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ABSTRACT
The rapid rise and prevalence of social platforms have created great
demands on effective schemes to limit the influence of negative
information, e.g., blocking key vertices for influence minimization.
However, there is currently no system providing practical schemes
to solve the negative influence minimization problem with a block-
ing budget effectively and efficiently in the literature. In this demo,
we present IMinimize, the first interactive system that provides
audiences with vertex-blocking schemes over different budgets
and demonstrates via visualization for comparison vividly and di-
rectly, aiming to help minimize the negative influence spreading
in networks. Our IMinimize system applies an advanced greedy
algorithm to select blocked vertices with both high efficiency and
effectiveness. Furthermore, we extend IMinimize to the application
of epidemic controlling and prevention and show the usability of
IMinimize through two case studies of real-life applications.
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1 INTRODUCTION
With the prevalence of social network platforms and the global epi-
demic, modeling influence diffusion [2, 26] and effective strategies
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for minimizing the negative influence [6, 11, 17, 21, 22, 24] have
attracted increasingly more attention than ever before. In this pa-
per, we demonstrate IMinimize, a novel graph analytic and mining
system to block 𝑏 vertices for minimizing the negative influence
diffusion. Specifically, given a graph 𝐺 with a seed set 𝑆 and the
budget 𝑏, the problem aims to find a vertex set 𝐵 with at most 𝑏
non-seed vertices such that the expected influence spread from the
seed set 𝑆 is minimized. Example use cases of IMinimize include:
Online Social Network Influence Minimization. Suppose a
group of users (i.e., seed vertices) in an online social network have
already spread negative information (e.g., rumors and fake science)
and who have seen the information may start the propagation. We
have a budget for the blocking cost, i.e., the maximum number
of users that can be blocked. Note that IMinimize will choose 𝑏
non-seed vertices to block such that the spread of misinformation
in the social network is minimized since the negative content has
already been posted by the seed users. In real scenarios, blocking
does not mean prohibiting users from posting all content, but leads
to manually/automatically reviewing the content posted by the
blocked users to make sure no negative information is posted.
Epidemic Controlling and Prevention. In the important appli-
cation of epidemic control and prevention, we can detect infectious
places through epidemiological investigation, while the infected
people may have left and spread the epidemic. In order to reduce
the spread of the epidemic as much as possible, we have to dis-
cover if there are potential infectious people. Therefore, the most
effective way for epidemic control is to “block” other places, e.g.,
set checkpoints for quick detection in some key intersections to
hinder epidemic diffusion. In such a scenario, we model the road
network as a directed graph, with vertices representing different
locations, and IMinimize can help to choose the best checkpoints
by providing the suggested blocked vertices.

Although selecting key blocked vertices is a powerful strategy
for the negative influence minimization [6, 11], finding the optimal
blocked vertex set is computationally expensive (the problem is
NP-Hard and APX-hard unless P=NP [21]). Thus, previous works
propose several heuristic methods to choose blocked vertices, e.g.,
degree [6, 11], betweenness [24]. Among these methods, the greedy
algorithm has shown the best performance [17, 22]. However, since
the computation of influence spread is #P-hard [3], the state-of-the-
art greedy solution relies on Monte-Carlo simulations to estimate

https://doi.org/10.1145/3583780.3614743
https://doi.org/10.1145/3583780.3614743
https://doi.org/10.1145/3583780.3614743


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom. Siyi Teng, Jiadong Xie, Mingkai Zhang, Kai Wang, and Fan Zhang

Client Server

In
pu

t m
od

ul
e

O
ut

pu
t m

od
ul

e

Edge probability

Customized

WC/TR

Budget

Directed graph �
Input parameters

Initial Blocking results

Compute initial 
expected spread

Select an optimal 
blocking vertex

The number 
of blocked vertices

>= Budget

Y

N

Compute decline ratio 
of expected spread

Decline ratio of 
expected spread

Blocked vertices

(i)

(ii)

(iii)

(iv)

Visualization
 settings

�1

�2

�1

�2

�2

(v)  Change budget

�1

Seed vertex
Non-seed vertex

 �,  Input parameters

New budget

Input panel

Output panel

Figure 1: System Overview

the influence spread, resulting in high computational costs. To
address this challenge, we propose an advanced greedy algorithm
with a novel dominator tree-based estimation technique, which can
achieve up to 6 orders of magnitude higher efficiency than the state-
of-the-art greedy algorithm without sacrificing effectiveness. While
the technical details are detailed in [21], we aim to introduce the
system IMinimize, which applies the advanced greedy algorithm,
to CIKM audiences through this demo.

The demo has three parts. In the first part, we will introduce
the system architecture of IMinimize (Section 2), and then we
will present the related works and systems to show the novelty of
IMinimize (Section 3). In the final part, we demonstrate IMinimize
in two real-life datasets to show its useful features and IMinimize
also offers the flexibility for audiences to upload their own datasets
for customized analysis and exploration (Section 4).

2 SYSTEM ARCHITECTURE
The system architecture of IMinimize is illustrated in Figure 1. It
employs a client-server architecture and consists of three compo-
nents: input module, server process module, and output module.

The input module specifies the graph data and parameter set-
tings, and it also allows audiences to change the budget of blocked
vertices. The server process module is the core phase of IMinimize
and contains two parts: expected influence spread estimation and
blocked vertex selection. The output module displays the block-
ing scheme and visualizes the final influence diffusion results after
blocking key vertices.

2.1 Input Module
The input module of IMinimize consists of two parts: graph data
uploading and parameters settings, which are shown in the upper-
left part of Figure 1.

For graph data uploading, IMinimize allows audiences to upload
their own directed graph data files in a specific format. The graph
data can contain customized activation probability of each edge,

e.g., learning from users’ historical action data [26]. If unavailable,
users can choose two simple heuristic influence probability assign-
ments, i.e., (i) Trivalency (TR) model, which assigns 𝑝𝑢,𝑣 = 𝑇𝑅𝐼

for each edge (𝑢, 𝑣), where 𝑇𝑅𝐼 is uniformly selecting a value from
{0.1, 0.01, 0.001} [3, 22]; and (ii) Weighted cascade (WC) model,
which assigns 𝑝𝑢,𝑣 = 1/𝑑𝑖𝑛𝑣 , where 𝑑𝑖𝑛𝑣 denotes the in-degree of
vertex 𝑣 [4, 14]. In addition, the graph data can also contain sup-
plementary information, e.g., hyperlinks to users’ homepages in
online social networks. Next, the budget (i.e., the number of blocked
vertices) and some visualization settings (e.g., whether to show the
vertex id or the edge probability) can be set via the interface, and
the results will be shown in the visualization panel.

2.2 Server Process Module
The server process module is the core phase in IMinimize (the right
part of Figure 1). It mainly contains two parts: expected spread
computation and greedily optimal selection of blocked vertices.
Expected Influence Spread Estimation. As computing the ex-
pected influence spread of a seed set is #P-hard [3], and the exact
computation solution can only be used in small graphs (e.g., with a
few hundred edges) [7], IMinimize uses Monte-Carlo Simulations
(MCS) to estimate the expected influence spread [4]. In each round
of MCS, it removes every edge (𝑢, 𝑣) with (1 − 𝑝𝑢,𝑣) probability.
Let 𝐺 ′ be the resulting graph after the removing, and the set 𝑅(𝑆)
contains the vertices in𝐺 ′ that are reachable from at least one seed
from seed set 𝑆 (i.e., there exists at least one path from seed 𝑠 ∈ 𝑆

to each vertex in 𝑅(𝑆)). For the original graph 𝐺 and seed set 𝑆 ,
the expected size of set 𝑅(𝑆) equals the expected influence spread
under the independent cascade model [4]. In IMinimize, we set the
number of MCS rounds as 105 for estimating.
Blocked Vertex Selection. The blocked vertex selection is the
core part of the server process. To provide a fast selection with high
effectiveness, in this module, IMinimize applies an advanced greedy
algorithm [21]. For influence minimization via blocking vertex, the
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Figure 2: Minimizing “MelCup” Diffusion in Twitter

greedy algorithm, which is the state-of-the-art over all previous pro-
posed heuristics algorithms [17, 22]. A typical process is as follows:
we start with an empty set 𝐵 = ∅, and then iteratively add vertex 𝑢
into set 𝐵 that leads to the largest decrease of the expected influ-
ence spread, until |𝐵 | = 𝑏. Although effective, the greedy algorithm
needs a large computation cost because we have to enumerate every
candidate vertex in each round and use Monte Carlo Simulations
to compute the decrease of expected spread from removing the
vertex. To deal with this, we propose a novel estimation algorithm
based on graph samples and dominator trees [21], i.e., (i) we esti-
mate the expected influence spread through the average influence
spread on each graph sample (the law of large numbers [23]); and
(ii) on each graph sample, we apply the dominator tree to compute
the decrease of the expected influence spread led by each candi-
date blocker at once (Theorem 6 in [21]). As IMinimize applies
the greedy algorithm with this new framework of expected spread
estimation for selecting the candidates, it achieves higher efficiency
without sacrificing effectiveness, compared with previous greedy
algorithms [17, 22].

We will refer audiences to [21] for more details of the advanced
greedy algorithm with the novel estimation technique. Our empir-
ical study in [21] on 8 real-life datasets and theoretical analysis
validates that the algorithm in IMinimize is faster than previous
state-of-the-art by more than 3 orders without loss of effectiveness.

2.3 Output Module
The output module displays a visualization panel for analysis and
comparison of the blocking results in a user-friendly manner. The
suggested blocked vertices (i.e., the list of ids of the blocked vertices)
and the decline ratio of expected influence spread after blocking
will be shown in the panel. The visualization of the graph uses
the tool of AntV-G61: a directed graph is drawn according to the
uploaded graph data file, with the labels on vertices or edges, e.g.,
vertex supplementary information, edge activation probabilities.
Moreover, the visualized graph allows audiences to adjust its layout.
The colors of vertices represent their states. Specifically, the seed
vertices are colored blue, and non-seed vertices are colored red,
i.e., a non-seed vertex in a darker red color means it has a larger
probability of being activated. Thus audiences can visually see the
1https://g6.antv.antgroup.com/en

effect of the blocking scheme by comparing the degree of redness
before and after blocking. Audiences can also evaluate the effect
of different blocking budgets for blocking through the visualized
graph and the decline ratio.

3 RELATEDWORKS AND NOVELTY
Influence Minimization. As surveyed in [25], most works for
negative influence minimization consider proactive measures (e.g.,
blocking vertices) to minimize the influence spread, motivated by
the feasibility of structure change for influence study [9, 13, 16, 20].
In real networks, we may use various methods to find the key
vertices, e.g., degree [6, 11], betweenness and out-degree [24] and
greedy heuristics [17, 22]. In addition, there are some other strate-
gies to limit the influence spread, e.g., blocking edges (i.e., finding 𝑘
edges to remove) [5], adding seeds for the opposing campaign (e.g.,
truth is the opposing campaign of rumor) [1, 8, 15]. Moreover, some
works consider more factors into the propagation models, e.g., user
experience [16], evolution of user opinions [12]. In our IMinimize
system, we focus on an efficient selection of vertices as the blockers
to minimize the influence spread of negative information in the
networks (e.g., social networks, road networks).
Graph Analytics and Mining Systems. There are various graph
analytic and mining systems developed in different scenarios for
real applications [18, 19, 27]. Seastar [18] demonstrates a novel
GNN training framework to simplify model development and im-
prove training efficiency. DPGraph [19] is a web-based end-to-end
platform for evaluating private algorithms on graph data. HDAG-
Explorer [27] presents an interactive system for hierarchical DAG
summarization. Different from the above systems, our system IMin-
imize focuses on minimizing the negative influence diffusion via
vertex blocking for different types of networks.

4 DEMONSTRATION OVERVIEW
In this section, we introduce the demonstration of IMinimize. IMin-
imize enables audiences to interact with our system and enjoy data
exploration. Specifically, we demonstrate the system in two real-
world applications: influence diffusion minimization on social net-
works (Section 4.1) and infectious diseases control and prevention
on road networks (Section 4.2).

https://g6.antv.antgroup.com/en
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Figure 3: Virtual Epidemic Controlling in Minnesota Road Network

4.1 Minimizing The Event Diffusion on Twitter
We present an application for minimizing the specific event diffu-
sion on social networks. We use the event-based Melcup17 dataset2
collected from Twitter [26]. The dataset collects 78300 status mes-
sages posted by 34573 users in 3 days through tracking the terms
which are related to “MelCup”. In this case study, the vertices rep-
resent the users on Twitter, and the edges represent the influence
propagation. The existence of the edge from𝑢 to 𝑣 means that user 𝑣
is influenced by user 𝑢, and the probability of this edge is computed
based on the interaction history between 𝑢 and 𝑣 , e.g., following
relations between them. We compute the activation probability for
each edge on the graph data following [26], which contains 1485
vertices and 70756 edges. We then select 412 vertices as the seeds,
because they posted the specific content initially, i.e., never been
influenced by others who have posted the same topic before. We
show the initial expected spreading situation in Figure 2a (we filter
the edges whose probability is less than 0.1 for clear demonstra-
tion), with seed vertices in blue color and non-seed vertices in red
color. Figure 2b shows that after blocking 100 vertices, the infected
probability of vertices has declined significantly (around 50%), com-
pared with Figure 2a. The decline ratios of infected probabilities
under different budgets are shown in Figure 2c, which shows block-
ing suggested vertices from IMinimize can effectively hinder the
influence diffusion on Twitter.

4.2 Virtual Epidemic Controlling in Minnesota
We use the data of the Minnesota road network3 for simulating
epidemic control virtually. The dataset contains 2642 vertices (i.e.,
intersection) and 3303 edges (i.e., roads). We randomly select 100
vertices as the seeds (in real applications, the intersections where
infected people have arrived can be detected by epidemiological
investigation [10]). As the road network is undirected, we regard
them as two directed edges in the graph. For infectious intersections
(i.e., seeds), the infected people may choose one road to leave. We
assume the probability on each edge (𝑢, 𝑣) is 1/𝑑𝑜𝑢𝑡𝑢 , where 𝑑𝑜𝑢𝑡𝑢 is
the out-degree of vertex 𝑢. We show the initial expected spreading
situation in Figure 3a, the seeds are colored blue and the depth
of color red represents the probability of a vertex being infected.
2https://bit.ly/2UlQ3xW
3http://www.cise.ufl.edu/research/sparse/matrices/Gleich/minnesota

Figure 3b shows the situation when IMinimize chooses 50 vertices
to block. It is clear that the infected probability of vertices in the
graph is much smaller (the expected infected places decreased by
around 67.99%).We also show the ratio of decline under the different
budgets (i.e., numbers of blocked vertices) in Figure 3c. We can find
that IMinimize achieves a larger ratio of spread decline with a
larger budget on the number of blocked vertices.

4.3 Interactive on Customized Settings
Audiences can upload customized graph datasets through the input
module or replace the blocker selection strategy by simple modi-
fication of the server process module. For interactive customized
graphs, audiences can change the budget by dragging the scroll bar
in the visualization panel, then IMinimize will visualize the results
and show the decline ratio. Audiences can also interact with the
visualized graph by changing its format or clicking the vertices to
gain more information. The implementation of blocked vertex se-
lection in IMinimize is separated, thus audiences can easily replace
the blocker selection strategy with customized methods to explore
more effective ways for blocking.

5 SUMMARY
We plan to introduce IMinimize, an efficient interactive system
for negative influence minimization via vertex blocking, to CIKM
audiences. In the demonstration, audiences will experience IMin-
imize by customizing input graphs and parameters to simulate
the influence propagation in real-world application scenarios. Au-
diences can gain a clear and intuitive understanding of the high
efficiency and effectiveness of IMinimize through the visualiza-
tion panel. IMinimize is an open-source project. It is available at
https://github.com/Tsyxxxka/IMinimize.
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