.

However, due to the difference of the studied problems, all

these corresponding algorithms cannot be applied to the k-st
path enumeration.

VII. CONCLUSION.

The k-st path enumeration problem is a fundamental prob-

lem in graph analysis with a wide range of applications.

Though this problem has been intensively studied on static

graphs, this paper is the first to investigate the problem in

the context of dynamic graphs with continuous edge insertion

and deletion operations. In this paper, efficient index-based

algorithms have been developed with the best theoretical

time complexity and practical performance compared to other

solutions.
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