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Abstract—Information cascade in online social networks can be
rather negative, e.g., the spread of rumors may trigger panic. To
limit the influence of misinformation in an effective and efficient
manner, the influence minimization (IMIN) problem is studied
in the literature: given a graph G and a seed set S, blocking
at most b vertices such that the influence spread of the seed
set is minimized. In this paper, we are the first to prove the
IMIN problem is NP-hard and hard to approximate. Due to
the hardness of the problem, existing works resort to greedy
solutions and use Monte-Carlo Simulations to solve the problem.
However, they are cost-prohibitive on large graphs since they have
to enumerate all the candidate blockers and compute the decrease
of expected spread when blocking each of them. To improve the
efficiency, we propose the AdvancedGreedy algorithm (AG) based
on a new graph sampling technique that applies the dominator
tree structure, which can compute the decrease of the expected
spread of all candidate blockers at once. Besides, we further
propose the GreedyReplace algorithm (GR) by considering the
relationships among candidate blockers. Extensive experiments
on 8 real-life graphs demonstrate that our AG and GR algorithms
are significantly faster than the state-of-the-art by up to 6 orders
of magnitude, and GR can achieve better effectiveness with its
time cost close to AG.

Index Terms—Influence Spread, Misinformation, Independent
Cascade, Graph Algorithms, Social Networks

I. INTRODUCTION

With the prevalence of social network platforms such as

Facebook and Twitter, a large portion of people is accustomed

to expressing their ideas or communicating with each other

online. Users in online social networks receive not only posi-

tive information (e.g., new ideas and innovations) [1], but also

negative messages (e.g., rumors and fake science) [2]. In fact,

misinformation like rumors spread fast in social networks [3],

and can form more clusters compared with positive informa-

tion [4], which should be limited to avoid ‘bad’ consequences.

For example, the opposition to vaccination against SARS-CoV-

2 (causal agent of COVID-19) can amplify the outbreaks [5].

The rumor of White House explosions that injured President

Obama caused a $136.5 billion loss in the stock market [6].

Thus, it is critical to efficiently minimize the influence spread

of misinformation.

∗ Fan Zhang is the corresponding author.

We can model the social networks as graphs, where vertices

represent users and edges represent their social connections.

The influence spread of misinformation can be modeled as the

expected spread under diffusion models, e.g., the independent

cascade (IC) model [7]. The strategies in existing works

on spread control of misinformation can be divided into

two categories: (i) blocking vertices [8]–[12], which usually

removes some critical users in the networks such that the

influence of the misinformation can be limited; or blocking

edges [13]–[16], which removes a set of edges to stop the

influence spread of misinformation; (ii) spreading positive

information [2], [17]–[19], which considers amplifying the

spread of positive information to fight against the influence

of misinformation.

In this paper, we consider blocking key vertices in the graph

to control the spread of misinformation. Suppose a set of users

are already affected by misinformation and they may start

the propagation, we have a budget for blocking cost, i.e., the

maximum number of users that can be blocked. Then, we study

the influence minimization problem [8], [9]: given a graph G,

a seed set S and a budget b, find a blocker set B∗ with at most

b vertices such that the influence (i.e., expected spread) from S
is minimized. Note that blocking vertices is the most common

strategy for hindering influence propagation. For example, in

social networks, disabling user accounts or preventing the

sharing of misinformation is easy to implement. According to

the statistics, Twitter has deleted 125,000 accounts linked to

terrorism [20]. Obviously, we cannot block too many accounts,

it will lead to negative effect on user experience. In such cases,

it is critical to identify a user set with the given size whose

blocking effectively hinders the influence propagation.

Challenges and Existing Solutions. The influence minimiza-

tion problem is NP-hard and hard to approximate, and we are

the first to prove them (Theorems 1 and 3). Due to the hardness

of the problem, the state-of-the-art solutions use a greedy

framework to select the blockers [2], [8], which outperforms

other existing heuristics [9], [11], [12]. However, different to

the influence maximization problem, the spread function of

our problem is not supermodular (Theorem 2), which implies

that an approximation guarantee may not exist for existing

greedy solutions. Moreover, as the computation of influence

783

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00066



spread under the IC model is #P-hard [21], the state-of-the-

art solutions use Monte-Carlo Simulations to compute the

influence spread. However, such methods are cost-prohibitive

on large graphs since there are excessive candidate blockers

and they have to compute the decrease of expected spread for

every candidate blocker (detailed in Section V-B1).

Our Solutions. Different to the state-of-the-art solutions (the

greedy algorithms with Monte-Carlo Simulations), we propose

a novel algorithm (GreedyReplace) based on sampled graphs

and their dominator trees. Inspired by reverse influence sam-

pling [22], the main idea of the algorithm is to simultaneously

compute the decrease of expected spread of every candidate

blocker, which uses almost a linear scan of each sampled

graph. We prove that the decrease of the expected spread

from a blocked vertex is decided by the subtrees rooted at

it in the dominator trees that generated from the sampled

graphs (Theorem 6). Thus, instead of using Monte-Carlo

Simulations, we can efficiently compute the expected spread

decrease through sampled graphs and their dominator trees.

We also prove the estimation ratio is theoretically guaranteed

given a certain number of samples (Theorem 5). Equipped

with above techniques, we first propose the AdvancedGreedy

algorithm, which has a much higher efficiency than the state-

of-the-art greedy method without sacrificing its effectiveness.

Furthermore, for the vertex blocking strategy, we observe

that all out-neighbors of the seeds will be blocked if the

budget is unlimited, while the greedy algorithm may choose

the vertices that are not the out-neighbors as the blockers

and miss some important candidates. We then propose a new

heuristic, named the GreedyReplace algorithm, focusing on

the relationships among candidate blockers: we first consider

blocking vertices by limiting the candidate blockers in the out-

neighbors, and then try to greedily replace them with other

vertices if the expected spread becomes smaller.

Contributions. Our principal contributions are as follows.

• We are the first to prove the Influence Minimization

problem is NP-hard and APX-hard unless P=NP.

• We propose the first method to estimate the influence

spread decreased by every candidate blocker under IC

model, which only needs a simple scan on the dominator

tree of each sampled graph. We prove an estimation ratio

is guaranteed given a certain number of sampled graphs.

To the best of our knowledge, we are the first to study

the dominator tree in influence related problems.

• Equipped with the above estimation technique, our Ad-

vancedGreedy algorithm significantly outperforms the

state-of-the-art greedy algorithms in efficiency without

sacrificing effectiveness. We also propose a superior

heuristic, the GreedyReplace algorithm, to further refine

the effectiveness.

• Comprehensive experiments on 8 real-life datasets vali-

date that our AdvancedGreedy algorithm is faster than the

state-of-the-art (the greedy algorithm with Monte-Carlo

Simulations) by more than 3 orders of magnitude, and our

GreedyReplace algorithm can achieve better result quality

(i.e., the smaller influence spreads) and close efficiency

compared with our AdvancedGreedy algorithm.

II. RELATED WORK

Influence Maximization. The studies of influence maximiza-

tion are surveyed in [23], [24]. Domingos et al. first study the

influence between individuals for marketing in social networks

[25]. Kempe et al. first model this problem as a discrete opti-

mization problem [7], named Influence Maximization (IMAX)

Problem. They introduce the independent cascade (IC) and

linear threshold (LT) diffusion models, and propose a greedy

algorithm with (1−1/e)-approximation ratio since the function

is submodular under the above models. Borgs et al. propose a

different method based on reverse reachable set for influence

maximization under the IC model [22]. Tang et al. propose

an algorithm based on martingales for IMAX problem, with a

near-linear time cost [26].

Influence Minimization. Compared with IMAX problem,

there are fewer studies on controlling the spread of misinfor-

mation, as surveyed in [27]. Most works consider proactive

measures (e.g., blocking nodes or links) to minimize the

influence spread, motivated by the feasibility on structure

change for influence study [28]–[30]. In real networks, we

may use a degree based method to find the key vertices [11],

[12]. Yao et al. propose a heuristic based on betweenness

and out-degree to find approximate solutions [31]. Wang et

al. propose a greedy algorithm to block a vertex set for

influence minimization (IMIN) problem under IC model [8].

Yan et al. also propose a greedy algorithm to solve the

IMIN problem under different diffusion models, especially for

IC model [9]. They also introduce a dynamic programming

algorithm to compute the optimal solution on tree networks.

The above studies on the IMIN problem validate that the

greedy heuristic is more effective than other methods, e.g.,

degree based heuristics [8], [9].

Kimura et al. propose to minimize the dissemination of

negative information by blocking links (i.e., finding k edges

to remove) [13]. They propose an approximate solution for

rumor blocking based on the greedy heuristic. Other than IC

model, the vertex and edge interdiction problems were studied

under other diffusion models: [14], [32], [33] consider the LT

(Linear Threshold) model, [34] considers the SIR (Susceptible-

Infected-Recovery) model and [16], [35] considers CD (Credit

Distribution) Model.

In addition, there are some other strategies to limit the

influence spread. Budak et al. study the simultaneous spread

of two competing campaigns (rumor and truth) in a network

[2]. They prove this problem is NP-hard and provide a

greedy algorithm which can be applied to the IMIN problem.

Manouchehri et al. then propose a solution with theoretically

guaranteed for this problem [36]. Moreover, Chen et al.

propose the profit minimization of misinformation problem,

which not only considers the number of users but also focus

on interaction effects between users. As interaction effects are

different between different users and the related profit obtained

from interaction activities may also be different [37]. Lee et
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al. also consider that both positive and negative opinions are

propagating in a social network. Their strategy is to reduce

the positive influence near the steady vertices and increase the

influence in the vacillating region [17]. Tong et al. propose

the rumor blocking problem to find k seed users to spread

the truth such that the user set influenced by the rumor is

minimized [18]. Some works consider more factors into the

propagation models, e.g., user experience [29], evolution of

user opinions [38].

In this paper, we first focus on the efficient computation of

the fundamental IMIN problem under the IC model, without

sacrificing the effectiveness compared with the state-of-the-art.

We also further improve the quality of results by proposing a

new heuristic for choosing the blockers.

Influence Expected Spread Computation. The computation

of expected spread is proved to be #P-hard under IC model

[21]. Maehara et al. propose the first algorithm to compute in-

fluence spread exactly under the IC model [39], but it can only

be used in small graphs with a few hundred edges. Domingos

et al. first propose to use the Monte-Carlo Simulations (MCS)

to compute the expected spread [7], which repeats simulations

until a tight estimation is obtained. We have to repeatedly run

MCS to compute the decrease of influence spread for each

candidate blocker, which leads to a large computation cost.

Borgs et al. propose Reverse Influence Sampling (RIS) [22],

which is now widely used in IMAX Problem. Tang et al. then

propose the methods to reduce the number of samples for RIS

[26]. However, as in our later discussion, we find that RIS is

not applicable to our problem (Section V-B1). Our one-time

computation of the expected spread on sampled graphs can

return the spread decrease of every candidate blocker, which

avoids redundant computations compared with MCS.

III. PRELIMINARIES

We consider a directed graph G = (V,E), where V is the

set of n vertices (entities), and E is the set of directed edges

(influence relations between vertex pairs). Table I summarizes

the notations. When the context is clear, we may simplify the

notations by omitting V or E.

A. Diffusion Model

Following the existing studies [2], [8], [40] on influence

minimization, we focus on the widely-studied independent

cascade (IC) model [7]. It assumes each directed edge (u, v)
in the graph G has a propagation probability1 pu,v ∈ [0, 1],
i.e., the probability that the vertex u activates the vertex v after

u is activated.

In the IC model, each vertex has two states: inactive or

active. We say a vertex is activated if it becomes active

by the influence spread. The model considers an influence

propagation process as follows: (i) at timestamp 0, the seed

vertices are activated, i.e., the seeds are now active while

the other vertices are inactive; (ii) if a vertex u is activated

1Some existing works can assign or predict the propagation probability of
each edge for the IC model, e.g., [7], [21], [41].

TABLE I: Summary of Notations

Notation Definition

G = (V,E) a directed graph with vertex set V and edge set E
n;m number of vertices/edges in G (assume m > n)
V (G);E(G) the set of vertices/edges in G
G[V ′] the subgraph in G induced by vertex set V ′

N in
u ;Nout

u the set of in-neighbors/out-neighbors of vertex u
dinu ; doutu the in-degree/out-degree of vertex u
S; s the seed set; a seed vertex
B the blocker set
θ the number of sampled graphs used in algorithm
Pr[x] the probability if x is true
E[x] the expectation of variable x
pu,v the probability that vertex u activates vertex v

PG(x, S) the probability that vertex x is activated by set S
in G

E(S,G) the expected spread, i.e., the expected number of
activated non-seed vertices in G with seed set S

at timestamp i, then for each of its inactive out-neighbor v
(i.e., for each inactive v ∈ Nout

u ), u has pu,v probability to

independently activate v at timestamp i + 1; (iii) an active

vertex will not be inactivated during the process; and (iv) we

repeat the above steps until no vertex can be activated at the

latest timestamp.

B. Problem Definition

To formally introduce the Influence Minimization problem

[8], [9], [31], we first define the activation probability of a

vertex, which is initialized by 1 for any seed by default.

Definition 1 (activation probability). Given a directed graph
G, a vertex x and a seed set S, the activation probability of
x in G, denoted by PG(x, S), is the probability of the vertex
x becoming active.

In order to minimize the spread of misinformation, we can

block some key non-seed vertices such that they will not be

activated in the propagation process. A blocked vertex is also

called a blocker in this paper.

Definition 2 (blocker). Given G = (V,E), a seed set S, and
a set of blockers B ⊆ (V \ S), the influence probability of
every edge pointing to a vertex in B is set to 0, i.e., pu,v = 0
for any u ∈ N in

v if v ∈ B.

The activation probability of a blocker is 0 because the

propagation probability is 0 for any of its incoming edges.

Then, we define the expected spread to measure the influence

of the seed set in the whole graph.

Definition 3 (expected spread). Given a directed graph G and
a seed set S, the expected spread, denoted by E(S,G), is the
expected number of active vertices under the IC model, i.e.,
E(S,G) =

∑
u∈V (G) PG(u, S).

The expected spread with a blocker set B is represented by

E(S,G[V \B]). The studied problem is defined as follows.

Problem Statement. Given a directed graph G = (V,E), the

influence probability pu,v on each edge (u, v), a seed set S
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Fig. 1: A toy graph G, where v1 is the seed vertex and the

value on each edge indicates its propagation probability.

and a budget b, the Influence Minimization (IMIN) problem

is to find a blocker set B∗ with at most b vertices such that

the influence (i.e., expected spread) is minimized, i.e.,

B∗ = argminB⊆(V \S),|B|≤bE(S,G[V \B]).

Example 1. Figure 1 shows a graph G = (V,E) where
S = {v1} is the seed set, and the value on each edge is
its propagation probability, e.g., pv5,v8 = 0.5 indicates v8
can be activated by v5 with 0.5 probability if v5 becomes
active. At timestamps 1 to 3, the seed v1 will certainly acti-
vate v2, v3, v4, v5, v6 and v9, as the corresponding activation
probability is 1. Because v8 may be activated by either v5 or
v9, we have PG(v8, {v1}) = 1−(1−pv5,v8 ·PG(v5, {v1}))(1−
pv9,v8 · PG(v9, {v1})) = 1 − 0.5 × 0.8 = 0.6. If v8 is
activated, it has 0.1 probability to activate v7. Thus, we have
PG(v7, {v1}) = pv8,v7 · PG(v8, {v1}) = 0.6 × 0.1 = 0.06.
The expected spread is the activation probability sum of all
the vertices, i.e., E({v1}, G) = 7.66. If we block v5, the new
expected spread E({v1}, G[V \{v5}]) = 3. Similarly, we have
E({v1}, G[V \ {v2}]) = E({v1}, G[V \ {v4}]) = 6.66, and
blocking any other vertex also achieves a smaller expected
spread than blocking v5. Thus, if the budget b = 1, the result
of the IMIN problem is {v5}.

IV. PROBLEM ANALYSIS

To the best of our knowledge, no existing work has studied

the hardness of the Influence Minimization (IMIN) problem, as

surveyed in [27]. Thus, we first analyze the problem hardness.

Theorem 1. The IMIN problem is NP-Hard.

Proof. We reduce the densest k-subgraph (DKS) problem [42],

which is NP-hard, to the IMIN problem. Given an undirected

graph G(V,E) with |V | = n and |E| = m, and an positive

integer k, the DKS problem is to find a subset A ⊆ V with

exactly k vertices such that the number of edges induced by

A is maximized.

Consider an arbitrary instance G(V = {v1, · · · , vn}, E =
{e1, · · · , em}) of DKS problem with a positive integer k, we

construct a corresponding instance of IMIN problem on graph

G′. Figure 2 shows a construction example from 4 vertices

and 4 edges.

The graph G′ contains three parts: C, D, and a seed vertex

S. The part C contains n vertices, i.e., C = ∪1≤i≤nci

���� ����

��������

� � ��	 � �

��

�� ��
��

���� ���� ��������

���
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Fig. 2: Construction example for hardness proofs, where the

left part of the figure is an instance of DKS problem and the

right part is its corresponding construction of IMIN problem.

where each ci corresponds to vi of instance G. The part D
contains m vertices, i.e., D = ∪1≤i≤mdi where each vertex di
corresponds to edge ei in instance G. The vertex S is the only

seed of the graph. For each edge ei = (vx, vy) in graph G,

we add two edges: (i) from cx to di and (ii) cy to di. Then we

add an edge from S to each ci(1 ≤ i ≤ n). The propagation

probability of each edge is set to 1. The construction of G′ is

completed.

We then show the equivalence between the two instances.

As the propagation probability of each edge is 1, the expected

spread in the graph is equal to the number of vertices that

can be reached by seed S. Adding a vertex vi into vertex

set A corresponds to the removal of ci from the graph G′,
i.e., ci is blocked. If edge ei is in the induced subgraph, the

corresponding vertex di in G′ cannot be reached by seed S.

We find that blocking the vertices ci ∈ C will first lead to the

decrease of expected spread of themselves, and the vertices in

D may also not be reached by S if both two in-neighbors of

them are blocked. Thus, blocking the corresponding vertices

ci of vi ∈ A will lead to |A| + g decrease of expected

spread, where g is the number of vertices in D that cannot

be reached by S (equals to the number of edges in the

induced subgraph G[A]). Note that there is no need to block

vertices in D, because they do not have any out-neighbors, and

blocking them only leads to the decrease of expected spread

of themselves which is not larger than the decrease of the

expected spread of blocking the vertices in C. We can find

that IMIN problem will always block k vertices, as blocking

one vertex will lead to at least 1 decrease of expected spread.

The optimal blocker set B of IMIN problem corresponds to

the optimal vertex set A of DKS problem, where each vertex

ci ∈ B corresponds to the set vi ∈ A. Thus, if the IMIN

problem can be solved in PTIME, the DKS problem can also

be solved in PTIME, while the DKS problem is NP-hard.

We also show that the function of expected spread is

monotone and not supermodular under IC model.

Theorem 2. Given a graph G and a seed set S, the expected
spread function E(S,G[V \ B]) is monotone and not super-
modular of B under IC model.

Proof. As adding any blocker to any set B cannot increase

the expected influence spread, we have E(S,G[V \ B]) is

786



monotone of B. For every two set X ⊆ Y ⊆ V and

vertex x ∈ V \ Y , if function f(·) is supermodular, it must

hold that f(X ∪ {x}) − f(X) ≤ f(Y ∪ {x}) − f(Y ).
Consider the graph in Figure 1, let f(B) = E(S,G[V \ B]),
X = {v3}, Y = {v2, v3} and x = v4. As f(X) = 6.66,

f(Y ) = 5.66, f(X ∪ {x}) = 5.66, and f(Y ∪ {x}) = 1, we

have f(X ∪ {x}) − f(X) = −1 > f(Y ∪ {x}) − f(Y ) =
−4.66.

In addition, we prove that the IMIN problem under IC model

is hard to approximate.

Theorem 3. Under IC model, the IMIN problem is APX-hard
unless P=NP.

Proof. We use the same reduction from the densest k-subgraph

(DKS) problem to the Influence Minimization problem, as in

the proof of Theorem 1. Densest k-subgraph (DKS) problem

does not have any polynomial-time approximation scheme,

unless P=NP [43]. According to the proof of Theorem 1, we

have a blocker set B for influence minimization problem on G′

corresponding to a vertex set A for DKS problem, where each

ci ∈ B corresponds to vi ∈ A. Let x denote the number of

edges in the optimal result of DKS, and y denote the optimal

spread in IMIN, we have x + k = y, where k is the given

positive number of DKS problem. If there is a solution with

γ-approximation on the influence minimization problem, there

will be a λ-approximation on the DKS problem. Thus, there

is no PTAS for the influence minimization problem, and it is

APX-hard unless P=NP.

V. EXISTING WORKS AND OUR APPROACH

The hardness of the problem motivates us to develop an

effective and efficient heuristic algorithm. In this section, we

first introduce the state-of-the-art solution (i.e., the greedy

algorithm with Monte-Carlo Simulations) as the baseline algo-

rithm (Section V-A). Then, we analyze existing solutions for

expected spread computation, and propose a new estimation

algorithm based on sampled graphs and dominator trees to

compute the decrease of expected spread for all vertices at

once (Section V-B). Applying the new framework of expected

spread estimation for selecting the candidates, we propose

our AdvancedGreedy algorithm (Section V-C) with higher

efficiency and without sacrificing the effectiveness, compared

with the baseline. As the greedy approaches do not consider

the cooperation of candidate blockers during the selection,

some important vertices may be missed, e.g., some out-

neighbors of the seed. Thus, we further propose a superior

heuristic, the GreedyReplace algorithm, to achieve a better

result quality (Section V-D).

From Multiple Seeds to One Seed. For presentation simplic-

ity, we introduce the techniques for the case of one seed vertex.

A unified seed vertex s′ is created to replace all the seeds in the

graph. For each vertex u, if there are h different seeds pointing

to u and the probability on each edge is pi(1 ≤ i ≤ h), we

remove all the edges from the seeds to u and add an edge from

s′ to u with probability (1−∏h
i=1(1−pi)). As an active vertex

Algorithm 1: BaselineGreedy(G, s)

Input : a graph G and the source s
Output: the blocker set B
B ← empty;1

for i ← 1 to b do2

x ← −1;3

for each vertex in u ∈ V (G) \ (B ∪ {s}) do4

Δ[u] ← decrease of expected spread when5

blocking u;

if x = −1 or Δ[u] > Δ[x] then6

x ← u;7

B ← B ∪ {x};8

return B9

in the IC model only has one chance to activate every out-

neighbor, the above modification will not affect the influence

spread (i.e., expected spread in the graph) and the resulting

blocker set is the same as the original problem.

A. Baseline Algorithm

We first review and discuss the baseline greedy algorithm,

which is the state-of-the-art for influence minimization (IMIN)

problem and its variants [2], [8], [9], [44], [45].

The greedy algorithm for the IC model is as follows: we

start with an empty blocker set B = ∅, and then iteratively

add vertex u into set B that leads to the largest decrease

of expected spread, i.e., u = argmaxu∈V \(S∪B)(E(S,G[V \
B])− E(S,G[V \ (B ∪ {u})]), until |B| = b.

Algorithm 1 shows the details of the baseline greedy al-

gorithm. The algorithm starts from an empty blocker set B
(Line 1). Then, in each iteration (Line 2), x records the vertex

whose blocking corresponds to the largest decrease of expected

spread (Line 3). The baseline greedy algorithm enumerates all

the vertices to find the blocker with the maximum decrease of

expected spread in each round (Lines 4-7) and insert it into the

blocker set (Line 8). After b iterations, the algorithm returns

the blocker set B (Line 9).

As the previous works use Monte-Carlo Simulations to

compute the expected spread for the greedy algorithm (Line 5

in Algorithm 1), each computation of spread decrease needs

O(r · m) time, where r is the number of rounds in Monte-

Carlo Simulations. Thus, the time complexity of Algorithm 1

is O(b · n · r ·m).
As indicated by the complexity, the baseline greedy algo-

rithm cannot efficiently handle the cases with large b. The

greedy heuristic is usually effective on small b values, while

the time cost is still large because it has to enumerate the

whole vertex set as the candidate blockers and compute the

expected spread for each candidate.

B. Efficient Algorithm for Candidate Selection

In this subsection, we propose an efficient algorithm for

selecting the candidates. We first show that the existing solu-

tions for computing expected spread are infeasible to solve the
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IMIN problem efficiently (Section V-B1). Then, we propose

a new framework (Section V-B4) based on sampled graphs

(Section V-B2) and their dominator trees (Section V-B3) which

can quickly compute the decrease of the expected spread

of every candidate blocker through only one scan on the

dominator trees.

1) Existing Works: As computing the expected influence

spread of a seed set in IC model is #P-hard [21], and the

exact solution can only be used in small graphs (e.g., with a

few hundred edges) [39]. Thus, the existing works focus on

estimation algorithms. There are two directions as follows.

Monte-Carlo Simulations (MCS). Kempe et al. [7] apply

Monte-Carlo Simulations to estimate the influence spread

under IC model, which is often used in some influence related

problems, e.g., [46]–[48]. In each round of MCS, it removes

every edge (u, v) with (1 − pu,v) probability. Let G′ be

the resulting graph, and the set R(s) contains the vertices

in G′ that are reachable from s (i.e., there exists at least

one path from s to each vertex in R(s)). For the original

graph G and seed s, the expected size of set R(s) equals

to the expected spread E({s}, G) [7]. Assuming we take r
rounds of MCS to estimate the expected spread, MCS needs

O(r · m) times to calculate the expected spread. Recall that

the influence minimization problem is to find the optimal

blocker set with a given seed set. The spread computation by

MCS for influence minimization is costly, because the dynamic

of influence spread caused by different blockers is not fully

utilized in the sampling, and we have to repeatedly conduct

MCS for each candidate blocker set.

Reverse Influence Sampling (RIS). Borgs et al. [22] propose

the Reverse Influence Sampling to approximately estimate

the influence spread, which is often used in the solutions

for Influence Maximization (IMAX) problem, e.g., [49], [50].

For each round, RIS generates an instance of g randomly

sampled from graph G by removing each edge (u, v) in G with

(1−pu,v) probability, and then randomly sample a vertex x in

g. It performs reverse BFS to compute the reverse reachable

(RR) set of the vertex x, i.e., the vertices which can be reached

by vertex x in the reverse graph of g. They prove that if the

RR set of vertex v has ρ probability to contain the vertex u,

when u is the seed vertex, we have ρ probability to activate v.

In the IMAX problem, RIS generates RR sets by sampling the

vertices in the sampled graphs and then applying the greedy

heuristic. As the expected influence spread is submodular of

seed set S [51], an approximation ratio can be guaranteed by

RIS in IMAX problem. However, for our problem, reversing

the graph is not helpful as the blockers seem “intermediary”

between the seeds and other vertices s.t. the computation

cannot be unified into a single process in the reversing. We

prove the expected spread is not supermodular of blocker set

B which implies the absolute value of the marginal gain does

not show a diminishing return. Thus, the decrease of expected

spread led by a blocker combination cannot be determined by

the union effect of single blockers in the combination.

TABLE II: Summary of Notations for Random Sampled Graph

Notation Definition

σ(s,G) the number of vertices reachable from s in G
σ→u(s,G) the number of vertices reachable from s in G, where

all the paths from s to these vertices pass through
u

ξ→u(s,G) the average number of σ→u(s,G) in the sampled
graphs which are derived from G

2) Estimate the Expected Spread Decrease with Sampled
Graphs: We first define the random sampled graph.

Definition 4 (Random Sampled Graph). Let G be the distri-
bution of the graphs with each induced by the randomness in
edge removals from G, i.e., removing each edge e = (u, v)
in G with 1 − pu,v probability. A random sampled graph g
derived from G is an instance randomly sampled from G.

We summarize the notations related to the random sampled

graph in Table II. The following lemma is a useful interpreta-

tion of expected spread with IC model [39].

Lemma 1. Suppose that the graph g is a random sampled
graph derived from G. Let s be a seed vertex, we have
E[σ(s, g)] = E({s}, G).

By Lemma 1, we have the following corollary for comput-

ing the expected spread when blocking one vertex.

Corollary 1. Given two fixed vertices s and u with s �= u,
and a random sampled graph g derived from G, we have
E[σ(s, g)− σ→u(s, g)] = E({s}, G[V \ {u}]).
Proof. Let g′ = g[V (g)\{u}], we have σ(s, g)−σ→u(s, g) =
σ(s, g′). Thus, E[σ(s, g) − σ→u(s, g)] = E[σ(s, g′)]. As

g′ = g[V (g) \ {u}], g′ can be regarded as a random sam-

pled graph derived from graph G[V \ {u}]. By Lemma 1,

E[σ(s, g′)] = E({s}, G[V \ {u}]). Therefore, E[σ(s, g) −
σ→u(s, g)] = E({s}, G[V \ {u}]).

Based on Lemma 1 and Corollary 1, we can compute the

decrease of expected spread when a vertex is blocked.

Theorem 4. Let s be a fixed vertex, u be a blocked vertex, and
g be a random sampled graph derived from G, respectively.
For any vertex u ∈ V (G) \ {s}, we have the decrease of
expected spread by blocking u is equal to E[σ→u(s, g)], where
E[σ→u(s, g)] = E({s}, G)− E({s}, G[V \ {u}]).
Proof. As σ→u(s, g) = σ(s, g) − (σ(s, g) − σ→u(s, g)), we

have E[σ→u(s, g)] = E[σ(s, g)]−E[σ(s, g)−σ→u(s, g)]. From

Corollary 1, we have E[σ(s, g)− σ→u(s, g)] = E({s}, G[V \
{u}]). By Lemma 1, we know E[σ(s, g)] = E({s}, G). There-

fore, E[σ→u(s, g)] = E({s}, G)− E({s}, G[V \ {u}]).
As we use random sampling for estimating the decrease

of expected spread of each vertex, we show that the average

number of σ→u(s, g) is an accurate estimator of any vertex u
and fixed seed vertex s, when the number of sampled graphs

is sufficiently large. Let θ be the number of sampled graphs,

ξ→u(s,G) be the average number of σ→u(s, g) and OPT be
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(a) Sampled graph 1 (b) Sampled graph 2 (c) Sampled graph 3 (d) Sampled Graph 4

Fig. 3: Sampled graphs of the graph G in Figure 1.

(a) DT of Sampled Graph 1 (b) DT of Sampled Graph 2 (c) DT of Sampled Graph 3 (d) DT of Sampled Graph 4

Fig. 4: Dominator trees of sampled graphs in Figure 3.

the exact decrease of expected spread from blocking vertex u,

i.e., OPT = E[σ→u(s, g)] (Theorem 4). We use the Chernoff

bounds [52] for theoretical analysis.

Lemma 2. Let X be the sum of c i.i.d. random variables
sampled from a distribution on [0, 1] with a mean μ. For any
δ > 0, we have Pr[X − cμ ≥ δ · cμ] ≤ e−δ2cμ/(2+δ) and
Pr[X − cμ ≤ −δ · cμ] ≤ e−δ2cμ/2.

Theorem 5. For seed vertex s and a fixed vertex u, the
inequality |ξ→u(s,G)−OPT | < ε ·OPT holds with at least
1− n−l probability when θ ≥ l(2+ε)n logn

ε2·OPT .

Proof. We have Pr[|ξ→u(s,G) − OPT | ≥ ε · OPT ]

= Pr[| ξ→u(s,G)·θ
n − OPT ·θ

n | ≥ ε·θ
n ·OPT ].

Let δ = ε, μ = OPT
n and X = ξ→u(s,G)·θ

n . According

to Lemma 2, we have Pr[|ξ→u(s,G) − OPT | ≥ ε · OPT ]

= Pr[|X − θμ| ≥ δ · θμ] ≤ exp(−δ2θμ
2+δ ) = exp(−ε2θOPT

n(2+ε) ).

As θ ≥ l(2+ε)n logn
ε2·OPT , we have Pr[|ξ→u(s,G) − OPT | ≥

ε · OPT ] ≤ exp(l log n) = n−l. Therefore, |ξ→u(s,G) −
OPT | < ε ·OPT holds with at least 1−n−l probability.

3) Dominator Trees of Sampled Graphs: In order to effi-

ciently compute the decrease of expected spread when each

vertex is blocked, we apply Lengauer-Tarjan algorithm to

construct the dominator tree [53]. Note that, in the following

of this subsection, the id of each vertex is reassigned by the

sequence of a DFS on the graph starting from the seed.

Definition 5 (dominator). Given G = (V,E) and a source s,
the vertex u is a dominator of vertex v when every path in G
from s to v has to go through u.

Definition 6 (immediate dominator). Given G = (V,E) and
a source s, the vertex u is the immediate dominator of vertex

v, denoted idom(v) = u, if u dominates v and every other
dominator of v dominates u.

We can find that every vertex except source s has a unique

immediate dominator. The dominator tree of graph G is

induced by the edge set {(idom(u), u) | u ∈ V \ {s}} with

root s [54], [55].

Lengauer-Tarjan algorithm proposes an efficient algorithm

for constructing the dominator tree. It first computes the

semidominator of each vertex u, denoted by sdom(u), where

sdom(u) = min{v | there is a path v = v0, v1, · · · , vk =
u with vi > u for any integer i ∈ [1, k)}. The semidominator

can be computed by finding the minimum sdom value on

the paths of the DFS. The core idea of Lengauer-Tarjan

algorithm is to fast compute the immediate dominators by the

semidominators based on the following lemma. The details of

the algorithm can be found in [53].

Lemma 3. [53] Given G = (V,E) and a source s, let u �= s
and v be the vertex with the minimum sdom(v) among the
vertices in the paths from sdom(u) to u (including u but
excluding sdom(u)), then we have

idom(u) =

{
sdom(u) if sdom(u) = sdom(v),
idom(v) otherwise.

The time complexity of Lengauer-Tarjan algorithm is O(m ·
α(m,n)) which is almost linear, where α is the inverse

function of Ackerman’s function [56].

4) Compute the Expected Spread Decrease of Each Vertex:
Following the above subsections, if a vertex u is blocked, we

can use the number of vertices in the subtree rooted at u in

the dominator tree to estimate the decrease of expected spread.

Thus, using a depth-first search of each dominator tree, we can
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Algorithm 2: DecreaseESComputation(G, s, θ)

Input : a graph G, the source s and the number of

sampled graphs θ
Output: Δ[u] for each u ∈ V (G) \ {s}, which is the

decrease of expected spread when u is blocked

Δ[·] ← 0;1

for i ← 1 to θ do2

Generate a sampled graph g derived from G;3

DT ← the dominator tree of g which is constructed4

by Lengauer-Tarjan algorithm [53];

c[·] ← the size of subtree in tree DT when each5

vertex is the root;

for each u ∈ V (g) \ {s} do6

Δ[u] ← Δ[u] + c[u]/θ7

return Δ[·]8

accumulate the decrease of expected spread for every vertex

if it is blocked.

Theorem 6. Let s be a fixed vertex in graph g. For any vertex
u ∈ (V (g)\{s}), we have σ→u(s, g) equals to the size of the
subtree rooted at u in the dominator tree of graph g.

Proof. Let c[u] denote the size of the subtree with root u in the

dominator tree of graph g. Assume v is in the subtree with u
(i.e., u is the ancestor of v), from the definition of dominator,

we have v cannot be reached by s when u is blocked. Thus,

c[u] ≤ σ→u(s, g). If v is not in the subtree, i.e., u does not

dominate v in the graph, there is a path from s to v not through

u, which means blocking u will not affect the reachability from

s to v. We have σ→u(s, g) = c[u].

Thus, for each blocker u, we can estimate the decrease of

the expected spread by the average size of the subtrees rooted

at u in the dominator trees of the sampled graphs.

Example 2. Considering the graph G in Figure 1, there
are only three edges with propagation probabilities less than
1 (i.e., (v5, v8), (v9, v8) and (v8, v7)), and the other edges
will exist in any sampled graph. Figures 3a-3d depict all
the possible sampled graphs. For conciseness, we use the
dotted edge (v8, v7) to represent whether it may exist in a
sampled graph or not (corresponding to two different sampled
graphs, respectively). When (v8, v7) is not in the sampled
graphs, as pv5,v8 = 0.5 and pv9,v8 = 0.2, Figures 3a, 3b,
3c and 3d have 0.1, 0.4, 0.1 and 0.4 to exist, respectively.
As pv8,v7

= 0.1, v1 can reach 8 + 0.1 = 8.1 vertices in
expectation in Figure 3a. Similarly, v1 can reach 8.1, 8.1 and
7 vertices (including v1) in expectation in Figures 3b, 3c
and 3d, respectively. Thus, the expected spread of graph G
is 8.1× (0.1+0.4+0.1)+ 7× 0.4 = 7.66, which is the same
as the result we compute in Example 1.

Figures 4a-4d show the corresponding dominator trees of
the sampled graphs in Figure 3. For vertex v5, the expected
sizes of the subtrees rooted at v5 are 5.1, 5.1, 5.1 and 4 in

Algorithm 3: AdvancedGreedy(G, s, b, θ)

Input : a graph G, the source s, budget b and the

number of sampled graphs θ
Output: the blocker set B
B ← empty;1

for i ← 1 to b do2

Δ[·] ← DecreaseESComputation(G[V \B], s, θ);3

x ← −1;4

for each u ∈ V (G) \ ({S} ∪B) do5

if x = −1 or Δ[u] > Δ[x] then6

x ← u;7

B ← B ∪ {x};8

return B9

the dominator trees, respectively. Thus, the blocking of v5 will
lead to 5.1 × (0.1 + 0.4 + 0.1) + 4 × 0.4 = 4.66 decrease
of expected spread. As the sizes of subtrees of v2, v3, v4 and
v6 are only 1 in each dominator tree, blocking any of them
will lead to 1 expected spread decrease. Similarly, blocking v7,
v8 and v9 will lead to 0.66, 0.06 and 1.11 expected spread
decrease, respectively.

Algorithm 2 shows the details for computing the decrease

of expected spread of each vertex. We set Δ[·] as 0 initially

(Line 1). Then we generate θ different sampled graphs derived

from G (Lines 2-3). For each sampled graph, we first construct

the dominator tree through Lengauer-Tarjan (Line 4). Then we

use a simple DFS to compute the size of each subtree. After

computing the average size of the subtrees and recording it in

Δ[·] (Lines 6-7), we return Δ[·] (Line 8).

As computing the sizes of the subtrees through DFS costs

O(m), Algorithm 2 runs in O(θ ·m · α(m,n)).

C. Our AdvancedGreedy Algorithm

Based on Section V-A and Section V-B, we propose Ad-

vancedGreedy algorithm with high efficiency. In the greedy

algorithm, we aim to greedily find the vertex u that leads

to the largest decrease of expected spread. Algorithm 2 can

efficiently compute the expected spread decrease of every can-

didate blocker. Thus, we can directly choose the vertex which

can cause the maximum decrease of expected spread (i.e., the

maximum average size of the subtrees in the dominator trees

derived from sampled graphs) as the blocker.

Algorithm 3 presents the pseudo-code of our Advanced-

Greedy algorithm. We start with the empty blocker set (Line

1). In each of the b iterations (Line 2), we first estimate the

decrease of expected spread of each vertex (Line 3), find the

vertex x such that Δ[x] is the largest as the blocker (Lines 2-

7) and insert it to blocker set (Line 8). Finally, the algorithm

returns the blocker set B (Line 9).

Comparison with Baseline. one round of MCS on G will

generate a graph G′ where V (G′) = V (G) and each edge in

E(G) will appear in G′ if the simulation picks this edge. Thus,

if we have r = θ, our computation based on sampled graphs
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TABLE III: Blockers and Their Expected Influence Spread

Algorithm
b = 1 b = 2

B E(·) B E(·)
Greedy {v5} 3 {v5, v2 or v4} 2

OutNeighbors {v2 or v4} 6.66 {v2, v4} 1
GreedyReplace {v5} 3 {v2, v4} 1

will not sacrifice the effectiveness, compared with MCS. For

efficiency, Algorithm 3 runs in O(b · θ ·m · α(m,n)) and the

time complexity of the saseline is O(b·r ·m·n) (Algorithm 1).

As α(m,n) is much smaller than n, our AdvancedGreedy

algorithm has a lower time complexity without sacrificing the

effectiveness, compared with the baseline algorithm.

D. The GreedyReplace Algorithm

Some out-neighbors of the seed may be an essential part

of the result while they may be missed by current greedy

heuristics. Thus, we propose a new heuristic (GreedyReplace)

which is to first select b out-neighbors of the seed as the initial

blockers, and then greedily replace a blocker with another

vertex if the expected spread will decrease.

Example 3. Considering the graph in Figure 1 with the seed
v1, Table III shows the result of the Greedy algorithm and the
result of only considering the out-neighbors as the candidate
blockers (denoted as OutNeighbors). When b = 1, Greedy
chooses v5 as the blocker because it leads to the largest
expected spread decrease (v3, v6, v7, v8 and v9 will not be
influenced by v1). When b = 2, it further blocks v2 or v4 in
the second round. OutNeighbors only considers blocking v2
and v4. It blocks either of them when b = 1, and blocks both
of them when b = 2.

In this example, we find that the performance of the Greedy

algorithm is better than the OutNeighbors when b is small,

but its expected spread may become larger than OutNeighbors

with the increase of b. As the budget b can be either small or

large in different applications, it is essential to further improve

the heuristic algorithm.

Due to the above motivation, based on Greedy and Out-

Neighbors, we propose the GreedyReplace algorithm to ad-

dress their defects and combine the advantages. We first greed-

ily choose b out-neighbors of the seed as the initial blockers.

Then, we replace the blockers according to the reverse order of

the out-neighbors’ blocking order. As we can use Algorithm 2

to compute the decrease of the expected spread of blocking

any other vertex, in each round of replacement, we set all the

vertices in V (G)\({s}∪B) as the candidates for replacement.

We will early terminate the replace procedure when the vertex

to replace is current best blocker.

The expected spread of GreedyReplace is certainly not

larger than the algorithm which only blocks the out-neighbors.

Through the trade-off between choosing the out-neighbors and

the replacement, the cooperation of the blockers is considered

in GreedyReplace.

Algorithm 4: GreedyReplace(G, s, b, θ)

Input : a graph G, the source s, budget b and the

number of sampled graphs θ
Output: the blocker set B
CB ← Nout

s ;1

B ← empty;2

for i ← 1 to min{douts , b} do3

Δ[·] ← DecreaseESComputation(G[V \B], s, θ);4

x ← −1;5

for each u ∈ CB do6

if x = −1 or Δ[u] > Δ[x] then7

x ← u;8

CB ← CB \ {x};9

B ← B ∪ {x};10

for each u ∈ B with the reversing order of insertion do11

B ← B \ {u};12

Δ[·] ← DecreaseESComputation(G[V \B], s, θ);13

x ← −1;14

for each u ∈ V (G) \B do15

if x = −1 or Δ[u] > Δ[x] then16

x ← u;17

B ← B ∪ {x};18

if u = x then19

Break;20

return B21

Example 4. Considering the graph in Figure 1 with the seed
v1, Table III shows the results of three algorithms. When
b = 1, GreedyReplace first consider the out-neighbors as the
candidate blockers and set v2 or v4 as the blocker. As blocking
v5 can achieve smaller influence spread than both v2 and v4, it
will replace the blocker with v5. When b = 2, GreedyReplace
first block v2 and v4, and there is no better vertex to replace.
The expected spread is 1. GreedyReplace achieves the best
performance for either b = 1 or b = 2.

Algorithm 4 shows the pseudo-code of GreedyReplace. We

first push all out-neighbors of the seed into candidate blocker

set CB (Line 1) and set blocker set empty initially (Line 2).

For each round (Line 3), we choose the candidate blocker

which leads to the largest expected spread decrease as the

blocker (Lines 4-8) and then updates CB and B (Lines 9-10).

Then we consider replacing the blockers in B by the reversing

order of their insertions (Line 11). We remove the replaced

vertex from the blocker set (Line 12) and use Algorithm 2

to compute the decrease of expected spread Δ[·] for each

candidate blocker (Line 13). We use x to record the vertex

with the largest spread decrease computed so far (Line 14),

by enumerating each of the candidate blockers (Lines 15-17).

If the vertex to replace is current best blocker, we will early

terminate the replacement (Lines 18-20). Algorithm 4 returns

the set B of b blockers (Line 21).
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TABLE IV: Statistics of Datasets

Dataset n m davg dmax Type

EmailCore 1,005 25,571 49.6 544 Directed
Facebook 4,039 88,234 43.7 1,045 Undirected
Wiki-Vote 7,115 103,689 29.1 1,167 Directed
EmailAll 265,214 420,045 3.2 7,636 Directed
DBLP 317,080 1,049,866 6.6 343 Undirected
Twitter 81,306 1,768,149 59.5 10,336 Directed
Stanford 281,903 2,312,497 16.4 38,626 Directed
Youtube 1,134,890 2,987,624 5.3 28,754 Undirected

Fig. 5: Expected Spread v.s. Number of Sampled Graphs

Fig. 6: Running Time v.s. Number of Sampled Graphs

The time complexity of GreedyReplace is O(min{douts , b} ·
θ · m · α(m,n)). As the time complexity of Algorithm 2 is

mainly decided by the number of edges in the sampled graphs,

thus in practice the time cost is much less than the worst case.

E. Extension: IMIN Problem under Triggering Model

The triggering model is a generalization of both the IC

model and the LT model [7], [22], [40], which assumes that

each vertex u in G is associated with a distribution T (u) over

subsets of u’s in-neighbors. For the given graph G, we can

generate a sampled graph as follows: for each vertex u, we

sample a triggering set of u from T (u), and remove each

incoming edge of u if the edge starts from a vertex not in the

triggering set. With the sampled graphs, we can execute our

AdvancedGreedy algorithm and GreedyReplace algorithm on

them to solve the IMIN problem under the triggering model.

VI. EXPERIMENTS

In this section, extensive experiments are conducted to

validate the effectiveness and the efficiency of our algorithms.

A. Experimental Setting

Datasets. The experiments are conducted on 8 datasets, ob-

tained from SNAP (http://snap.stanford.edu). Table IV shows

the statistics of the datasets, ordered by the number of edges

in each dataset, where davg is the average vertex degree (the

sum of in-degree and out-degree for each directed graph) and

TABLE V: Exact v.s. GreedyReplace (TR Model)

b
Expected Spread Running Time (s)

Exact GR Ratio Exact GR

1 12.614 12.614 100% 3.07 0.12
2 12.328 12.334 99.95% 130.91 0.21
3 12.112 12.119 99.94% 3828.2 0.25
4 11.889 11.903 99.88% 80050 0.33

TABLE VI: Exact v.s. GreedyReplace (WC Model)

b
Expected Spread Running Time (s)

Exact GR Ratio Exact GR

1 11.185 11.185 100% 2.63 0.10
2 11.077 11.078 99.99% 110.92 0.18
3 10.997 10.998 99.99% 3284.0 0.23
4 10.922 10.925 99.97% 69415 0.33

dmax is the largest vertex degree. For an undirected graph, we

consider each edge as bi-directional.

Propagation Models. Following existing studies, e.g., [7],

[21], we use two propagation probability models to assign the

probability pu,v on each directed edge (u, v): (i) Trivalency

(TR) model, which assigns pu,v = TRI for each edge, where

TRI is uniformly selecting a value from {0.1, 0.01, 0.001}
[9], [21], [57]; and (ii) Weighted cascade (WC) model, which

assigns pu,v = 1/dinv [7], [40].

Setting. Unless otherwise specified, for Monte-Carlo Simula-

tions, we set the number of rounds r = 10000, and for our

sampled graph based algorithm, we sample 10000 graphs in

the experiments. In each of our experiments, we independently

execute each algorithm 5 times and report the average result.

By default, we terminate an algorithm if the running time
reaches 24 hours.

Environments. The experiments are performed on a CentOS

Linux serve (Release 7.5.1804) with Quad-Core Intel Xeon

CPU (E5-2640 v4 @ 2.20GHz) and 128G memory. All the

algorithms are implemented in C++. The source code is

compiled by GCC(7.3.0) under O3 optimization.

Algorithms. In the experiments, we mainly compare our

GreedyReplace algorithm and AdvancedGreedy algorithm

with four basic algorithms (Exact, Rand, Out-degree and

BaselineGreedy algorithm).

Exact: identifies the optimal solution by searching all pos-

sible combinations of b blockers, and uses Monte-Carlo Sim-

ulations with r = 10000 to compute the expected spread of

each candidate set of the blockers.

Rand (RA): randomly chooses b blockers in the graph exclud-

ing the seeds.

OutDegree (OD): selects b vertices with the highest out-

degrees as the blockers.

BaselineGreedy (BG): the state-of-the-art algorithm for

the IMIN problem (Algorithm 1) [2], [8] that uses Monte-

Carlo Simulations to compute the expected spread.
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Fig. 7: Time Cost of Different Algorithms under TR Model

Fig. 8: Time Cost of Different Algorithms under WC Model

AdvancedGreedy (AG): Algorithm 3 which uses Algo-

rithm 2 to accelerate the BaselineGreedy algorithm.

GreedyReplace (GR): our GreedyReplace algorithm (Al-

gorithm 4).

B. Effectiveness

Varying the Number of Sampled Graphs. In Figure 5 and

Figure 6, we vary θ (i.e., the number of sampled graphs for

choosing the blocker in each round) from 103, 104 to 105,

and report the expected spread and running time of our GR

algorithm. We evaluate on all datasets under the TR model by

setting the blocker budget to 20 and randomly selecting 10
seed vertices. We show the decrease ratio of expected spread

of three θ values in Figure 5, because the absolute differences

of expected spreads are quite small. The largest decrease ratio

from θ = 103 to θ = 104 is only 2.89%, and the largest

decrease ratio from θ = 104 to θ = 105 is less than 0.1%.

Figure 6 shows the running time gradually increases when θ
increases. According to above results, we set θ = 104 in all

the experiments for a good trade-off between the time cost

and the accuracy.

Comparison with the Exact Algorithm. We also compare

the result of GR with the Exact algorithm which identifies the

optimal b blockers by enumerating all possible combinations

of b vertices. Due to the huge time cost of Exact, we extract

small datasets by iteratively extracting a vertex and all its

neighbors, until the number of extracted vertices reaches 100.

For EmailCore under both WC and TR models, we extract 5
such subgraphs. We randomly choose 10 vertices as the seeds.

As the graph is small, we can use the exact computation of

the expected spread [39] for comparison between Exact and

GR. Tables V and VI show that the expected spread of GR

under both two influence propagation models is very close to

the results of Exact while GR is faster than Exact by up to 6
orders of magnitude.

(a) Facebook under TR model (b) Facebook under WC model

(c) DBLP under TR model (d) DBLP under WC model

Fig. 9: Running Time v.s. Budget

Comparison with Other Heuristics. As discussed in Sec-

tion V-C, the effectiveness (expected spread) of the Advanced-

Greedy algorithm is the same as the BaselineGreedy algorithm.

Thus, in this experiment, we compare Rand (RA), Out-degree

(OD) with our AdvancedGreedy (AG) and GreedyReplace

(GR) algorithms in Table VII. We first randomly select 10
vertices as the seeds and vary the budget b from 20, 40, 60, 80
to 100. We repeat this process by 5 times and report the aver-

age expected spread with the resulting blockers (the expected

spread is computed by Monte-Carlo Simulations with 105

rounds) on all datasets. The results show that our GR algorithm

always achieves the best result in both two propagation models

(the smallest spread with different budgets), compared with

RA, OD and AG. Besides, with the increase of budget b, the

influence spread is better limited in GR. The results verify

that it is effective to first limit the candidate blockers in the

out-neighbors of the seeds and then replace the candidates to

improve the result.

C. Efficiency

Time Cost of Different Algorithms. Here we compare the

running time of BG, AG and GR. We set the budget b to

10 due to the huge computation cost of the BG algorithm.

Figures 7 and 8 show the results in all dataset under the two

propagation models. In 6 datasets (resp. 5 datasets) under the

TR model (resp. WC model), BG cannot return results within

the given time limit (i.e., 24 hours). The results show our AG

and GR algorithms significantly outperform BG by at least 3
orders of magnitude in runtime, and the gap can be larger on

larger datasets which is consistent with the analysis of time

complexities (Section V-C). Besides, the time cost of GR is

close to AG.

Varying the Budget. Here we present the running time of

Facebook and DBLP datasets by given different budgets in

Figure 9. The running time of AG may decrease when the

budget becomes larger due to the early termination applied in

Algorithm 4 (Lines 19-20). It is clear that AG and GR have
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TABLE VII: Comparision with Other Heuristics (Expected Spread)

b
EmailCore (TR model) Facebook (TR model) Wiki-Vote (TR model) EmailAll (TR model)

RA OD AG GR RA OD AG GR RA OD AG GR RA OD AG GR

20 354.88 230.10 220.59 219.69 16.059 16.026 11.717 11.691 512.62 325.51 131.30 130.77 548.99 286.05 14.642 13.640
40 341.33 98.712 84.022 83.823 16.037 16.019 10.416 10.413 512.18 222.00 46.747 43.898 546.94 221.97 10.319 10.002
60 325.13 47.249 35.085 33.634 16.033 16.010 10.151 10.149 507.11 138.60 25.514 23.282 546.39 148.52 10 10
80 304.90 30.277 19.001 18.848 15.997 15.987 10.028 10.026 501.49 32.646 17.332 17.322 545.41 100.84 10 10

100 283.54 22.696 13.640 13.533 15.994 15.980 10.001 10.001 496.05 25.831 14.726 14.518 544.59 55.398 10 10

b
DBLP (TR model) Twitter (TR model) Stanford (TR model) Youtube (TR model)

RA OD AG GR RA OD AG GR RA OD AG GR RA OD AG GR

20 13.747 13.730 10.502 10.499 16801 16610 16101 16100 16.087 16.075 12.069 10.483 14.774 14.762 14.743 10.950
40 13.739 13.725 10.079 10.079 16796 16470 15749 15748 16.080 16.071 10.488 10.234 14.773 14.755 10.075 10.002
60 13.737 13.721 10.012 10.010 16786 16329 15447 14972 16.071 16.040 10.136 10.075 14.773 14.750 10 10
80 13.720 13.714 10 10 16780 16175 14610 14474 16.064 16.017 10.026 10.019 14.767 14.742 10 10

100 13.716 13.706 10 10 16771 16057 13619 13181 16.052 15.989 10.009 10.002 14.762 14.729 10 10

b
EmailCore (WC model) Facebook (WC model) Wiki-Vote (WC model) EmailAll (WC model)

RA OD AG GR RA OD AG GR RA OD AG GR RA OD AG GR

20 82.605 54.907 53.516 53.296 21.482 21.362 14.588 14.554 24.102 22.660 17.765 17.701 13.330 11.493 10.720 10.455
40 75.990 44.710 40.199 40.093 21.456 21.360 12.425 12.418 23.971 21.696 15.258 15.222 13.234 11.447 10.111 10.086
60 69.947 37.561 31.891 31.784 21.429 21.297 11.194 11.187 23.899 20.409 13.749 13.743 13.217 11.408 10 10
80 64.154 32.580 26.094 26.073 21.417 21.176 10.476 10.474 23.763 12.798 12.654 12.574 13.188 11.385 10 10

100 57.170 24.959 21.926 21.899 21.395 21.056 10.013 10.012 23.757 12.711 12.138 12.129 13.070 11.324 10 10

b
DBLP (WC model) Twitter (WC model) Stanford (WC model) Youtube (WC model)

RA OD AG GR RA OD AG GR RA OD AG GR RA OD AG GR

20 118.23 118.17 32.602 32.601 259.45 235.73 199.40 198.76 25.803 25.800 11.742 11.740 25.663 25.368 10.152 10.113
40 118.16 117.81 18.429 18.409 258.86 226.28 170.20 168.64 25.790 25.779 10.435 10.398 25.585 25.330 10.012 10.006
60 118.09 117.73 11.869 11.867 257.75 214.90 144.61 144.23 25.777 25.771 10.119 10.101 25.446 25.149 10 10
80 117.97 117.59 10 10 255.48 204.17 129.53 128.75 25.685 25.633 10.005 10.002 25.346 25.113 10 10

100 117.94 117.43 10 10 254.04 196.40 114.11 112.07 25.657 25.603 10.002 10.000 25.277 25.052 10 10

Fig. 10: Running Time v.s. Number of Seeds (TR Model)

Fig. 11: Running Time v.s. Number of Seeds (WC Model)

much higher efficiency than BG, and the gap between them

becomes even larger as the budget increases. We also find that

the running time of AG is close to GR. AG may be faster than

GR when the budget is small but GR performs better on the

running time when the budget increases.

Scalability. In Figure 10 and Figure 11, we test the scalability

of our GR algorithm. We set the budget to 100 and vary

the number of seeds from 1, 10, 100 to 1000. We report the

average time cost of the GR algorithm by executing it 5 times.

We can see that the running time becomes larger as the number

of seeds increases. It is because a large number of seeds leads

to a wider influence spread (a larger size of sampled graphs),

and the running time of Algorithm 2 is highly related to the

size of sampled graphs. We can also find that the increasing

ratio of the running time is much less than the increasing ratio

of the number of seeds, which validates that GR is scalable

to handle the scenarios when the number of seeds is large.

VII. CONCLUSION

Minimizing the influence of misinformation is critical for a

social network to serve as a reliable platform. In this paper,

we systematically study the influence minimization problem

to blocker b vertices such that the influence spread of a given

seed set is minimized. We prove the problem is NP-hard and

hard to approximate. A novel spread estimation algorithm is

first proposed to largely improve the efficiency of state-of-

the-art without sacrificing the effectiveness. Then we propose

the GreedyReplace algorithm to refine the effectiveness of

the greedy method by considering a new heuristic. Extensive

experiments on 8 real-life datasets verify that our GreedyRe-

place and AdvancedGreedy algorithms largely outperform the

competitors. For future work, it is interesting to adapt our

algorithm to other diffusion models and efficiently address

other influence problems.
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