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Size-constrained Community Search on Large
Networks: An Effective and Efficient Solution

Fan Zhang, Haicheng Guo, Dian Ouyang, Shiyu Yang, Xuemin Lin, and Zhihong Tian

Abstract—As a fundamental graph problem, community search is applied in various areas, e.g., social networks, the world wide web,
and biology. A common requirement from real applications is to return a community with a bounded size while most existing solutions
do not constrain community size. Recent studies on size-constrained community search still have some critical issues, e.g., the
existence of a better cohesiveness objective, some queries returning empty results, and inefficiency on partial queries. Thus, in this
paper, we study the size-constrained truss community search (STCS). Given a graph G, a query vertex q, and size constraint [l, h], the
STCS problem aims to find a subgraph containing q with the largest min-support among all connected subgraphs having at least l and
at most h vertices. We prove the STCS problem is NP-hard and APX-hard unless P=NP. An effective heuristic is proposed to quickly
find a high-quality initial result. Then, a branch and bound algorithm is introduced to find the exact result, with novel optimizations, e.g.,
budget-cost-based bounding and branching strategies. Extensive experiments verify that the community quality returned by our
algorithm is better and our algorithm is faster by up to 5 orders of magnitude, compared with the state-of-the-art.

Index Terms—Cohesive subgraph, community search, k-truss, size constraint
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1 INTRODUCTION

R EAL-WORLD networks are often modeled as graphs to
process the complex relations among different enti-

ties, e.g., social networks, transaction networks, the world
wide web, and biological networks. Cohesive subgraph is
a fundamental concept in graph processing and is widely
adopted in the study of community discovery [1]. As sur-
veyed in [2], users are usually more interested in the com-
munities they engage in, and community search is widely
studied to find the communities containing specified query
vertices. Community search studies enjoy a large spectrum
of applications, e.g., team formation [3], event organiza-
tion [4], social contagion modeling [5], social marketing [6],
and protein function identification [7].

Although community search is extensively studied in the
literature, the natural constraint on community size is not
full-filled by most existing algorithms [2]. When there is a
limit on budget or capacity, it is reasonable to restrict the size
of the returned community to accommodate the application
scenario [8], [9]. Thus, size-constrained community search
is recently studied to find a cohesive subgraph containing
query vertices and satisfying user-specified size constraints.
The state-of-the-art studies are the SCS problem [10] built
on k-core and the SCkT problem [11] built on k-truss.
Nevertheless, existing works still suffer from several impor-
tant issues, e.g, there exists a better cohesiveness objective,
the hard cases are not well addressed, the parameter on
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cohesiveness is hard to be determined and some queries
may return empty result.

Let min-degree of a subgraph S denote the smallest
degree of a vertex in S. Given a graph, a query vertex
q, and size constraint [l, h], the SCS problem [10] is to
find a subgraph with the largest min-degree among every
connected subgraph containing q that has at least l and
at most h vertices. The SCS problem is parameter-free on
cohesiveness setting, and the result is not empty for any
proper size constraint values. Nevertheless, a major issue
of the SCS problem is the cohesiveness objective based
on vertex degree can be improved. For community-related
studies, it is more promising to adopt a triangle-based
cohesiveness objective. For instance, the k-truss model built
on edge support (the number of triangles containing the
edge) is recognized as a strengthened version of the k-
core model based on vertex degree [12]–[14]. The k-truss is
better connected in structure because it is always a cohesive
subgraph inside the (k − 1)-core.

The triangles represent strong and stable vertex relations
because the vertices inside have certain common neigh-
bors [15]–[17]. Thus, it is more promising to adopt the
“support” metric as the cohesiveness objective. Besides, it
is hard to efficiently address the hard cases of the SCS
problem. Given a time limit of 2 hours, the percentage that
the SOTA algorithm (SC-BRB) [10] returns an exact result
is about 69.3% for querying a random vertex with size
constraint [11, 20] on the 12 real graphs in our experiments.

Given a graph G, an integer k, a query vertex q and a
size upper bound h, the SCkT problem [11] aims to find a
triangle-connected k-truss subgraph containing q with size
not exceeding h. The first issue of the SCkT problem is the
selection of k. Although the input of different k can adjust
the cohesiveness requirement, it is often difficult to select
a proper k in many applications. Besides, the result of the
SCkT problem may be empty for some queries due to the
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Fig. 1. Example with Query Vertex v1 and Size Constraint [6, 9]

constraint by a fixed k. For instance, the vertex set of all
the 5-trusses occupies the whole vertex set of G by 0.43 on
average, for the 12 real graphs deployed in our experiments.
Thus, a random query of SCkT may return empty for at least
1− 0.43 = 57% cases when k = 5.

Motivated by the above observations, the cohesiveness
objective of our proposed size-constrained truss community
search (STCS) problem is to maximize the min-support of
the resulting subgraph. To ensure our model is vertex-
oriented, the min-support is defined as the minimum vertex
support, and the support of a vertex is the largest support
of an edge incident to the vertex. Given a graph, a query
vertex q, and size constraint [l, h], the STCS problem is to
find a subgraph with the largest min-support among every
connected subgraph containing q that has at least l and
at most h vertices. Our STCS problem is parameter-free
on the cohesiveness constraint and would not return an
empty result as long as there is a connected subgraph
including q and with size in [l, h]. As a fundamental prob-
lem with general settings, the STCS model would benefit
the applications of size-constrained community search, e.g.,
team formation, biological module identification, and the
discovery of suspicious groups [11].

Example 1. Given the graph in Figure 1 with query vertex v1 and
size constraint [6, 9], our STCS problem will return the subgraph
S1 induced by {v1, v2, ..., v6} with min-support of 2 and size
of 6, and the SCS problem will return the subgraph S2 induced
by {v1, v7, v8, ..., v14} with min-degree of 4 and size of 9. Note
that the min-degree of S1 is 3 and the min-support of S2 is 1. The
result of STCS (S1) is more promising because the vertices in S1

are better connected and are closer to v1, compared with the result
of SCS (S2).

Challenges and Our Solution. To the best of our knowl-
edge, this paper is the first work to study the problem of
STCS, and the existing algorithms cannot solve our problem.
The techniques for SCS problem [10] are based on the degree
constraint which are different to the support constraint in
our STCS problem. Besides, the support constraint k is an
input of SCkT [11], while our STCS aims to optimize the
min-support and the optimal min-support is various on
different queries. We prove that the STCS problem is NP-
hard and even APX-hard unless P=NP. As in recent studies,
the main challenge of size-constrained community search is
the existence of hard cases. Due to the problem hardness,
it is unpromising to theoretically guarantee the efficient
processing of all the hard cases. However, we observe that
some hard cases are not essentially difficult because they
derive from incorrect initial search branches.

In our branch and bound exact algorithm, we first design
an effective heuristic to initialize a high-quality subgraph
that is close to the optimal result. As the diameter of a k-
truss is bounded by k and its size [18], we can compute
the initial subgraph on the structure close to query vertex,
i.e., an expansion based approach is preferred. The result of
the heuristic can be returned within a short time limit and
the approximate lower bound to the optimal min-support
is derived. Then, we propose novel bounding techniques
on vertex budget-cost relations of current partial solution
and candidate set to early terminate unpromising branches.
Accordingly, the reduction and branching techniques are
designed to judiciously determine the search branch and
narrow down the search space.

Contributions. The principal contributions of the paper are
summarized as follows.

• To our best knowledge, it is the first work to study
the size-constrained truss community search (STCS)
problem. We analyze the defects in existing studies in-
depth and motivate the STCS problem. We prove that
the STCS problem is NP-hard and hard to approximate.

• An effective heuristic algorithm is proposed to initialize
a high-quality subgraph and thus speed up the exact
search. A branch and bound algorithm is proposed to
find the optimal result, with a novel budget-cost based
bounding for pruning and well-designed techniques on
reduction and branching.

• Extensive experiments on 12 real-life graphs verify that
the quality score of the community returned by STCS
is better, many (fake) hard cases are addressed, the
time-dependent results of STCS algorithm are of high-
quality, and the runtime of our exact search is faster by
up to 5 orders of magnitude, compared with the state-
of-the-art solutions.

2 RELATED WORK

Cohesive Subgraph Models. With different requirements
from application scenarios, various cohesive subgraph mod-
els are studied, including clique [19], [20], quasi-clique [21],
[22], k-core [23]–[27], k-truss [12], [13], [18], [28], and k-
ecc [29], [30]. The challenges of large graph processing
are summarized in [31]. Cohesive subgraph models are
surveyed in [1], [32], [33], and the models can be extended to
handle other graph types, such as heterogeneous informa-
tion networks [34], [35] and geo-social networks [36]. The
k-truss is always a subgraph of (k − 1)-core or (k − 1)-ECC
but not vice versa [18]. Besides, a k-truss with n vertices has
a diameter within 2n−2

k .
Due to the elegant cohesiveness constraint and diameter-

bounded property, k-truss (or min-support constraint)
are widely adopted for the community search problem,
e.g., [13], [14], [37]–[39]. Recently, k-truss based community
search is also studied on bipartite graphs [40], [41] and
directed graphs [42]. Nevertheless, the above models are not
designed to solve the size-constraint community search.

Size-constrained Community Search. The studies of com-
munity search on different graphs are surveyed in [2].
Derives from the natural limit of budget or capability, the
search of size-constrained (i.e. size-bounded) community
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TABLE 1
Summary of Notations (We may omit G when the context is clear, e.g.,

NG(v) may be abbreviated to N(v).)

Notation Definition
NS(u) the neighbor set of vertex u in S
degS(u) the degree of vertex u in S
q the query vertex
l; h lower/upper bound of subgraph size
L a clique containing q
NS(V ) the union of NS(u) for every vertex u ∈ V
supS(u, v) the edge support of (u, v) in S, i.e., |{w | w ∈

V (S) ∧△(u, v, w) ∈ S}|
supS(u) the vertex support of u in S, i.e., max{supS(u, v) |

v ∈ NS(u)}|
C a partial solution (vertex set)
R a candidate vertex set
τS(u, v) the trussness of edge (u, v) in S
τS(u) the trussness of vertex u in S, i.e., max{τC(u, v) |

v ∈ N(u) ∩ V (S)}|
T q
S(k) the connected subgraph of S containing q with

minimum vertex trussness k

N≥k
S (u) the set {v | v ∈ NS(u) ∧ supG(v) ≥ (k − 2)}

N≥k
S (C) the union of N ′

S
≥k(u) for every vertex u ∈ C

k′; k∗ lower/upper bound of “the optimal min-trussness
(minimum vertex trussness of an optimal result)”

is studied recently. A heuristic algorithm is proposed in
[8] to recursively remove the vertices from a large initial
subgraph. A local search algorithm is designed to expand
a subgraph from the query vertex in a greedy way [43].
In [44], the local search algorithm computes a k-core with
size equal to h and the smallest closeness among all size-
h k-core subgraphs. In [43] and [45], the search of mini-
mum communities is studied to further shrink the size of
returned communities. A solution for finding a minimum
k-core is developed with a size approximation guarantee
[46]. The state-of-the-art solutions on size-constrained com-
munity search are SCkT [11] and SCS [10]. As discussed in
the introduction, they still suffer from certain defects and
our STCS problem aims to address these defects with a
practically-efficient exact algorithm.

It is infeasible to apply the above algorithms to our
problem, because the above models are all based on the
k-core model except SCkT. One reason is that our STCS
does not need a k-core as a seed subgraph for computing k-
truss. We can simply compute the truss decomposition [12]
as pre-processing for immediate retrieval of a k-truss. The
other reason is that the initial step of SCkT algorithm has
a different aim with our proposed algorithm. SCkT first
computes a size-constrained subgraph on a k-truss with
given k value [11], while our STCS problem should initialize
a subgraph with a large min-support value corresponding
to optimizing the k value. Besides, as the objective of our
STCS problem is different from other problems, the effective
branching strategy and bounding techniques need a sophis-
ticated design according to our new objective.

3 PRELIMINARIES

In this section, we introduce the notations, formally define
the problem, and prove the problem hardness.

3.1 Notations and Definitions

We consider an undirected simple graph G = (V,E), with
n = |V | vertices and m = |E| edges (assume m > n). The
set of vertices (resp. edges) of graph G is denoted by V (G)
(resp. E(G)). Let S be a subgraph of G induced by vertex
set M , i.e., we have V (S) = M and E(S) = (M ×M) ∩
E(G). For a vertex v ∈ V (S), the set of v’s neighbors in S is
denoted by NS(v) = {u | (u, v) ∈ E(S)}. The degree of v in
S is denoted by degS(v) = |NS(v)|. A triangle △u,v,w is a
cycle of three in G such that {(u, v), (v, w), (w, u)} ∈ E(G).
Table 1 summarizes the notations in the paper.

The k-truss model is defined on edge support [18].

Definition 1. Edge Support. The support of an edge (u, v) in
S, denoted by supS(u, v), is the number of the triangles in S
with each containing (u, v), that is, supS(u, v) = |{w | w ∈
V (S) ∧△(u, v, w) ∈ S}|.

Definition 2. k-Truss. Given a graph G and an integer k, a
subgraph S is a k-truss of G, if (i) each edge (u, v) ∈ E(S) is
contained in at least k−2 triangles in S, i.e., supS(u, v) ≥ k−2;
(ii) S is connected; and (iii) S is maximal, i.e., any supergraph of
S is not a k-truss except S itself.

The minimum support constraint in k-truss ensures that
every edge in the k-truss is a strong tie. Thus, the k-truss
subgraphs are dense and stable on structure, leading to
various studies, e.g., [2], [11], [13], [14], [37]–[39], [47].

Because real-world communities are usually vertex-
oriented [48], i.e., the existence of edges is determined
by their incident vertices, a more promising concept for
community discovery is the support value on each vertex.

Definition 3. Vertex Support. The support of a vertex u ∈
V (S), denoted by supS(u), is the largest support of its incident
edge, that is, supS(u) = max{supS(u, v) | v ∈ NS(u)}|.

In most real communities, the weak ties between com-
munity members are kept as a natural part of the communi-
ties [49], while the k-truss removes all the weak ties inside
(the edges with support less than k − 2). It is also validated
that computing a vertex-oriented subgraph is more efficient
and effective than edge-oriented subgraph like k-truss [48].
Consequently, in this paper, we adopt vertex support as the
cohesiveness objective of our problem. Let min-support of
S represent the minimum vertex support in S.

Problem Statement. Given a graph G = (V,E), a query ver-
tex q ∈ V , and a size constraint [l, h], the Size-constrained
Truss Community Search (STCS) problem aims to find a
subgraph H of G such that it satisfies all the following
conditions:

(1) Connectivity: H is connected and contains q;
(2) Size Constraint: the size of H is constrained, i.e., l ≤

|V (H)| ≤ h;
(3) Cohesiveness: The min-support of H is maximized,

i.e., min{supH(u) | u ∈ V (H)} is maximized, among all
subgraphs of G satisfying the above two conditions.

An example of the STCS problem is shown in Example 1.

3.2 Problem Hardness

We investigate the hardness of the STCS problem.
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Fig. 2. Running Example of STCS

Theorem 1. The STCS problem is NP-hard.

Proof. We prove this by reducing the k-clique problem to
the decision version of STCS problem. Given a graph G and
an integer k, the k-clique problem is to check whether G
contains a clique of size k, which is NP-complete [50]. The
decision STCS problem is as follows: given a graph G, a
query vertex q ∈ V (G), a size constraint [l, h], and an integer
k, determine whether G has a subgraph H such that (1) H
is connected and contains q, (2) l ≤ |V (H)| ≤ h , and (3) the
minimum vertex support of H is at least k − 2.

For an instance of the k-clique problem, we reduce it to a
decision STCS problem with q = ∅, size constraint [k, k] and
support threshold k − 2. Clearly, any clique with k vertices
is a connected subgraph H with size k and minimum vertex
support k − 2, i.e., the subgraph asked by decision STCS
problem. On the other hand, any solution to the decision
STCS problem is a clique of size k. Thus, the decision STCS is
NP-complete and the optimization version of STCS problem
is NP-hard.

Theorem 2. The STCS problem is APX-hard, unless P=NP.

Proof. We consider a graph G, a query vertex q and a size
constraint [l, h]. Assume our STCS problem is not APX-hard,
i.e., it admits a PTAS. Thus, for any ϵ > 0, there is a PTIME
solution for STCS problem on G with size constraint [l, h]
and min-support s′ ≥ (1−ϵ)×sopt where sopt is the optimal
min-support. The above solution with each ϵ value solves
the decision STCS problem which is NP-complete, proved
in the proof of Theorem 1, i.e., we can determine in PTIME
whether G has a qualified subgraph H with size constraint
[0, h] and k = s′ +2. Note that the value of ϵ corresponds to
any possible input of k, leading to a contradiction with the
NP-completeness. Thus, the STCS problem does not admit
a PTAS and it is APX-hard unless P=NP.

4 OUR SOLUTION

As it is the first work to investigate the STCS problem,
we aim to propose a practically-efficient exact algorithm.
The hardness of the STCS problem implies that there are
some hard cases deriving from the size constraint and the
optimization of the min-support. As discussed in Section 2,
existing studies on size-constrained community search can-
not solve our problem due to the different objectives. In the
following, we will introduce an effective heuristic ST-Heu
in Section 4.1 and then propose the exact search algorithm
ST-Exa in Section 4.2.

We first introduce the concept of vertex/edge trussness
used in our algorithms.

Definition 4. Edge Trussness. The trussness of an edge (u, v)
in E(G), denoted by τ(u, v), is the largest k such that a k-truss
of G contains (u, v).

Given the trussness of each edge, the k-truss is formed
by all the edges with trussness no less than k and their
endpoints.

Definition 5. Vertex Trussness. The trussness of a vertex
u ∈ V (G), denoted by τ(u), is the largest trussness among
{τ(u, v) | (u, v) ∈ E(G)}.

For an integer k, the vertex set of all the k-trusses is equal
to the set of vertices with trussness no less than k. Let min-
trussness of S represent the minimum vertex trussness in
S. Given a subgraph S, the min-trussness of S is the same
as the min-support of S plus 2. Thus, the objective function
of the STCS problem can also be min-trussness of H .

Example 2. For the graph in Figure 2, the trussness of edge (v2,
v6) is 3 and the trussness of any other edge is 4. The trussness of
each vertex is 4 as the largest trussness of its incident edge is 4.

4.1 The Heuristic
We observe an effective heuristic is essential for the ef-
ficiency of the exact search as the initialization. A well-
designed heuristic can fast produce a high-quality result,
and thus avoid the visit of unpromising search branches.
Different from the design of existing heuristics [8], [10], [43],
[45], [46], we first compute the upper bound of optimal
min-trussness k∗ of the exact result s.t. the initial result
computed according to k∗ can be of high quality. During
the computation of the initial result, we design a scoring
function to guide the selection of each vertex, which consid-
ers both local connections to the vertex and its potential
in participating in a dense subgraph in a global view.
We further optimize the basic heuristic by alleviating the
issues of “slow start” (scoring function may degrade at the
beginning stage) and “branch trap” (the search may fall into
a wrong branch due to the undiversified initial subgraph). In
the overall design, we ensure that the returned subgraph is
not empty as long as there is a connected subgraph in G that
includes the query vertex and satisfies the size constraint.

In the heuristic, we first conduct a truss decomposition
of G by one time, as a preprocessing step to compute the
trussness of each edge. Truss decomposition is to recursively
remove each edge with the smallest support, which costs
O(m1.5) time [12].

Basic Heuristic (ST-Base) Algorithm 1 shows the pseudo-
code of our basic heuristic algorithm. Let optimal min-
trussness represent the min-trussness of the optimal result
H , i.e., the min-support of H plus 2. Firstly, we compute
an upper bound of optimal min-trussness, denoted by k∗,
such that a seed subgraph can be generated according to k∗.
Let T q(k) denote the connected subgraph of G containing q
with min-trussness k, computed by traversing the vertices
with trussness no less than k from q.

If the vertex trussness of q is larger than h (Lines 1-2),
we set k∗ to h because the size of k-truss is at least k and
a subgraph of k∗-truss may violate the size constraint with
a larger k∗. Here we initialize C by q; Otherwise (Lines 3-
6), we set k∗ to the largest k such that the size of T q(k) is
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Algorithm 1: ST-Base
Input : a graph G, the trussness of each edge, size

constraint [l,h], query vertex q
Output : the subgraph H containing q with size

constraint [l, h] and min-trussness k′, the upper
bound of optimal min-trussness k∗

if τ(q) > h then1
k∗ ← h; C ← {q};2

else3
k∗ ← k s.t. |V (T q(k))| ≥ l and |V (T q(k + 1))| < l;4
if |V (T q(k∗))| ≤ h then return T q(k∗);5
C ← V (T q(k∗ + 1)) ∪ {q};6

/* Add vertices into C and compute the k′-truss of C */
R← N≥k∗

G (C) \ C;7
while |C| < h do8

v ← Score(C,R);9
C ← C ∪ {v}; R← R \ {v};10

R← R ∪N≥k∗

G (v) \ C;11

H ← T q
G[C](k

′) s.t. k′ ← max{k | |V (T q
G[C](k))| ≥ l};12

return H, k∗13

not less than l (Line 4). When the size of T q(k) is no larger
than h, we simply return T q(k) as an optimal result (Line
5); Otherwise, we initialize C by the vertex set of T q(k∗+1)
and query vertex q as the seed subgraph (Line 6).

Let N≥k
S (u) denote the set of u’s neighbors in S ⊂ G

with vertex support not less than k − 2 in G, i.e., {v | v ∈
NS(u)∧supG(v) ≥ (k−2)}. Let N≥k

S (C) denote the union of
N≥k

S (u) for every vertex u ∈ C . The candidate vertex set R
is initialized by N≥k∗

G (C) minus the set C (Line 7). Next, we
recursively move a promising vertex from R to C according
to a scoring function, until the size of C is equal to h (Lines
8-11). Finally, we return a k′-truss of the subgraph induced
by C with the largest k′ such that the size of k′-truss is not
less than l (Line 12).

The returned H is not empty as long as there exists a
connected subgraph that includes q and satisfies the size
constraint (i.e., the optimal result of STCS is not empty). If
we have k′ = k∗, the returned H is an optimal result of
STCS problem, since k∗ is an upper bound of the optimal
min-trussness.

Note that, in this paper, some weak ties (support less
than k′ − 2) between the vertices in H may not exist in H .
We may add these weak ties to H and the updated H is also
a qualified approximate or exact result.

Scoring Function. Selecting a promising vertex from R in
each iteration (Line 9) is critical to find a high-quality initial
subgraph H . Intuitively, each selected vertex should satisfy
two conditions: (1) from the local view, it needs to connect
more vertices in C ; and (2) from the global view, it exists in a
subgraph of G with higher cohesiveness. Thus, our scoring
function in the heuristic is as follows.

Definition 6. Given a seed set C and a candidate set R of
Algorithm 1, Score(C,R) returns a vertex v with the highest
score computed as follows.

Score(C,R) = argmaxv∈R{v | |N
≥k∗

G[C∪{v}](v)|+
τG(v)

kmax+1}

where kmax is the largest vertex trussness in G.

In the scoring function, we find the vertex v from R with
the most neighbors in C and their trussness in G is no less
than k∗, i.e., with the highest |N≥k∗

G[C∪{v}](v)|, and ties are
broken by the trussness of each vertex, i.e., by τ(v)/(kmax+
1). Note that the above degree based score is adopted other
than a support based score for two reasons: (i) a support
based score is more costly due to the triangle counting; and
(ii) the seed subgraph C may not contain many triangles.

We observe that the above basic algorithm may suffer
from the issue of Slow Start: when C = {q} at Line 2 or Line
6 of Algorithm 1 (i.e., T q(k∗ +1) is overlarge or empty), the
score of every vertex v ∈ R may be small at this beginning
stage, and thus the effectiveness of the scoring function may
be degraded.

ST-Cli. To solve the slow start issue, we propose the ST-Cli
algorithm. The only difference between ST-Cli and ST-Base
is the initialization of C . In ST-Cli, if C = {q} after Line 6
of Algorithm 1, we first initialize C by a clique containing
q and then run Lines 7-13. The reasons for using a clique
are as follows: (i) the clique containing q certainly exists,
which is a basic unit for every query vertex; (ii) the clique
will not be too small as long as q has some close neighbors;
(iii) a relatively large C initialized by clique can enhance the
scoring function, because the score of each vertex (built on
the neighbors in C) can be better distinguished from each
other; and (iv) it is costly to find the maximum clique or
enumerate all the maximal cliques.

To fast compute a qualified clique L, we initialize L by
q and append L with q’s 1-hop neighbors. Specifically, we
add each vertex vi ∈ {N≥k∗

G (q) \ L} satisfying L ⊆ N(vi),
i.e., a neighbor of q with trussness no less than k∗, not in
L, and adjacent to every vertex of L. Such a vertex is called
a qualified vertex. Each qualified vertex vi is added to L

according to a non-increasing order of |N(vi) ∩ N≥k∗

G (q)|,
because such a vi is likely to form a large clique. The
appending process is terminated when no qualified vertex
can be added to L or the size of L reaches h.

We further observe that initializing the branch and
bound algorithm based on a single clique may face the issue
of Branch Trap: the search may fall into a wrong branch
following the initial single clique. To alleviate this issue, we
compute diversified cliques to achieve a better initial result.

Advanced Heuristic (ST-Heu). The pseudo-code of the ad-
vanced heuristic ST-Heu is given in Algorithm 2. We firstly
execute Lines 1-6 of Algorithm 1 to find the upper bound
k∗ of the optimal min-trussness. When C ̸= {q} (Line 2),
the subgraph T q(k∗+1) is certainly not empty or overlarge,
and thus we continue the execution of Algorithm 1 at Line
3 where T q(k∗ + 1) is the seed subgraph to be expended.
When C = {q} (Lines 4-15), we address the “slow start”
and “branch trap” issues based on diversified cliques.

We use D to record the set of vertices which are already
covered by a clique (Lines 5 and 9). At Line 6, we visit
each neighbor vi of query vertex q with trussness no less
than k∗ in G (i.e., the promising candidate to join C), by
non-increasing order of the common neighbor number of vi
and q (with trussness no less than k∗). The front vertices in
the above order are likely to form a dense initial subgraph
together with q. Then, we compute the diversified cliques
on the subgraph S induced by the set of above common
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Algorithm 2: ST-Heu
Input : a graph G, the trussness of each edge, size

constraint [l,h], query vertex q
Output : the subgraph H containing q with size

constraint [l, h] and min-trussness k′, the upper
bound of optimal min-trussness k∗

Lines 1-6 of Algorithm 1;1
if C ̸= {q} then2

Lines 7-13 of Algorithm 1;3

else4
/* Address “slow start” and “branch trap” */

D ← ∅;5

for each vi ∈ N≥k∗
(q) \D in non-increasing order of6

|N(vi) ∩N≥k∗
(q)| do

S ← the subgraph induced by N(vi) ∩N≥k∗
(q);7

L ← the set of diversified cliques in S;8
D ← D ∪ L; k′ ← 0;9
for each clique L ∈ L do10

C ← {q, vi} ∪ L;11
Hi ← Lines 7-13 of Algorithm 1;12
k′
i ← min-trussness of Hi;13

if k′
i = k∗ then return Hi, k∗;14

if k′
i > k′ then k′ ← k′

i; H ← Hi;15

return H, k∗16

neighbors (Lines 7-8). As the size of S is not large, the
cost of clique search is minor in our heuristic algorithm. At
Line 8, we can adopt the state-of-the-art algorithm to find
the set of diversified top-x maximal cliques (with size limit
of h), denoted by L [51]. In our experiments, the resulting
min-trussness of H when x = 2 is very close to (same on
about 99.4% cases) the min-trussness by enumerating all the
maximal cliques.

For each clique L of L, we set the seed subgraph C by
the union of L and {q, vi} (Lines 10-11), and execute Lines
7-13 of Algorithm 1 to expand C with the promising vertices
in R (Line 12). Once the min-trussness of current result Hi

is equal to the upper bound k∗, Hi is an optimal result
(Lines 13-14). We will update H and its min-trussness k′

if a better result is found (Line 15). The algorithm returns
when each candidate vertex is covered by the cliques and
no more clique can be expanded as the seed subgraph.

Example 3. Given graph G in Figure 2, query vertex v5 and size
constraint [8, 8], by ST-Base, we obtain that the upper bound of
min-trussness k∗ = 4 (Line 4 of Algorithm 1) and R = V (G) \
{v5} (Line 7). ST-Base may first select v1 as the score of every
vertex is (1 + 0.8) by Definition 6 where |N≥k∗

G[C∪{v1}](v1)| = 1,
τ(v1) = 4 and kmax = 4. Then, v2 may be selected as it has
the largest score (2 + 0.8), followed by v3, v4, v8, v9 and v6
with scores 3.8, 3.8, 2.8, 3.8 and 2.8, respectively. Finally, ST-
Base returns the subgraph S′ containing V (G) \ {v7} with min-
trussness 3, in a slow start way.

Correspondingly, ST-Cli will certainly compute on the clique
L1 consisting of {v4, v5, v8, v9}, where ST-Cli first selects vi =
v4 or v8 because |N(vi) ∩N≥k∗

G (v5)| = 4 is larger than that of
any other vertex in R. Then, if v1 is selected, the expansion from
ST-Cli also returns S′ with min-trussness 3, which may incur the
branch trap in an exact search.

Our advanced ST-Heu further computes on clique L2 consist-

Algorithm 3: ST-B&B
Input : a graph G, the trussness of each edge, size

constraint [l,h], query vertex q, the upper bound
of optimal min-trussness k∗, current largest
min-trussness k′ among each computed result,
partial solution C, candidate vertex set R

Output : the optimal result H on the branch of C and R
if k′ = k∗ then return H ;1
if |C| ≥ l then2

k̂ ← max{k | |V (T q
G[C](k))| ≥ l};3

if k̂ > k′ then k′ ← k̂; H ← T q
G[C](k̂);4

if |C| < h and |R| ̸= 0 then5
v∗ ← the vertex v in R with the highest score on6

|N≥k′+1
G[C∪{v}](v)|+

τ(v)
kmax+1

;
ST-B&B(..., C ∪ {v∗}, R \ {v∗});7
ST-B&B(..., C,R \ {v∗});8

return H9

ing of {v5, v6, v7, v8}, and returns the subgraph S∗ containing
V (G) \ {v2} with the optimal min-trussness 4, where v2 is not
selected because sup(v2, v6) = 1 and the score of v2 is smaller
than other vertices. ST-Heu alleviates “slow start” and “branch
trap” issues in this example.

Complexity. ST-Heu firstly computes k∗ with time com-
plexity of O(m) because it iteratively visits the connected
subgraphs including query vertex. The time complextiy of
finding the diversified cliques is O(d · deg(q) · 3d/3) where
d = maxv∈N(q)(|N(q) ∩ N(v)|) [51] and the computation
is limited to 1-hop neighborhood of query vertex. Note
that our implementation adopts top-2 diversified cliques
for performance trade-off. The time complexity of trussness
computation to find H is O((hdmax

2 )1.5) where dmax is the
maximum degree in G. Thus, the time complexity of ST-Heu
is O(d · deg(q) · 3d/3 + (hdmax

2 )1.5).

4.2 The Exact Search

Our advanced heuristic algorithm is likely to find a high-
quality initial result that is often close to or equal to the
optimal result. However, there are still some (real) hard
cases derived from the hardness of the STCS problem. In
the design of the exact solution, it is critical to propose
novel bounding and branching techniques. Particularly, we
consider the true connections between the candidate vertex
set and the partial solution in each search step s.t. the
bounding can be tight. For the branching strategies, we
follow the scoring function in the heuristic to capture both
local and global information, and introduce an effective
backtracking technique. We also propose the reduction rules
to further prune the search space.

In this section, we design an exact algorithm for the
case of k′ ̸= k∗ when Algorithm 2 returns, i.e., the case
we cannot guarantee the output H is an optimal result.
We first introduce a basic branch and bound algorithm and
then propose the novel bounding, reduction and branching
techniques to improve the exact algorithm.

ST-B&B. The pseudo-code of ST-B&B is shown in Algorithm
3 which recursively searches all the branches with the partial
set C and candidate set R. Note that C is initialized by only
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the query vertex. ST-B&B utilizes the k′ returned by Algo-
rithm 1 as the largest min-trussness of current computed
results to prune unpromising branches.

Each vertex in R may be moved into C or excluded
from both C and R in the search branches. The input k∗

is the upper bound of optimal min-trussness. The input k′

is current best min-trussness, i.e., the largest one among the
min-trussness of each computed subgraph H , where every
H satisfies the connected and size constraint conditions of
STCS while the optimality of cohesiveness (min-support) is
not guaranteed. Note that the partial solution set C always
contains query q and is connected as we expand C by
adjacent vertices.

As we execute the heuristic algorithm before the exact
search, we have k∗ ̸= k′ at the initial branch if the exact
search is invoked. Once we have k′ = k∗ (Line 1), the
recursive algorithm is returned because the subgraph H
is already an optimal result. When |C| ≥ l, we use k̂ to
record the largest k such that the size of k̂-truss of G[C]
containing q is not less than l (Lines 2-3). Then, we update
the records accordingly if k̂ is larger than k′ (Line 4). Next,
we recursively add a promising vertex to C from R until the
size of C reaches h or R becomes empty (Line 5). Here, we
adapt the metric in the scoring function (Section 4.1) to find
a good v∗ (Line 6). To enumerate all feasible subgraphs for
query vertex q and the size constraint, the algorithm invokes
the branches of (C ∪ {v∗}, R/{v∗}) and (C,R/{v∗}) for the
vertex v∗ ∈ R with the highest score (Lines 6-8).

However, ST-B&B is still inefficient to process the
real hard cases, because no bound to prune unpromising
branches, the candidate set can be very large, and the search
order of branches is not well-designed. Thus, we introduce
Budget-Cost Bounding, Reduction Rules and Branching
Strategies in the following to optimize ST-B&B and propose
the advanced ST-Exa algorithm.

SOTA Bounding Algorithms. Bounding techniques are crit-
ical in pruning unpromising branches for size-constrained
community search. We consider the partial solution C and
the candidate set R. Yao et al. [10] propose to compute
d̂: the upper bound of minimum degree in any subgraph
computed on the branch of C and R satisfying the size
constraint. Let d′ denote the largest among the minimum
degree of every qualified subgraph computed so far. If
we have d̂ ≤ d′, current search branch (C and R) is
unpromising and can be terminated safely. Let bmax denote
the maximum number of vertices we can move from R
to C , i.e., bmax = min(h − |C|, |R|). The main idea to
compute d̂ is to link bmax vertices in R with the vertices
in C based on solely their vertex degrees while the true
connections (edges) between the vertices are ignored and
the connections are reconstructed. To find a smaller d̂, the
paper decreases the number of edges to be reconstructed by
removing the edges between large-degree vertices.

Liu et al. [11] propose a different bound for pruning
unpromising branches, i.e., š: the size lower bound of any
subgraph computed on C and R without violating the fixed
trussness constraint k. If we have š > h, current search
branch is unpromising and can be early-terminated. The
main idea to compute š is to find the largest number of
vertices required in R for linking with every vertex in C

based on its support gap to k. The edges between C and R
are also reconstructed regardless of the true connections.

Our Budget-Cost based Bounding. We design a novel
branch check algorithm (BranchCheck) which well exploits
the structure information of C and R by computing the
cost and budget of every vertex in C regarding the true
connections with R. Let a qualified subgraph represent a
subgraph satisfying the constraints of STCS except cohe-
siveness optimality. As we already find a qualified subgraph
with min-trussness k′ by ST-Heu or previous branches, the
target for future search branches is to check whether we
can find a qualified subgraph with min-trussness of at least
k′ + 1. Thus, for each vertex u in C , we consider whether
the trussness of u can be k′+1 in a result in the branch of C
and R, where k′ is current largest min-trussness among each
computed result. Let cost(u) represent the least number of
vertices from R to be added into C such that the trussness
of u can be k′ + 1. Correspondingly, budget(u) represents
the maximum number of vertices we can move from R
to C based on the true structure induced by C and R. If
there is a vertex u with budget(u) < cost(u), the branch is
unpromising and can be terminated safely.

In the branch and bound search, once the partial solution
C is updated, we execute Algorithm 4 to check whether
the branch is promising. At Line 1, we first execute the
SOTA truss maintenance [52] to update the trussness of each
vertex u in C , i.e., update τG[C](u) by max{τG[C](u, v) |
v ∈ NG[C](u)}. Then, we initialize the budget and cost of
each vertex u in C . At Line 3, the budget of u is initialized
to min{h − |C|, |NG(u) ∩ R|}. At Line 4, The visit tag
of u is set to False. At Line 5, the cost of u is assigned
by max{k′ + 1 − τG[C](u), 0}. If budget(u) < cost(u), the
branch is unpromising and thus terminated at Line 6. We
use bmin and cmax to record the minimum budget and the
maximum cost of a vertex in C , respectively (Line 7). As
proved by Lemma 1, if bmin ≥ 2 × cmax, current branch is
still promising and the branch continues at Line 8.

At Lines 9-15, we visit each vertex u in C and assume the
trussness of u becomes k′ + 1 if moving some vertices from
R to C , where we update the budget of each affected vertex
accordingly at Lines 13-15. For each vertex x in C \ N(A)
where A = N(u) ∩R, its budget may be reduced because u
requires cost(u) vertices moving from R to C and there is no
common neighbor of u and x in R (Lines 15-16). That is, the
trussness of u becoming k′+1 will move some vertices from
R to C while the vertex x has no benefit in trussness from
these vertices, leading to a possible decrease of budget(x).
Thus, at Line 14, the budget of x is updated to min{h −
|C|−cost(u), budget(x)}. Note that the update of budget(x)
is only based on one vertex in C for performance trade-off,
i.e., we update by h − |C| − cost(u) if it is smaller than
budget(x). That is, it cannot be paid-off if we use the cost
of multiple vertices to reduce budget(x). The search branch
is terminated if the updated budget(u) is less than cost(u)
(Line 15). We observe that the visiting order in C has a minor
effect on the pruning power and adopt the order same to the
vertex addition order in C .

Lemma 1. If bmin ≥ 2 × cmax holds in Line 8 of Algorithm
4, we have budget(u) ≥ cost(u) for each u ∈ C suppose Lines
9-15 are executed, i.e., current search branch is promising.
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Fig. 3. Example of Budget-Cost based Bounding

Proof. The maximum cost of a vertex in C is always cmax.
Before executing Lines 9-15, the minimum budget of a
vertex in C is bmin. Suppose Lines 9-15 are executed,
the budget of a vertex in C is at least bmin − cmax. If
bmin − cmax ≥ cmax, the budget of every vertex in C is
not less than its cost. Thus, the current search branch is
promising when bmin ≥ 2× cmax.

Example 4. Given the graph G in Figure 3, a query v1 and
size constraint [5, 6], suppose the partial solution set C =
{v1, v2, v3, v4, v5}, the candidate set R = {v6, v7} and k′ = 3.
We examine whether C can be contained in a qualified subgraph
with min-trussness of k′ + 1. By truss maintenance, τG[C](u)
of each vertex u ∈ C is 1. The budget and cost values of each
vertex u ∈ C are both 1, as min{h − |C|, |NG(u) ∩ R|} = 1
and max{k′ + 1 − τG[C](u), 0} = 1. If v3 is visited in Lines
9-15 of Algorithm 4, budget(v4) becomes 0 at Line 14 because
h−|C|−cost(v3) = 1−1 = 0. Thus, the current search branch
is unpromising as budget(v4) = 0 < cost(v4) = 1.

Complexity. By [52], the time complexity of truss mainte-
nance in Line 1 of Algorithm 4 is O((hdmax

2 )1.5), where dmax

is the maximum degree in G. There are at most h iterations
in Lines 9-15 for checking every vertex in C . The dominating
time cost of checking one vertex is updating budget(x) in
Lines 11-15. It costs O(dmax) to find the neighbor set of u
in R, i.e., A ← {NG(u) ∩ R}, and then O(hdmax) time to
obtain C \ A. Thus, the time complexity of Algorithm 4 is
O((hdmax

2 )1.5 + h2dmax).

Candidate Reduction. In order to reduce the size of can-
didate set, we try to delete the unpromising vertices in R,
and add the promising vertices group from R to C without
violating the size constraint.

To form a qualified subgraph with min-trussness of at
least k′ + 1, if the join of a vertex v from R to C requires
adding more than h − |C| − 1 vertices to C , the vertex v is
unpromising because the size constraint will be violated. As
a vertex with trussness k′ + 1 has at least k′ neighbors in a
(k′ + 1)-truss, the following reduction rule holds.

Reduction Rule 1. Given an instance (C,R) and any vertex
v ∈ R, if |N≥k′+1

G[C∪{v}](v)| + h − |C| − 1 < k′, the vertex v
should be removed form R.

Besides the above reduction rule, we can also move the
promising vertices from R to C which exist in any solution
derived from current C and R.

Reduction Rule 2. Given an instance (C,R), if there is a v ∈ C

with |N≥k′+1
G[C∪R](v)| = k′, all vertices in N≥k′+1

G[C∪R](v) should be
moved to C .

Algorithm 4: BranchCheck
Input : partial solution C, candidate vertex set R, size

constraint [l, h], current largest min-trussness k′

among each computed result
Output : continue the branch or not
τG[C](u) of each u ∈ C by truss maintenance [52];1
for each u ∈ C do2

budget(u)← min{h− |C|, |NG(u) ∩R|};3
visit(u)← False;4
cost(u)← max{k′ + 1− τG[C](u), 0};5
if budget(u) < cost(u) then return False ;6

bmin ← minu∈C(budget(u)); cmax ← maxu∈C(cost(u));7
if bmin ≥ 2× cmax then return True;8
for each u ∈ C do9

visit(u)← True;10
if cost(u) > 0 then11

A← NG(u) ∩R;12
for each x ∈ C \NG(A) and visit(x) = False do13

budget(x)← min{h−|C|−cost(u), budget(x)};14
if budget(x) < cost(x) then return False ;15

return True16

Fig. 4. Example of Backtracking

Branching Strategies. The visiting order of different
branches and an effective backtracking approach also im-
portant for search efficiency. In our branching order, the se-
lection of the vertex v∗ to join C is determined by the metric
in our scoring function (Definition 6), i.e., |N≥k′+1

G[C∪{v}](v)| +
τ(v)

kmax+1 for each v ∈ R.
For the backtracking, given an instance (C,R), if we

find in current branch that a vertex u ∈ C cannot exist
in any qualified subgraph with min-trussness of at least
k′ + 1, the branch is unpromising. Thus, we can backtrack
the above search branches until there is no such vertex.
We may consider the dominance relations between different
branches to early terminate the branches dominated by
others, while our preliminary experiments find the speed
up from the dominance relations cannot pay off the time
cost of dominance check.

Example 5. Given the graph in Figure 4, the query v6 and size
constraint [4, 4], we may firstly find the subgraph induced by
{v1, v3, v5, v6} and update k′ = 3. The backtracking approach
will remove {v1, v3} from C because they cannot exist in a
subgraph containing v6 with trussness k′ + 1 = 4. Next, we
continue to search with C = {v5, v6} and find the qualified
subgraph induced by {v4, v5, v6, v7}.

The pseudo-code of our optimized branch and bound
search, named ST-B&BP, is shown in Algorithm 5. Once we
have k′ = k∗, the subgraph H is an optimal result and
is returned (Line 1). When the size of C reaches h or R
becomes empty with |C| ≥ l (Line 2), we find the largest
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k such that the size of T q
G[C](k) is not less than l, denoted

by k̂ (Line 3). If k̂ > k′, the min-trussness k′ is increased
to k̂ and the records H , Φ and R are updated accordingly
(Lines 4-7), where Φ is a global set to record the unqualified
vertices and is used for backtracking (Lines 8 and 15). If
the size of C is less than h, R is not empty, current branch
is promising confirmed by Algorithm 4, and C does not
contain unqualified vertices (Line 8), we add vertices to C
from R and continue the search (Lines 9-17). We can remove
unpromising vertices from R by Reduction Rule 1 and then
find the vertex v∗ in R with the highest score (Lines 9-10).
As v∗ will be added to C , some other vertices of R may
be moved together with v∗ to C by Reduction Rule 2, and
the set of above vertices is denoted by V ∗ (Lines 11-12). If
V ∗ is empty, we return the branch (Line 13). The branch to
expand C is invoked at Line 14, and Φ is recovered by Φ\V ∗

after the return of Line 15 such that the unqualified vertices
found at Line 6 of previous recursion can be removed from
Φ. Then, the branch to discard V ∗ is invoked at Line 16
to search other promising branches. When the algorithm
terminates, it finds an optimal result on C and R.

The final exact search algorithm, named ST-Exa, is given
in Algorithm 6. Firstly, our advanced heuristic is executed
to find a high-quality initial result H (Line 1). If the min-
trussness of H is the same as the upper bound of optimal
min-trussness, we return H as an optimal result; Otherwise,
we initialize C and R at Line 4, and the branch and bound
search is invoked at Line 5 to find an optimal result.

4.3 Extensions of the Algorithms

Finding More Optimal Communities. First, we need to
compute the optimal min-trussness kopt by executing Algo-
rithm 6 and use kopt to facilitate the efficient enumeration of
optimal results. Note that, without the optimal kopt value,
Algorithm 6 has to search for all the possible results with
min-trussness equal to k′ (current largest min-trussness of
all the computed results) until there is a result with min-
trussness larger than k′. This will cause redundant compu-
tations once k′ can be larger. Thus, it is more efficient to first
compute the optimal min-trussness kopt.

Then, the idea is to enumerate the optimal results on the
kopt-truss. Specifically, we remove Lines 1-3 of Algorithm 6,
remove every k∗ in the algorithms, replace k′ with kopt − 1
in Lines 4-5 of Algorithm 6, remove Line 1 of Algorithm 5,
update Line 5 of Algorithm 5 to “H ← T q

G[C](k
opt);” and

replace “return H” with “output H and return” in Lines 13
and 17 of Algorithm 5. Note that our updated algorithms
will only output every “maximal” optimal result H , i.e.,
there is no other optimal result containing H , which will
not be overwhelming to end users.

Execution with a Proper Size Constraint. For the applica-
tions with clear size constraints (decided by the correspond-
ing budget or capacity), we simply execute the proposed al-
gorithm with the given constraints. For applications without
clear size constraints, we may adjust the size upper bound
to search for communities with different sizes, because our
algorithms prefer to search the results with sizes close to the
upper bound.

Algorithm 5: ST-B&BP
Input : a graph G, the trussness of each edge, size

constraint [l,h], query vertex q, the upper bound
of optimal min-trussness k∗, current largest
trussness k′ among the min-trussness of each
computed result, current partial set C,
candidate vertex set R

Output : an optimal result H on the subgraph induced
by C and R

if k′ = k∗ then return H ;1
if |C| = h or (|C| ≥ l and |R| = 0) then2

k̂ ← max{k | |V (T q
G[C](k))| ≥ l};3

if k̂ > k′ then4

k′ ← k̂; H ← T q
G[C](k

′);5
Φ← {v | v /∈ T q(k′ + 1) ∧ v ∈ C};6
R← R \ {v | τ(v) ≤ k′ ∧ v ∈ R};7

if |C| < h and |R| ̸= 0 and BranchCheck(C,R, l, h, k′)8
and C ∩ Φ = ∅ then

Update R by Reduction Rule 1;9
v∗ ← the vertex in R with the highest score;10
V ′ ← the set of vertices to be moved from R to C by11
checking v∗ with Reduction Rule 2;
V ∗ ← {v∗} ∪ V ′;12
if V ∗ = ∅ then return H ;13
ST-B&BP(..., C ∪ V ∗, R \ V ∗);14
Φ← Φ \ V ∗;15
ST-B&BP(..., C,R \ V ∗);16

return H17

Algorithm 6: ST-Exa
Input : a graph G, the trussness of each edge, size

constraint [l,h], query vertex q
Output : an optimal result H
{H, k∗} ← ST-Heu(G, τ, l, h, q);1
k′ ← the minimum vertex trussness of H ;2
if k′ ̸= k∗ then3

C ← {q}; R← N≥k′+1(C);4
H ← ST-B&BP(G, τ, l, h, q, k∗, k′, C,R);5

return H6

5 EXPERIMENTAL EVALUATION

In this section, extensive experiments are conducted to
verify the performance of our algorithms. Here we briefly
summarize the results. For model effectiveness, our ST-Exa
algorithm can well constrain the community size (Exp-1)
and outperform the state-of-the-art in terms of community
scores (Exp-2) which is also verified by our case study on
DBLP dataset (Exp-3). For algorithm performance, the result
(cohesiveness) of ST-Exa within a time limit is close to the
upper bound cohesiveness of the exact result (Exp-4). The
outperformance is similar when the size constraint is large
(Exp-5) and querying on different vertices (Exp-6). Though
the k-truss computation is more costly than k-core, our well-
designed ST-Exa is more efficient than its competitor (Exp-
7). Our proposed techniques can also be used to improve
the efficiency of the SC-BRB algorithm (Exp-8). We also
evaluate the performance of different heuristics (Exp-9) and
the effectiveness of each proposed technique (Exp-10).
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TABLE 2
Statistics of Datasets

Dataset n m davg dmax kmax |T (5)|/|V |
Email 36K 183K 10.02 1383 22 0.39
Hepph 34K 421K 24.36 846 25 0.66
Epinions 131K 841K 3.68 96K 43 0.08
DBLP 317K 1.0M 6.62 343 114 0.40
Flickr 105K 2.3M 43.74 5K 574 0.16
Google 875K 4.3M 9.87 6K 44 0.46
Youtube 1.1M 3.0M 5.26 28K 19 0.04
Berkstan 686K 6.6M 19.4 84K 201 0.57
Orkut 3.1M 117.1M 76.3 33K 78 0.79
Wiki 6M 142.6M 28.33 195K 71 0.62
UK 18.4M 261.6M 28.33 194K 944 0.62
Webbase 118.1M 1019.9M 17.26 816K 1507 0.41

5.1 Experimental Setting

Datasets. We use 12 public real-life networks in our experi-
ments. Wiki2020, Uk2002 and Webbase are from Webgraph1

and the others are from SNAP2. The details of the networks
are shown in Table 2, where davg , dmax and kmax denote the
average degree, maximum degree and the largest trussness
value. The last column records the ratio of the vertex set
size in 5-truss over the whole vertex set. The abbreviation of
each dataset is marked in bold.

Algorithms. Our main competitors are the algorithms in
[10], including the heuristic SC-Heu and the exact algorithm
SC-BRB. We also report some results of SCkT in [11]. The
codes of SCkT, SC-Heu, and SC-BRB are kindly provided
by the authors. The algorithms are summarized as follows.

• SC-Heu and SC-BRB: The heuristic and exact algo-
rithms are proposed in [10], respectively, target at find-
ing a subgraph with the largest min-degree among
every connected subgraph containing query vertex q
that has at least l and at most h vertices. We also
evaluate SC-BRB* which is SC-BRB equipped with our
proposed techniques. The details are given in Exp-8.

• SCkT: the exact search algorithm in [11] for searching a
triangle-connected k-truss subgraph containing query
vertex q with size not exceeding h, where k is user-
specified. Note that the query on a vertex with trussness
less than k will return an empty result. The percentage
of non-empty queries for SCkT with k = 5 is at most
|T (5)|/|V | shown in Table 2.

• ST-Heu, ST-Cli, ST-Base and ST-BaseT: ST-Heu is our
advanced heuristic (Algorithm 2). Its degraded ver-
sions are ST-Base (Algorithm 1) and ST-Cli (Sec-
tion 4.1), respectively. ST-BaseT uses Score(C,R) =

argmaxv∈R{v | △(v) + τ(v)
kmax+1} to guide vertex selec-

tion where △(v) is the number of triangles containing
v in G[C ∪{v}], which is the only difference to ST-Base.

• ST-Exa: Our exact search algorithm (Algorithm 6). ST-
Exa\H is the ST-Exa that starts with k′ = 1 and with-
out updating k′ by ST-Heu. Similarly, ST-Exa\R, ST-
Exa\L and ST-Exa\B are ST-Exa without Reduction
Rules, Budget-Cost Bounding and Backtracking Ap-
proach (Section 4.2), respectively.

Note that, if a test cannot finish within the time limit,
we return the best qualified subgraph which satisfies the

1. https://webgraph.di.unimi.it/
2. http://snap.stanford.edu/
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connectivity and size constraint while the min-support from
ST-Exa (resp. min-degree from SC-BRB) may not be optimal.
Parameters. All experiments are conducted with time limit
of 1000 seconds. Note that the performance gain is minor
on hard cases with a larger time limit. The default size
constraint is [11, 20], i.e., the size of the returned subgraph
is at least 11 and at most 20. As the sizes of ground-
truth communities are diverse, we also report the results
on larger size ranges and/or larger community sizes. For
each algorithm, as querying on 2-truss vertices is trivial,
we report the average result of 200 independent tests by
querying random vertices in 3-trusses. Note that in each test
the query vertices for different algorithms are the same.
Environment. All algorithms are implemented in C++ and
compiled by GCC (7.5.0) under O3 optimization. We con-
duct all experiments on a machine with an Intel Xeon
2.1GHz CPU and 512G main memory.

Our source code is shared online 3.

5.2 Evaluation on Effectiveness of Models

In this subsection, we report the result sizes, the scores on
two community metrics, and the case study.
Exp-1: Result Size. Figure 5 shows the average number
of vertices in the returned subgraph for each algorithm.
Kmax-truss in the figure represents the average size on all
the kmax-trussness. For SCkT, we set k = 10 and report
the result by querying each vertex with trussness of at
least 10 (for returning non-empty results). The result size
is well constrained for each algorithm except Kmax-truss. It
is observed that the result size is rarely affected by the scale
of dataset. The result size of SCkT is close to 10 while the
result sizes of ST-Exa and SC-BRB are close to 20, because
of the different search preferences. The result size of ST-Exa
is larger than SC-BRB by 0.5 on average, because ST-Exa
returns a result when the size of C is close to h while SC-
BRB returns when the size of C is no less than l.

We also report the result sizes by varying the parameter
k of SCkT. Note that ST-Exa is parameter-free on k. Figure 6
shows the result size from SCkT is close to k while the size
from ST-Exa is more stable, closing to the size constraint h.
Exp-2: Results on Two Community Metrics. We adopt
two representative metrics to measure the quality of the
returned subgraph, i.e., Internal Density ( 2m

n×(n−1) ) [53] and

Clustering Coefficient ( 3×|△|
|triplet| ) [54] where a higher score

is preferred. As shown in Figure 7, our ST-Heu and ST-
Exa significantly outperform SC-BRB in terms of the two
community metrics. The values of clustering coefficient are
similar on DBLP because the authors in DBLP are usually

3. https://github.com/codecreateworld321/STCS
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in small and dense groups. It is interesting to see the
scores of ST-Heu can be slightly higher than ST-Exa on
the two community metrics. This is because ST-Heu prefers
to include close vertices with large degrees, corresponding
to better internal density and clustering coefficient, while
the min-trussness (our optimization objective for ST-Exa) is
used to find well-connected higher-order structures.

Note that, in our quality evaluation (Exp-4, Figure 10),
ST-Exa largely outperforms ST-Heu regarding success ratio
and the min-trussness. Thus, the two community metrics
cannot be used to replace the min-trussness metric and the
optimization on min-trussness reveals a new angle of dense
structures. For instance, in our case study (Exp-3, Figure
9), the result of SCS has a higher clustering coefficient than
STCS, while the result of STCS is clearly better connected
than SCS, corresponding to a larger min-trussness.

We also compare the result qualities of SC-BRB, ST-Heu,
and ST-Exa by varying the size constraint on Hepph and
Orkut datasets. There are five different size constraint set-
tings where [l, h] are varied from [1, 10] to [71, 80]. As shown
in Figure 8, our algorithms outperform SC-BRB algorithm
on all the settings.

Exp-3: Case Study on DBLP. Figure 9 depicts the results
of SC-BRB and ST-Exa, respectively, by querying the scholar
“Alessio Conte” on the DBLP dataset from 2000 to 2022 with
size constraint [10, 15]. In the case study, there is an edge
between two authors iff the number of their co-authored
papers is at least 5. Figure 9(a) shows the optimal result of
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SCS returned by SC-BRB, with minimum degree 6 and size
12. Figure 9(b) shows the optimal result of STCS returned by
ST-Exa, which is more well-connected because the minimum
vertex trussness is 6 for STCS and 3 for SCS, respectively.

We find that the average number of co-authored papers
between two authors in STCS is 25.4, which is higher than
SCS (18.3). Besides, there are two distinct groups in SCS,
with a weak connection between them. Moreover, the diam-
eter of STCS is 2, while the diameter of SCS is 3.

The reason for the above gaps is that SCS pursues the
vertices with large degrees while neglecting the higher-
order structures among the authors considered by STCS.
Therefore, the STCS problem based on min-trussness is
more promising for size-constrained community search.

5.3 Evaluation on Performances of Algorithms
In this subsection, we first report success ratio within the
time limit of 1000s, where the success ratio is the ratio
that a query result is confirmed to be optimal, i.e., the min-
trussness of the resulting subgraph k′ is equal to the min-
trussness upper bound k∗ for ST-Heu and ST-Exa. Note that
the true success ratio is higher than the above ratio, while
it is costly to compute the optimal min-trussness in some
cases. Correspondingly, for SC-BRB, we set k∗ by the largest
min-degree of a connected k-core including query vertex q
with size no less than l. Then, we evaluate the querying on
different cases and the efficiency of the algorithms including
the running time of SC-BRB optimized by our techniques.
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Exp-4: Success Ratio and Approximation to k∗. Figure 10(a)
shows the performance quality of 3 algorithms regarding
success ratio and approximation to k∗. Our ST-Exa largely
outperforms SC-BRB on success ratio where the gap is up to
5 times on Wiki benefiting from our well-designed heuristic
ST-Heu. As for the performance on hard cases, Figures 10(b)
and 10(c) report the average values and the minimum values
of k′/k∗ on hard cases, respectively. Here a hard case is that
the min-trussness of the resulting subgraph returned within
1000s does not equal to the min-trussness upper bound, i.e.,
k′ ̸= k∗. The results of ST-Heu on hard cases are better
than ST-Exa on Wiki dataset because their hard cases are
different queries and some hard cases of ST-Heu can be
optimally addressed by ST-Exa as shown in Figure 10(a).
Overall, Figure 10 shows our ST-Exa returns an optimal
result in over 88% cases and the results on hard cases are
close to the optimal values, where the min-trussness is at
least 65% and on average 74% of the optimal value.

Exp-5: Querying on Large Size Constraints. Figure 11
shows the performance of ST-Heu and ST-Exa on Hepph
and Orkut with the size constraints on larger ranges, i.e.,
[1, 50], [201, 250], [401, 450] and [601, 650]. Figure 11(a)
shows the result sizes returned by our ST-Heu and ST-Exa
are close to the upper bound of the size limit. The result
size from ST-Heu is slightly larger than ST-Exa, because ST-
Exa pursues the results with higher min-trussnesses than
ST-Heu and these results may be smaller.

Figure 11(b) shows that the success ratios of our algo-
rithms are at least 90% on Hepph and Orkut, for different
constraints. Besides, we find ST-Heu and ST-Exa have better
success ratios on constraint [1, 50] than [11, 20] (Figure 10(a))
on Hepph and Orkut. This is because the queries with large
size ranges are more tractable to find the exact result. Figure
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11(c) shows the averages of k′/k∗ of our algorithms on hard
cases (the cases with k′ ̸= k∗) are more than 67% for all
the size constraints. Figure 11(d) shows the gaps of the
minimums of k′/k∗ between ST-Heu and ST-Exa are large
on some of the hard cases. Thus, the search in ST-Exa is
necessary when the heuristic is unable to find a result close
to the optimal.

Exp-6: Querying on Different k-Trusses. Figure 12 reports
the success ratios and the averages of k′/k∗ of our al-
gorithms by querying on random vertices in k-truss with
different k. For each k value, we conduct 50 independent
tests and each test queries a random vertex in k-truss of G.
The values of k for Hepph datasets are from 3 to 15, where
the size ratio of 15-truss vertex set over the whole vertex
set is 2.5%. The k values of Orkut are from 3 to 31, where
the size ratio of 31-truss vertex set over the whole vertex
set is 2.3%. Figure 12 reveals that more optimal results can
be found when k is relatively large or small compared with
the size constraint. The hard cases are mainly on querying
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the vertices with trussness between l = 11 and h = 20.
Although the success ratio with a hard k value may not be
large as shown in Figures 12(a-b), the non-optimal results
returned by our algorithm are of high-quality regarding the
cohesiveness objective as shown in Figures 12(c-d).

Exp-7: Running Time of the Algorithms. Figure 13 reports
the time cost of ST-Heu, ST-Exa, and SC-BRB, respectively.
It shows that our ST-Heu and ST-Exa outperform SC-BRB
on all datasets where the speed up is up to 5 orders of
magnitude. The main reason is because that our heuristic
can quickly find high-quality initial result and our optimiza-
tions are effective. ST-Exa is slower than ST-Heu because
it contains ST-Heu and conducts the exact search. The gap
between ST-Heu and ST-Exa is small on DBLP or Google
because ST-Heu often finds the optimal results.

We also evaluate the running time under different size
constraints. The size constraint [l, h] is varied from [1, 10]
to [71, 80]. Figure 14 shows our algorithms are faster than
SC-BRB on all the settings. For ST-Heu and SC-BRB, the
time cost becomes larger with the increase of size constraint
due to larger search space. ST-Exa is different because its
running time is influenced by the success ratio of ST-Heu.
When size constraint increases, the success ratio of ST-Heu
may be improved and thus the time cost of ST-Exa may
become smaller.

Exp-8: Running Time of SC-BRB with Our Techniques.
To further validate the effectiveness of our techniques, we
evaluate SC-BRB* which is SC-BRB equipped with some
of our proposed techniques. SC-BRB* can be easily imple-
mented by replacing some functions of SC-BRB as follows.
Firstly, all the operations on “trussness” in our techniques
are replaced by “coreness”, e.g., kmax in Scoring Function
(Definition 6) is set by the largest vertex coreness in G. Then,
the heuristic used in SC-BRB is replaced by ST-Heu adapted
on “coreness”. Finally, if there is a vertex in C with its
coreness in G no larger than k′, SC-BRB* terminates current
branch with our Backtracking technique. Note that SC-
BRB* do not contain our Reduction Rules and Budget-Cost
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Bounding as they are designed for handling support values
rather than degree and cannot be well adapted. Figure 15
shows SC-BRB* outperforms SC-BRB on all datasets, where
the speed up is up to three orders of magnitude on Email
due to the effective heuristic. In Figure 16, SC-BRB* still has
a better performance with different size constraints.

5.4 Evaluation on Optimization Techniques

In this subsection, we validate the effectiveness of each
proposed technique.

Exp-9: Performance of Different Heuristics. Table 3 shows
that the success ratio of ST-Heu outperforms other heuristics
and it is at least 14% higher than SC-Heu proposed in [10].
When the success ratio is close to 1, it is hard to further
improve the ratio, while ST-Heu still improves the ratio of
ST-Cli from 0.84 to 0.94 on Wiki due to the novel design.
In Figure 17, the time costs of ST-Heu are not large on all
the datasets as its framework is light-weight. The runtime
of ST-Heu is less than 1s on every dataset. The success ratio
of ST-BaseT is similar to ST-Base while its time cost is larger
due to triangle counting. Overall, the results in Table 3 and
Figure 17 show that ST-Heu can well initialize a result for
STCS, because it addresses “slow start” and “branch trap”
issues as discussed in Section 4.1.

We also evaluate the effect of using different diversified
cliques in ST-Heu. The result shows that the success ratio
from diversified top-2 cliques is at least 97% of the success
ratio by using all the maximal cliques in ST-Heu. Thus,
we use diversified top-2 cliques in ST-Heu for a good
performance trade-off.

Exp-10: Performance of Optimization Techniques. Table 4
shows the runtime of ST-Exa by unloading each proposed
technique. As ST-Exa achieves the smallest time cost on
every setting, all the optimization techniques proposed in
the paper are effective. The performance gap between ST-
Exa\H and ST-Exa is the largest, because the heuristic is
critical for improving the efficiency of exact search.
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TABLE 3
Success Ratio on Heuristic Algorithms

Dataset SC-Heu ST-BaseT ST-Base ST-Cli ST-Heu
Em 0.68 0.94 0.9 0.91 0.94
H 0.3 0.8 0.66 0.78 0.82
Ep 0.66 0.92 0.92 0.92 0.92
D 0.54 0.9 1 1 1
F 0.4 0.84 0.9 0.94 0.94
G 0.86 0.96 0.98 1 1
Y 0.4 0.9 0.9 0.92 0.92
B 0.68 0.92 0.88 0.92 0.92
O 0.34 0.72 0.74 0.74 0.8
Wi 0.3 0.86 0.72 0.84 0.94
U 0.8 0.9 0.92 0.96 0.96

We 0.84 0.92 0.96 0.96 0.96
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6 CONCLUSION

Motivated by the defects in existing solutions, we study
the STCS problem for size-constrained community search.
We prove that the STCS problem is NP-hard and hard to
approximate. We propose a branch and bound algorithm ST-
Exa to find an optimal result, equipped with effective opti-
mizations. A novel heuristic is designed to find a promising
initial result and reduce the search space. Extensive experi-
ments on 12 real-world graphs show that the quality of the
query result from ST-Exa is better and ST-Exa is faster by
up to 5 orders of magnitude, compared with the state-of-
the-art. As the size of a community may relate to its prop-
erties [55], it is interesting to find a proper size constraint
automatically in future studies. As real communities may
be diverse, it is also interesting to find diversified results on
size-constrained communities.
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