
The VLDB Journal
https://doi.org/10.1007/s00778-021-00673-6

SPEC IAL ISSUE PAPER

Anchored coreness: efficient reinforcement of social networks

Qingyuan Linghu1 · Fan Zhang2 · Xuemin Lin1 ·Wenjie Zhang1 · Ying Zhang3

Received: 24 August 2020 / Revised: 15 February 2021 / Accepted: 24 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The stability of a social network has been widely studied as an important indicator for both the network holders and the
participants. Existing works on reinforcing networks focus on a local view, e.g., the anchored k-core problem aims to enlarge
the size of the k-core with a fixed input k. Nevertheless, it is more promising to reinforce a social network in a global manner:
considering the engagement of every user (vertex) in the network. Since the coreness of a user has been validated as the “best
practice” for capturing user engagement, we propose and study the anchored coreness problem in this paper: anchoring a
small number of vertices to maximize the coreness gain (the total increment of coreness) of all the vertices in the network.
We prove the problem is NP-hard and show it is more challenging than the existing local-view problems. An efficient greedy
algorithm is proposed with novel techniques on pruning search space and reusing the intermediate results. The algorithm is
also extended to distributed environment with a novel graph partition strategy to ensure the computing independency of each
machine. Extensive experiments on real-life data demonstrate that our model is effective for reinforcing social networks and
our algorithms are efficient.

Keywords Social network · User engagement · Network stability · Core decomposition · Distributed algorithm

1 Introduction

The leave of users in a social network may cause nega-
tive influence to the engagement level of their neighbors
(e.g., friends) in this network, and thus, these neighbors may
choose to leave [46]. The continuous departure of users may
lead to the leave of users with many neighbors and signif-
icantly bring down overall user engagement (stability) of a
network. For instance, Friendster was a popular social net-

B Fan Zhang
fanzhang.cs@gmail.com

Qingyuan Linghu
q.linghu@unsw.edu.au

Xuemin Lin
lxue@cse.unsw.edu.au

Wenjie Zhang
zhangw@cse.unsw.edu.au

Ying Zhang
ying.zhang@uts.edu.au

1 University of New South Wales, Sydney, Australia

2 Guangzhou University, Guangzhou, China

3 Centre for AI, University of Technology Sydney, Sydney,
Australia

work which had over 115 million users, while it is suspended
due to contagious leave of users [31,54].

Assume that each vertex v incurs an (integer) cost of k >

0 to remain engaged and obtains a benefit of 1 from each
neighbor of v who is engaged, the natural equilibrium of this
model corresponds to the k-core of the social network [9].
The k-core is defined as themaximal subgraph inwhich every
vertex has at least k neighbors in the subgraph [48,52]. Given
a graph, the k-core can be computed by iteratively removing
every vertex with degree less than k. Every vertex in the
graph has a unique coreness value, that is, the largest k s.t.
the k-core contains the vertex. The model of k-core is often
used in the study of network stability (engagement) as it well
captures the dynamic of user engagement, e.g., [46,53,58].

As the size of k-core is a feasible indicator of network sta-
bility, Bhawalkar and Kleinburg et al. proposed the anchored
k-core (AK) problem [9,10]: given a graph G, an integer k
and a budget b, anchoring a set of b vertices in the graph s.t.
the number of vertices in the k-core ismaximized. The degree
(the number of neighbors) of an anchored vertex is consid-
ered as positive infinity, namely an anchored vertex will stay
in the k-core regardless of its original degree. It is promising
to reinforce a network by giving incentives to some users
(e.g., anchored vertices) such that they will keep engaged

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00673-6&domain=pdf
http://orcid.org/0000-0003-0548-0130

Q. Linghu et al.

Fig. 1 Check-in number versus coreness value

in the network and support the engagement of other users
[10]. The anchored k-core problem has been further stud-
ied on different aspects, e.g., the theoretical side [20,21], the
experimental evaluation [31,62] and the efficient solutions
[57,65].

Nevertheless, the anchored k-core (AK) problem is essen-
tially to reinforce a network in a “local” manner: it focuses
on enlarging the size of the k-core with a particular k value.
As proved in [65], given an integer k, the AK problem can
only increase the corenesses of a partial set of vertices, e.g.,
the vertices with coreness k − 1. Besides, for the AK prob-
lem, the valid vertices for anchoring are from a small set of
vertices, and the anchoring of other vertices cannot enlarge
the size of k-core [65]. Moreover, it is very hard to determine
a good input value of k for the AK problem.

As analyzed in the study of Friendster, its collapse may
start from the leave of users in either the center cores (k-cores
with large k values) [53] or the outside of center cores [31],
i.e., the collapse happens in a “global” way. As shown in
[46], a user’s coreness is the “best practice” for measuring
the engagement level of the user in a network. We further
examine the matching of coreness and user engagement in
real social networks. For each integer k, we count the average
number of user check-ins (as the ground-truth user engage-
ment) for the users with coreness equal to k. As shown in
Fig. 1, the coreness value and check-in number in Gowalla
[41] are in a positive correlation, except for the disturbance
on the center cores due to the small sample. So it is more
promising to reinforce a network in a “global” manner: con-
sidering the coreness increment of every user. Motivated by
the above facts, we propose and study the anchored coreness
(AC) problem: given a graphG and a budget b, anchor a set of
b vertices in the graph s.t. the coreness gain (total increment
of coreness) of all the vertices is maximized. The followers
of an anchor x are the vertices with coreness increased after
anchoring x , except x itself.

Example 1 Figure 2 shows a graph G of 13 vertices and their
connections. The coreness of each vertex is marked near the
vertex, e.g., the coreness of u5 is 2. The k-core ofG is induced
by all the vertices with coreness of at least k, e.g., the 3-core
is induced by u6, u7, …, u12, and u13.

Table 1 records the results of anchored k-core (AK) prob-
lem and anchored coreness (AC) problem under different

Fig. 2 A toy example

Table 1 Anchored k-core versus anchored coreness in Fig. 2

Problem Input Anchor Followers Coreness

AK k = 3, b = 1 u1 u2, u3, u4 From 2 to 3

k = 4, b = 1 u5 u6, u7, u8 From 3 to 4

AC b = 1 u2 u3, u4 From 2 to 3

u7, u8 From 3 to 4

inputs. For instance, when k = 3 and b = 1, the AK prob-
lem anchors u1 which will increase the coreness of u2, u3
and u4 from 2 to 3. We can find that the anchoring of u2
according to AC has a larger coreness gain (i.e., 4) compared
to that of AK (i.e., 3). Besides, the AC problem improves the
vertex coreness from the vertices with different corenesses,
while the AKmodel focuses on a partial set, e.g., the vertices
with coreness k − 1. Thus, AK and AC are inherently differ-
ent, and the solutions for AK cannot be used to solve the AC
problem.

Challenges To the best of our knowledge, we are the first to
study the anchored coreness (AC) problem. We prove the
AC problem is NP-hard. Although the coreness gain can
be computed in O(m) time by core decomposition [8], a
basic exact solution has to exhaustively compute the core-
ness gain on every possible anchor set with size b, which
is cost-prohibitive. We also prove the problem is APX-hard,
and the coreness gain function is non-submodular. Although
it is unpromising to estimate the coreness gain of multiple
anchors, we observe that the change of coreness is relatively
restricted for one anchored vertex. Thus, we adopt a greedy
heuristic to find the best anchor in each iteration, while the
candidate anchor set is still very large and a straightforward
implementation is still very time consuming.

An efficient algorithm is proposed for the anchored k-core
(AK) problem in [65], while the AK model only considers
the coreness gain from k − 1 to k by maximizing the size of
k-core with a fixed k. Since the AC problem aims to max-
imize the coreness gain from all the vertices with different
corenesses, the solution in [65] cannot be applied to solve
the problem. Besides, the search space of the AC problem
is much larger than the AK problem because every vertex
in the graph is possible to be a valid anchor to improve the

123

Anchored coreness: efficient reinforcement of social networks

vertex coreness, while only a partial set of vertices related to
k-core can be valid anchors to enlarge the size of k-core for
AK problem. Therefore, the AC problem is even more chal-
lenging than the AK problem. It is critical to design strong
strategies to prune unpromising candidate anchors and speed
up the computation of coreness gain.

Our Solution Due to the huge number of candidate anchors,
a well-designed reusing mechanism (Sect. 5.3) is necessary
for a greedy heuristic which aims to exhaustively reuse the
intermediate results from the executed iterations. Todo so,we
apply the tree structure T (Sect. 5.1) of core decomposition
[8] to divide all the vertices into tree nodes, where each tree
node is an atomic unit for deciding whether the computed
results associated with the node can be reused. Specifically,
with the anchoring of one vertex x , we first prove the coreness
of a vertex (except the anchor) can increase by at most 1.
Then, the followers of x can be divided into different tree
nodes of T . In each iteration, the number of x’s followers is
the coreness gain of anchoring x . Thus, if x was anchored
and the follower set of each vertex was computed (or reused)
in the last iteration, for each candidate anchor u in current
iteration, we can efficiently decide whether the partial set of
u’s followers associated with a tree node keeps the same and
can be reused.

The proposed computation of coreness gain (Sect. 5.4) is
adaptive to the reusing mechanism. If a follower unit (in a
tree node) cannot be reused, the follower computation is con-
ducted locally, i.e., within the tree node. Besides, we utilize
the graph degeneracy ordering (the vertex deletion sequence
of core decomposition) to largely speed up the follower com-
putation. We also propose an upper bound (Sect. 5.5) of
coreness gain to further prune candidate anchors and well
match the technique with the reusing mechanism to improve
efficiency. Combining all these techniques, we propose the
serial greedy algorithm GAC (Sect. 5.5) which is conducted
in single-machine computing environment.

We then extend GAC to DGAC which is conducted in
distributed computing environment. In order to reduce the
communication cost among the machines, we propose a
graph partition strategy where the graph can be divided into
shell component partitions (partitions) induced by the sub-
graphs of k-shell component in the structure SP (Sect. 6.1).
Therefore, for anchoring a vertex x , the followers of x are
divided into different partitions in SP . We prove x’s fol-
lowers from different partitions are not overlapped and the
computation of followers from different partitions can be
conducted concurrently and independently. We also show
the upper bound proposed in GAC is a reasonable estimate
of the time cost of computing x’s followers. Based on these,
we propose a computing resource scheduling (Sect. 6.3) to
make the machines evenly and independently have comput-
ing tasks. Similar to the reuse mechanism of GAC, the shell

component partitions become the units of deciding whether
the associated computed results are reused.
Contributions In the paper, we overcome all the challenges
with above solutions. The preliminary version is published
in [44]. Our main contributions are as follows:

– Motivated by many existing studies, we propose and
explore the anchored coreness problem to reinforce social
networks which considers the engagement of every user.
We prove the problem is NP-hard and APX-hard. The
problem is shown to be more challenging than the
anchored k-core problem which focuses on the engage-
ment of partial users.

– We propose a serial greedy algorithm for single-machine
environment with novel techniques. With the tree of
core decomposition, we introduce a mechanism to reuse
the intermediate results from the executed iterations. It
exhaustively reuses the computed result in each unit rep-
resented by a tree node.We also propose the computation
of coreness gain which is largely faster than core decom-
position. An upper bound of coreness gain is proposed to
further prune unpromising candidates. All the techniques
are well equipped in the reusing mechanism.

– We propose a distributed greedy algorithm for anchored
coreness problem in distributed computing environ-
ment. With the graph partition strategy based on k-shell
component, all the machines can independently and
concurrently conduct computations, i.e., the coreness
gain computations of vertices are divided into indepen-
dent units regarding k-shell components. Our computing
resource scheduling strategy ensures the communication
cost across machines is limited and computing tasks are
evenly distributed. The techniques of reuse mechanism,
computation and upper bound of coreness gain in the
serial algorithm are specifically designed for our dis-
tributed algorithm.

– Comprehensive experiments are conducted on 8 real-life
datasets to show that (1) the proposed serial algorithm
GAC ismore effective than other heuristics on improving
vertex coreness; (2) the coreness gain from the ACmodel
is much larger than that of the AK model; (3) the core-
ness values of the anchors and followers are more diverse
in the AC model, compared with the AK model; and (4)
our proposed techniques for GAC largely improve the
algorithm efficiency. (5) The proposed distributed algo-
rithm DGAC is significantly more efficient than GAC,
and the time cost is inversely proportional to the number
of machines in general.

123

Q. Linghu et al.

2 Related work

Many cohesive subgraph models are studied in different
scenarios, e.g., clique [14,19], quasi-clique [3,51], k-core
[13,32,48,52], k-truss [23,34,55,59], k-plexes [24,25,71],
and k-ecc [17,70]. Among them, the k-core is widely stud-
ied with a lot of applications such as community discovery
[27,29,42], influential spreader identification [40,43,45,58],
discovering protein complexes [7], recognizing hub-nodes
in brain function networks [12], analyzing the structure of
Internet [15], understanding software networks and its func-
tional consequences [68], predicting structural collapse in
ecosystems [50], and graph visualization [5,69].

User engagement study in social networks has attracted
increasing attention, e.g., [10,22,46,64,66]. The k-coremodel
is widely applied, as its degeneration property well captures
the dynamic of user engagement [44,46,65,72]. Besides, the
k-truss is also investigated in user engagement study focusing
on denser subgraphs [67].

An in-memory algorithm for core decomposition is intro-
duced in [8] with a time complexity of O(m + n). External
algorithms are proposed to handle graphs that cannot reside
in the memory [18]. An I/O efficient algorithm is introduced
in [61] which assumes the memory canmaintain a small con-
stant amount of data. In addition, a distributed algorithm is
developed in [49] for core decomposition. Core decompo-
sition is investigated in [39] using different frameworks to
compare the performance on a single PC.

Some works about core decomposition in parallel envi-
ronments have been studied recently [16,28,36,47,49]. An
algorithm for core decomposition on multicore platforms is
introduced in [36]. In [16], an distributed 2(1 + ε) approx-
imate algorithm of core decomposition is proposed. Based
on the distributed framework Spark [63], Mandal and Hasan
[47] uses the think-like-a-vertex paradigm to conduct core
decomposition. Toward the incremental core decomposi-
tion, so-called core maintenance, some distributed or parallel
algorithms are also proposed [4,6,33,35]. Hua et al. [33]
proposes a structure called joint edge set to parallelize insert-
ing/deleting a set of edges, which is based on the idea of
matching in [35].

There are many works doing parallel computation of
other cohesive subgraph models such as clique, k-plexes
and k-truss. An algorithm implemented on shared-memory
multicore machine is introduced for the maximal clique enu-
meration (MCE) problem [26]. Wang et al. [60] proposes an
approach for maximal clique and k-plexes enumeration at
the same time, which identifies dense subgraphs by binary
graph partitioning, and it is implemented on MapReduce.
In [24], a shared-nothing distributed algorithm for k-plexes
enumeration is proposed, but only limited to k = 2. [25]
presents D2K, which exploits the fact that large enough k-
plexes havediameter 2, so that the distributed implementation

Table 2 Summary of notations

Notation Definition

G An unweighted and undirected graph

V (G); E(G) The vertex set of G; the edge set of G

n;m |V (G)|; |E(G)| (assume m > n)

u, v, x A vertex in G

E(u) The set of edges incident to u

N (u,G) The neighbor vertex set of u in G

Ck(G) The k-core of G

c(u,G) The coreness of u in G

A The set of anchor vertices

deg(u,G) |N (u,G)| if u /∈ A, or +∞ if u ∈ A

cA(u,G) The coreness of u in G with A anchored

b The budget for the number of anchors

g(A,G) The coreness gain of anchoring A in G

T The core component tree of G

F(x,G) The set of followers of x in G

Hi
k (G) i-layer within the k-shell of G

P(u) The shell-layer pair of a vertex u. If
P(u) = (k, i), u is in
the i th layer of the k-shell, i.e., u ∈ Hi

k (G).

x � u An upstair path from x to u

CF(x) The candidate followers set of x

d+(x) The degree bound of x

UBσ (x) The upper bound of |F(x)|

can handle very large graphs. For k-trussmodel, [37] and [56]
develop the parallel algorithms for k-truss decomposition on
multicore (shared-memory) system. In [11], a performance
exploration of fine-grained parallelism for load balancing
eager k-truss on GPU and CPU is presented.

3 Preliminaries

We consider an unweighted and undirected graph G =
(V , E), where V (G) (resp. E(G)) represents the set of ver-
tices (resp. edges) inG. N (u,G) is the set of adjacent vertices
of u in G, which is also called the neighbor vertex set of u in
G. Table 2 summarizes some notations used throughout this
paper. Note that we may omit the input graph in the nota-
tions when the context is clear, e.g., using deg(u) instead of
deg(u,G).

Definition 1 k-core [48,52]. Given a graph G, a subgraph S
is the k-core of G, denoted byCk(G), if (i) S satisfies degree
constraint, i.e., deg(u, S) ≥ k for each u ∈ V (S); and (i i) S
is maximal, i.e., any supergraph S′ ⊃ S is not a k-core.

If k ≥ k′, the k-core is always a subgraph of k′-core, i.e.,
Ck(G) ⊆ Ck′(G). Each vertex in G has a unique coreness.

123

Anchored coreness: efficient reinforcement of social networks

Algorithm 1: CoreDecomp(G, A)
Input : a graph G, an anchor set A
Output : cA(u,G) for each u ∈ V (G)

k ← 1;1
while exist non-anchor vertices in G do2

while ∃u ∈ V (G) with deg(u) < k do3
deg(v) ← deg(v) − 1 for each v ∈ N (u,G);4
remove u and its adjacent edges from G;5

cA(u,G) ← k − 1;6

k ← k + 1;7

return cA(u,G) for each u ∈ V (G)8

Definition 2 coreness. Given a graph G, the coreness of a
vertex u ∈ V (G), denoted by c(u,G), is the largest k such
that Ck(G) contains u, i.e., c(u,G) = max{k | u ∈ Ck(G)}.
Definition 3 core decomposition. Given a graph G, core
decomposition of G is to compute the coreness of every ver-
tex in V (G).

In this paper, once a set A of vertices in the graph G
is anchored, the degrees of the vertices in A are regarded
as positive infinity, i.e., for each x ∈ A, deg(x,G) =
+∞. Every anchored vertex is called an anchor or an
anchor vertex. The existence of anchor vertices may change
the corenesses of other vertices. We use cA(u,G) (resp.
cx (u,G)) to denote the coreness of u in G with the anchor
set A (resp. vertex x).

The computation of core decomposition with anchors is
the same as that without anchors [8], in which we recursively
delete the vertex with the smallest degree in the graphG. The
time complexity is still O(m), because the only difference is
that we do not delete the anchors in the core decomposition.
The pseudo-code is shown in Algorithm 1.

Definition 4 coreness gain. Given a graph G and an anchor
set A, the coreness gain of G regarding A, denoted by
g(A,G), is the total increment of coreness for every vertex
in V (G)\A, i.e., g(A,G) = ∑

u∈V (G)\A(cA(u) − c(u)).

Problem Statement Given a graph G and a budget b, the
anchored coreness problem aims to find a set A of b vertices
in G such that the coreness gain regarding A is maximized,
i.e., g(A,G) is maximized.

4 Problem analysis

Theorem 1 Given a graphG, the anchored coreness problem
is NP-hard.

Proof Wereduce themaximumcoverage (MC)problem [38],
which is NP-hard, to the anchored coreness problem. Given
a number b and a collection of sets where each set contains

Fig. 3 Construction example for hardness proofs

some elements, the MC problem is to find at most b sets to
cover the largest number of elements.

Consider an arbitrary instance H of MC with c sets
T1, .., Tc and d elements {e1, .., ed} = ∪1≤i≤cTi , we con-
struct a corresponding instance of the anchored coreness
problem on a graph G. W.l.o.g., we assume b < c < d.
Figure 3 shows an example of 3 sets and 4 elements.

The graphG contains three parts:M , N , and some cliques.
The part M contains c vertices, i.e., M = ∪1≤i≤cwi where
each wi corresponds to the set Ti in the MC instance H . The
part N contains d vertices, i.e., N = ∪1≤i≤dvi where each
vi corresponds to the element ei in H . For every i and j , if
ei ∈ Tj in H , we add an edge between vi and w j . For each
vi in N , we create d cliques where each clique is a (d + 2)-
clique (a clique of size d + 2), and connect vi to one vertex
of each clique. The construction of G is completed.

Assumeeach element in H is containedby at least 1 set, for
each wi ∈ M and v j ∈ (V (G)\M), we have deg(wi) ≤ d <

deg(v j). Recall that the core decomposition of G iteratively
deletes the vertices with degree less than k and assigns the
coreness of k − 1 to the deleted vertices in current iteration,
from k = 1, 2, . . . to k = kmax. Thus, the coreness of each
wi ∈ M is deg(wi), as wi can only be deleted when k =
deg(wi) + 1. The coreness of each v j ∈ N is d, as v j is not
deleted when k = d (due to the d cliques), and v j is deleted
when k = d + 1 (due to the deletion of every wi ∈ M).
Similarly, the coreness of every vertex in a (d + 2)-clique is
d + 1.

For each wi ∈ M , even if all the neighbors of wi are
anchored, the coreness of wi keeps the same, as wi will still
be deleted when k = deg(wi)+1. As we assume b < c < d,
for the anchoring of any b vertices, each non-anchor vertex
u in a (d + 2)-clique will still be deleted when k = d + 2
(coreness of u keeps the same), and thus, the anchoring of
multiple anchors cannot increase the coreness of any non-
anchor vi ∈ N to larger than d + 1. So, for each non-anchor
vi ∈ N , the coreness of vi increases by 1 (from d to d + 1)
iff at least one vi ’s neighbor in M is anchored. The optimal
anchor set A for anchored coreness problem corresponds to
the optimal set collection C for MC problem, where each
vertex wi ∈ A corresponds to the set Ti ∈ C . If there is a

123

Q. Linghu et al.

polynomial time solution for the anchored coreness problem,
the MC problem will be solved in polynomial time. �

Then, we prove that there is no PTAS for the anchored
coreness problem and thus it is APX-hard unless P=NP.

Theorem 2 For any ε > 0, the anchored coreness problem
cannot be approximated in polynomial time within a ratio of
(1 − 1/e + ε), unless P=NP.

Proof We use the reduction from the MC problem same to
the proof of Theorem 1. For any ε > 0, the MC problem
cannot be approximated in polynomial time within a ratio of
(1 − 1/e + ε), unless P = N P [30]. We have an anchor
set A for anchored coreness problem on G corresponding
to a set collection C for MC problem, where each wi ∈ A
corresponds to Ti ∈ C . Let γ > 1−1/e, if there is a solution
with γ -approximation on the coreness gain for the anchored
coreness problem, there will be a γ -approximate solution on
optimal element number for the MC problem. �

Besides, the function of coreness gain is not submodular.

Theorem 3 The function g(·) of coreness gain is not submod-
ular.

Proof For two arbitrary anchor sets A and B, if g(·) is sub-
modular, it must hold that g(A) + g(B) ≥ g(A ∪ B) +
g(A ∩ B). We consider a graph G where the vertex set V =
∪1≤i≤6vi , the vertices in ∪2≤i≤5vi form a 4-clique, v1 con-
nects to v2 and v3, and v6 connects to v4 and v5. If A = {v1}
and B = {v6}, g(A)+g(B) = 0 < g(A∪B)+g(A∩B) = 4.

�

5 A greedy approach

The hardness of the problem motivates us to develop an effi-
cient heuristic algorithm. We adopt a greedy heuristic which
iteratively finds one best anchor in each of the b iterations,
i.e., the vertex with the largest coreness gain if anchored. To
find the best anchor in one iteration, we compute the core-
ness gain of every candidate anchor. The time complexity of
this heuristic is O(b · n ·m). However, as our latter theorems
indicate, for the anchoring of one vertex, the change of core-
ness for other vertices is restricted and the computation cost
may be largely reduced. Also, our experiments on real graphs
find that the coreness gain from this greedy heuristic is much
larger than other heuristics. To improve the efficiency of the
greedy algorithm,we aim to significantly reduce (1) the num-
ber of candidate anchors and (2) the time cost of computing
the coreness gain of one anchor.

We firstly review the tree structure of core decomposi-
tion, which can be used to speed up the greedy algorithm

Algorithm 2: BuildCCT(G, PN)
Input : G : a connected graph, PN : a tree node
Output : T : the core component tree of G
kmin ← the smallest coreness from the vertices in V (G);1
T N ← an empty tree node ;2
T N .K := kmin ; T N .P := PN ; PN .C := PN .C ∪ T N ;3
for each unassigned u ∈ V (G) with c(u) = kmin do4

u is set assigned;5
T N .V := T N .V ∪ {u};6
T [u] := T N ;7

T N .I := the smallest vertex id from the vertices in T N .V ;8
for each unassigned u ∈ V (G) in ascending coreness order do9

G ′ ← the c(u)-core component containing u;10
T ← T ∪ BuildCCT(G ′, T N);11

return T12

(Sect. 5.1), and the theorems of finding the candidate follow-
ers which may increase the coreness due to the anchoring
(Sect. 5.2). Based on the tree and the theorems, we propose
a mechanism to reuse the intermediate results across itera-
tions (Sect. 5.3), and the algorithm to compute the coreness
gain of one anchor by partially exploring the tree (Sect. 5.4).
Combining the abovewith an upper bound technique for can-
didate anchors pruning, our final GAC algorithm is presented
(Sect. 5.5).

5.1 Core component tree

Definition 5 k-core component. Given a graph G and the
k-core Ck(G), a subgraph S is a k-core component if S is a
connected component of Ck(G).

According to the definition of k-core, for every integer
k, we have disjointness property: every k-core component is
disjoint from other k-core components in the same k-core;
and containment property: a k-core component is contained
by exactly one (k-1)-core component.

Tree Structure (T)Given a graphG, the core component tree
of G, denoted by T , organizes V (G) based on the k-core
components with different k. Specifically, T contains all the
vertices in V (G) and each vertex is exclusively contained
in one tree node. Given a vertex v, T [v] is the tree node
containing v.

We then clearly introduce the tree structure. Let T N
denote a tree node. T N .K is the coreness value associ-
ated with T N . The vertices in the subtree rooted at T N
induce a subgraph that is a (T N .K)-core component, denoted
by CC(T N). We use T N .V to denote the set of vertices
in the tree node T N , and all the vertices in T N .V have
coreness equal to T N .K . We assume each vertex in V (G)

has a positive integer id as its unique identifier, i.e., id ∈
[1, V (G)] ∧ id ∈ N. Let T N .I denote the smallest vertex
id from the vertices in T N .V . We use T N .P to denote the

123

Anchored coreness: efficient reinforcement of social networks

Table 3 Summary of notations for T

Notation Definition

T [v] The tree node which contains the vertex v

T N A tree node

T N .K A specific coreness k associated with
node T N

T N .V The set of vertices in tree node T N

T N .I The smallest vertex id in T N .V

T N .P The parent tree node of T N

T N .C The child tree node set of T N

CC(T N) The (T N .K)-core component containing
T N .V

tca[u][id] The set of u’s neighbors in T N .V with
T N .I = id

sn(u) The tree node id set where id ∈ sn(u) iff
∃v ∈ N (u) having
c(v) ≥ c(u) ∧ T [v].I = id

pn(u) The tree node id set where id ∈ pn(u) iff
∃v ∈ N (u) having
c(v) < c(u) ∧ T [v].I = id

F[x][id] The follower set of x at tree node id, i.e.,
v ∈ F[x][id] iff
v ∈ F(x) ∧ T [v].I = id

only parent tree node of T N , and T N .C to denote the child
tree node set of T N . The notations for T are summarized in
Table 3.

Algorithm 2 illustrates the structure of a core compo-
nent tree. It can be implemented in O(m) time as shown
in [48]. If G is not connected, we build a tree for each con-
nected component of G. Given a connected graph G, we
execute BuildCCT(G, ∅) to construct the tree. Initially,
every vertex in V (G) is unassigned. In each iteration, the
algorithm constructs a tree node T N and sets up its domains,
e.g., T N .K (Line 2-3). Let kmin be the smallest coreness
from V (G), every unassigned vertex with coreness kmin is
pushed into T N .V and set to be assigned (Line 4–7). Note
that the assigned or unassigned status of a vertex is global.
The construction follows a recursive DFS resulting in the
expected parent–child relation between two nodes (PN and
T N) based on the containment relation of k-core components
(Line 9–11).

Some notations for the tree are defined as follows.

Definition 6 tree node classified adjacency (tca). For a
given graphG, we scan the neighbor vertex set of each vertex
and use the structure tca to organize them. We partition the
neighbors of a vertex according to the tree nodes they belong
to, i.e., for a vertex u, tca[u][id] is the set of u’s neighbors
in the tree node T N with T N .I = id.

Definition 7 subtree adjacent nodes set (sn)Given a vertex
u in a graphG, the subtree adjacent nodes set ofu, denoted by

sn(u) is the id set of adjacent tree nodes with the associated
coreness not less than c(u), i.e., id ∈ sn(u) iff ∃v ∈ N (u,G)

having c(v) ≥ c(u) ∧ T [v].I = id.

Definition 8 parent adjacent nodes set (pn)Given a vertex
u in a graphG, the parent adjacent nodes set of u, denoted by
pn(u) is the id set of adjacent tree nodes with the associated
coreness less than c(u), i.e., id ∈ pn(u) iff ∃v ∈ N (u,G)

having c(v) < c(u) ∧ T [v].I = id.

Example 2 In Fig. 4, we have a graph G at left and its corre-
sponding T at right. Each solid-line box of the right is a tree
node which corresponds to a dotted box of the left. We have
T [2] = T N2, T N2.K = 2 and T N2.I = 2, T [7] = T N3,
T N3.K = 3 and T N3.I = 5. For tca, sn and pn, for some
instances, tca[2][5] = {7}, tca[2][2] = {3}, tca[7][2] = {2}
and tca[7][5] = {5}; sn(2) = {2, 5} and pn(7) = {2}.

Note that tca, sn and pn are the structures associated with
T and can be retrieved along with the building of T .

5.2 Restriction of candidate followers

If a vertex x is anchored, the set of candidate vertices which
may increase their corenesses is restricted.

Theorem 4 If a vertex x is anchored in G, any non-anchor
vertex u ∈ V (G) can increase its coreness by at most 1.

Proof We prove it by contradiction. Suppose there is a non-
anchor vertex u ∈ V (G) with coreness increasing from k′ to
k∗ after anchoring x and k∗ > k′ + 1. Let M be the k∗-core
after x is anchored, we have u ∈ M and deg(v, M) ≥ k∗
for every vertex v ∈ M . If we delete x and its corresponding
edges from M , we have deg(v, M\{x ∪ E(x)}) ≥ k∗ − 1 for
every v ∈ M because at most one edge is removed for each
vertex v ∈ M . Thus, M\{x ∪ E(x)} ⊆ Ck∗−1(G). As u ∈ M
and u �= x , we have u ∈ Ck∗−1(G) and thus k′ ≥ k∗ − 1
which contradicts with k∗ > k′ + 1. �
Tree Node Classified Follower Set (F) Every non-anchor
vertex with coreness increased by anchoring x is named as
a follower of x . The follower set of x in G is denoted by
F(x,G) that contains all its followers. According to Theo-
rem 4, g({x}) = |F(x)|. We define F to divide the followers
of an anchor based on tree node classified adjacency. Specif-
ically, for x ∈ V (G), v ∈ F[x][id] iff v ∈ F(x) ∧ T [v].I =
id.

A fast method to compute the followers will be introduced
in Sect. 5.4.Note thatwhenwe record the follower sets,we do
not store the specific followers of a vertex x but only store the
number of followers of x regarding each adjacent tree node,
so the space cost of F is O(m). The candidate followers of
a vertex x can be extracted as follows.

123

Q. Linghu et al.

Theorem 5 If a vertex x is anchored in the graph G, we have
F(x) ⊂ ⋃

id∈sn(x) T [id].V .

Proof Let O denote a vertex deletion order of core decom-
position on G without the anchoring of x . Note that the
deletion order may be different when there are some ver-
tices with same degree in the deletion procedure, while it is
proved in [65] that any order following Algorithm 1 leads to
the same coreness result. We denote the graph after anchor-
ing x by Gx . After the anchoring of x , for every vertex
u ∈ V (Gx) with c(u,G) < c(x,G), we can follow the
deletion order O of G in the core decomposition of Gx ,
and then cx (u,Gx) = c(u,G) because the degree of u in
the order keeps same when u is visited and to be deleted.
Let k′ = c(x,G), we have Ck′(Gx) = Ck′(G). Let C
denote the k′-core component containing x , for every ver-
tex u ∈ {Ck′(Gx) −C}, we have cx (u,Gx) = c(u,G) since
u and x are not in the same connected component ofCk′(Gx).

Consider a tree node T N in T of G with T N .I /∈ sn(x)
and T N .K ≥ c(x,G). The anchoring of x maymake a vertex
set V+ (from T N .P) increase coreness and enter CC(T N).
However, for each v ∈ V+, v /∈ C(T N .K)+1(Gx) because,
(1) the coreness of a vertex can increase by at most 1 for
one anchor, according to Theorem 4; (2) x /∈ V+ otherwise
T N .I ∈ sn(x)which contradicts the assumption. Thus, if we
delete the vertices inV+ before T N .V in core decomposition,
each vertex u ∈ T N .V has the same degree as in O when u
is visited and to be deleted, i.e., cx (u,Gx) = c(u,G). Thus,
only the vertices in

⋃
id∈sn(x) T [id].V may be the followers

of x . �

5.3 Reuse of intermediate results

After one iteration of our greedy heuristic where we choose
to anchor x , for each vertex u �= x , suppose we have had the
follower set F[u][id] for each tree node id ∈ sn(u) before
anchoring x . To reuse the follower results after anchoring x ,
we apply Algorithm 3 to decide, for every vertex u, whether
the follower set of u on each tree node keeps the same in the
next iteration.

According to Theorem 5, we get the affected vertex set
Vx := ⋃

id∈sn(x) T [id].V (Line 1), and initialize the reusable
node set rn(·) for each vertex (Line 2). We remove the tree
node ids from rn(·) where the followers cannot be reused
in the next iteration (Line 3–6). Then we run core decom-
position on the subgraph CC(T [x]) with x anchored (Line
7—8) and update the subtree rooted at x (Line 9–11). The
update of T can find other vertices which may be affected
w.r.t x (Line 12–13). Similar to Lines 3–6, we remove the tree
node ids from rn(·) where the followers cannot be reused by
above affected vertices (Line 13–16). In the implementation,
for a vertex u, we easily avoid duplicate removals in rn(u)

triggered by u’s neighbors using tree node tags.

Algorithm 3: ResultReuse(x , G, T)
Input : x : the anchor vertex, G : a social network, T : the

core component tree of G,
Output : the tree node set rn(u) for each vertex u ∈ V (G),

where F[u][id] can be reused for each id ∈ rn(u)

Vx := ⋃
id∈sn(x) T [id].V ;1

rn(u) := sn(u) for each u ∈ V (G);2
for each v ∈ Vx do3

id := T [v].I ; rn(v) := rn(v)\{id};4
for each id ′ ∈ pn(v) and each u ∈ tca[v][id ′] do5

rn(u) := rn(u)\{id};6

G ′ ← CC(T [x]); P ′ ← T [x].P;7
CoreDecomp(G ′, {x});8
T ∗ ← BuildCCT(G ′, P ′);9
T ′ ← T with the subtree rooted at P ′ replaced by T ∗;10
Get tca′, sn′ and pn′ from T ′;11
V ′
x := ⋃

v∈Vx T
′[v].V ;12

for each v ∈ V ′
x \ Vx do13

id := T [v].I ; rn(v) := rn(v) \ {id};14
for each id ′ ∈ pn′(v) and each u ∈ tca′[v][id ′] do15

rn(u) := rn(u) \ {id};16

return rn(u) for every vertex u ∈ V (G)17

Algorithm 1 (Line 8) and Algorithm 2 (Line 9) both have
O(m) time complexity. In Lines 3–6 and Lines 13–16, each
edge is accessed at most one time, respectively. So, the time
complexity of Algorithm 3 is O(m).

Lemma 1 After the anchoring of vertex x and the execution
of Algorithm 3, for every non-anchor vertex u ∈ V (G) and
each id ∈ rn(u), we have (1) id ∈ sn′(u), (2) T ′[id].K =
T [id].K and (3) T ′[id].V = T [id].V .

Proof We prove it by contradiction. To prove (1), suppose
an id ∈ rn(u) has id /∈ sn′(u). That means a© T ′[id].V
does not contain any neighbor of u or b© T ′[id].V contains
the neighbors of u but also contains another vertex whose
id ′ < id so T ′[id].I = id ′ and id ′ ∈ sn′(u).

For a©, if vertex id itself did not increase its coreness,
then the neighbors of u in T [id].V must have increased their
coreness and left T [id].V . So these neighbors belong to Vx

(Line 1 of Algorithm 3) and they are used to erase id at Line
3–6, which contradicts with id ∈ rn(u); If id increased its
coreness, id would make all the vertices in T [id].V belong
to Vx (Line 1), and then id is erased from rn(u) at Lines
3–6 which contradicts with id ∈ rn(u). For b©, if vertex
id did not increase its coreness, it means there is a vertex v

with coreness increased and then joined T ′[id].V . For such
v, v ∈ Vx which makes the neighbors of u in T ′[id].V be
included in V ′

x (Line 12). So, id is erased from rn(u) at Lines
13–16 which contradicts with id ∈ rn(u); If id increased its
coreness, it contradicts with id ∈ rn(u) because of the same
reason when id increased its coreness in a©.

To prove (2), suppose there is an id ∈ rn(u) having
T ′[id].K �= T [id].K , that means vertex id must have

123

Anchored coreness: efficient reinforcement of social networks

Fig. 4 Core component tree

increased its coreness. So, all the vertices of T [id].V belong
to Vx (Line 1) which erased id from rn(u) at Lines 3–6 and
contradicts with id ∈ rn(u).

To prove (3), suppose there is an id ∈ rn(u) having
T ′[id].V �= T [id].V . We already proved that id ∈ sn′(u)

and T ′[id].K = T [id].K . Thus, there must be c© a vertex
v ∈ T [id].V increased c(v) and then left T [id].V , or d© a
vertex v joined in T ′[id].V because its coreness increased.

For c©, v can make all vertices of T [id].V belong to
Vx (Line 1) then erase id (Line 3–6). For d©, v can make
u’s neighbors in T ′[id].V belong to V ′

x (Line 12) and can
erase id (Line 13–16). Both c© and d© contradict with
id ∈ rn(u). �
Theorem 6 After the anchoring of vertex x and the execution
of Algorithm 3, let Gx denote the graph with x anchored,
considering a non-anchor vertex u ∈ V (Gx), for each id ∈
rn(u) and each v ∈ T ′[id].V , we have v ∈ F(u,Gx) iff
v ∈ F[u][id].
Proof Let O denote a vertex deletion order of core decom-
position on G without anchoring x . Similar to the proof of
Theorem5,we follow the deletion orderO in the core decom-
position of Gx . Let k∗ = T ′[id].K . The anchoring of x may
make a vertex set V+ (from T [id].P) increase coreness so
enter CC(T ′[id]), but for each v ∈ V+, v /∈ Ck∗+1(Gx)

since the coreness of a vertex can increase by atmost 1 for one
anchor according to Theorem 4. Also, we have T ′[id].K =
T [id].K and T ′[id].V = T [id].V from Lemma 1. Thus,
V+ = ∅. Now we conclude each vertex u ∈ T ′[id].V has
the same degree as in O when u is visited and to be deleted
in core decomposition of Gx , i.e., cx (u,Gx) = c(u,G). So
the followers of x at node id keeps the same after anchoring
x . �

After anchoring x , the search space of followers for a non-
anchor vertex u is within

⋃
id∈sn′(u) T ′[id].V according to

Theorem 5. By executing Algorithm 3, we get the rn(u) so
that a subset of search space

⋃
id∈rn(u) T ′[id].V does not

need to be recomputed, as proven by Theorem 6. Essentially,

we reduce the search space of follower computation from
⋃

id∈sn′(u) T ′[id].V to
⋃

id∈sn′(u)\rn(u) T ′[id].V .

Example 3 In Fig. 4, we can know that anchoring vertex 1
can make 5, 6 and 7 the followers, which means F[1][5] =
{5, 6, 7}. And anchoring vertex 2 can make 3, 4 and 7 the
followers, whichmeans F[2][2] = {3, 4} and F[2][5] = {7}.
Now we have sn(1) = {5} and sn(2) = {2, 5}. If we choose
to anchor 1, then V1 := {5,6,7}, 5, 6 and 7 become the
followers and join the child node of their current tree node.
For vertex 2, initially we have rn(2) = sn(2) = {2, 5}. But
V1 makes rn(2) := rn(2)\{5}. Obviously, T [7].I = 5 and
7 is indeed not the follower of 2 any more. And we can see
3 and 4 are still the followers of 2, which confirms F[2][2]
can be reused since 2 ∈ rn(2).

5.4 Coreness gain computation

In this section, we utilize the vertex deletion order in core
decomposition to speed up the follower computation. Recall
that we have g({x},G) = |F(x)| for an anchored vertex x .

Given a graph G, the k-shell, denoted by Hk(G), is the
set of vertices in G with coreness equal to k, i.e., Hk(G) =
V (Ck(G))\V (Ck+1(G)). The vertices in the k-shell can
be further divided to different vertex sets, named layers,
according to their deletion sequence in the core decompo-
sition (Algorithm 1). We use Hi

k to denote the i-layer of
the k-shell, which is the set of vertices that are deleted in
the i th batch. Specifically, when i = 1, Hi

k is defined as
{u | deg(u,Ck(G)) < k + 1 ∧ u ∈ Ck(G)}. The dele-
tion of the 1st-layer will produce the 2nd-layer. Recursively,
when i > 1, Hi

k = {u | deg(u,Gi) < k + 1 ∧ u ∈ Gi }
where G1 = Ck(G) and Gi is the subgraph induced by
V (Gi−1)\Hi−1

k on Ck(G).

Shell-layer Pair Based on the above definition, each vertex u
in the graph G has a shell-layer pair (k, i), which means u in
the i th layer of the k-shell, i.e., u ∈ Hi

k . We record the shell-
layer pair of every vertex u inP . Specifically, for every vertex
v, it is contained in the (P[v].i)th layer of the (P[v].k)-shell
in G. We define P[vi] ≺ P[v j] iff P[vi].k < P[v j].k or
P[vi].k = P[v j].k ∧ P[vi].i < P[v j].i .
Example 4 In Fig. 5a, the 2-shell contains u1, u2 and u3, and
the 3-shell contains u4 and u5. However, u1 is the first to be
deleted in core decomposition, because u1 is the only one
whose degree is less than 3 currently. After u1 being deleted
with P[u1] = (2, 1), edges (u1, u2) and (u1, u4) are deleted.
Then, u2 becomes the only one with degree less than 3, so u2
is deleted withP[u2] = (2, 2). Similarly,P[u3] = (2, 3). Both
P[u4] and P[u5] are equal to (3, 1) since they contradict the
degree constraint at the same time.

123

Q. Linghu et al.

(a) (b)

Fig. 5 Figures for Examples 4, 5, 6 and 7

Definition 9 Upstair Path. We say there is an upstair path
in G for u ∈ V (G) w.r.t a given anchor vertex x if there is a
path x � u where (i) for every vertex y in the path except x ,
P[y].k = P[u].k; and (ii) for every two consecutive vertices
v′ and v′′ from x to u, (v′, v′′) ∈ E(G) and P[v′] ≺ P[v′′].
Example 5 In Fig. 5b, we can compute the shell-layer pairs
of the vertices and get P[u1] = (1, 1), P[u2] = P[u3] =
P[u4] = (2, 1), P[u5] = P[u6] = (2, 2) and P[u7] =
P[u8] = P[u9] = P[u10] = (3, 1). The path (u1, u2, u5)
is an upstair path for u5 w.r.t u1, because P[u1] ≺ P[u2],
P[u2] ≺ P[u5], and P[u2].k = P[u5].k. (u2, u5) itself can
also be an upstair path for u5 w.r.t u2, because it does not
contradict any constraint in Definition 9. On the contrary,
(u3, u4, u6) cannot be an upstair path for u6 w.r.t u3 because
P[u3] = P[u4] (contradicts (ii) of Definition 9), neither
nor (u3, u6, u8) for u8 w.r.t. u3 because P[u6].k �= P[u8].k
which contradicts the (i) of Definition 9.

Theorem 7 A vertex u ∈ V (G) is a follower of the anchor x
implies that there is an upstair path x � u in G.

Proof Before the anchoring of x in G, let k = c(u,G),
all the neighbors of u in G are classified into three sets:
N 0
u contains every neighbor v with P[v].k < P[u].k, i.e.,

c(v,G) < c(u,G); N 1
u contains every neighbor v with

P[v].k = P[u].k and P[v].i < P[u].i ; and N 2
u contains the

other neighbors of u. (i) Suppose x ∈ N 0
u ∪N 1

u , (x, u) itself is
an upstair path from x to u. (ii) Suppose x ∈ N 2

u , let O denote
a vertex deletion order of core decomposition on G without
any anchors (Algorithm1).We denote the graph after anchor-
ing x byGx . For every vertex v ∈ V (Gx)withP[v] ≺ P[x],
we can follow the same deletion order O in the core decom-
position of Gx , and then cx (v,Gx) = c(v,G) because the
degree of v in the order keeps samewhen v is visited and to be
deleted. Thus, cx (u,Gx) = c(u,G) and u is not a follower
of x if x ∈ N 2

u . So x /∈ N 2
u . (iii) Suppose x /∈ N 0

u ∪ N 1
u ∪ N 2

u ,
u must have a neighbor v0 ∈ N 1

u ∩ Ck+1(Gx); otherwise,
cx (u,Gx) = c(u,G) as in case (ii) following the deletion
order O . Thus, if a vertex vi ∈ Ck+1(Gx)\Ck+1(G), vi must

Algorithm 4: FindFollowers(x , G, T)
Input : x : the anchor, G : a social network, T : the core

component tree of G
Output : F[x][·] : tree node classified follower sets of x
x is set survived;1
for each non-reusable tree node id ∈ sn(x)\rn(x) do2

H := ∅;3
if id = ix then4

H .push(u) for each u ∈ tca>=(x);5

else6
H .push(u) for each u ∈ tca[x][id];7

while H �= ∅ do8
u ← H .pop();9
Compute d+(u);10
if d+(u) ≥ c(u,G) + 1 then11

u is set survived;12
for each v ∈ tca>=(u) and v /∈ H do13

H .push(v);14

else15
u is set discarded ;16
Shrink(u);17

F[x][id] ← survived vertices\{x} ;18

return F[x]19

Algorithm 5: Shrink(u)
Input : u : the vertex for degree check
for each survived neighbor v with v �= x do1

d+(v) := d+(v) − 1;2
T ← v If d+(v) < c(v,G) + 1;3

for each v ∈ T do4
v is set discarded;5
Shrink(v);6

have a neighbor vi+1 ∈ N 1
vi

∩Ck+1(Gx) or vi+1 = x . Recur-
sively, u ∈ F(x) implies there is a path (x, . . . , u) which is
an upstair path from x to u where each vertex in the path is
a follower of x except x itself. �

Computing Followers According to Theorem 7, the vertices
without any upstair path from the anchor vertex x cannot
be a follower of x . We use CF(x) to denote all the candi-
date followers of an anchor x , i.e., the vertices that can be
reached by x via upstair paths. Instead of doing core decom-
position of the whole graph, we only need to explore the
candidate followers CF(x) to compute the follower set of x .
We use tca≤=(u) to denote the set of u’s neighbors where each
neighbor v has P[v].k = P[u].k ∧ P[v].i ≤ P[u].i . Simi-
larly, tca>=(u) contains every u’s neighbor v with P[v].k =
P[u].k ∧ P[v].i > P[u].i . For simplicity, we use iu to
denote the id of the tree node which contains the vertex u,
i.e., iu = T [u].I . Note that, tca≤=(u) and tca>=(u) are easily
retrieved along with core decomposition.

123

Anchored coreness: efficient reinforcement of social networks

Algorithm 4 shows the pseudo-code for computing the
followers. In each iteration, we search the non-reusable tree
nodes (Sect. 5.3) in T to compute the followers of x in the
nodes (Line 2, Algorithm 4). We maintain a min heap H to
store the candidate followers CF(x) which will be explored
(Lines 3–7 and 13–14). The key of a vertex in H is its shell-
layer pair with ties broken by the vertex id. In each tree node
id ∈ sn(x)\rn(x), we explore CF(x) in a layer-by-layer
manner: from j th layer to (j + 1)th layer starting from x .

In the layer-by-layer search, a vertex is set as unexplored
if it has never been checked with the degree constraint (Line
11). A vertex is set as survived if it survived the degree
check (Line 12), otherwise it is set as discarded (Line 16).
The discarded vertices will not be visited again, and a sur-
vived vertex may become discarded later due to the deletion
cascade. The vertices that are visited in the search, e.g., not
in any upstair path, are regarded as discarded.

Once a candidate follower u is discarded (Line 16), Algo-
rithm 5 will be called to recursively delete other vertices
without sufficient degree bound due to the deletion of u. After
traversing all the candidate followers and deleting the can-
didates that cannot survive the degree check, the remaining
vertices in CF(x) are the true followers of x . Note that the
followers are separately computed and returned for each tree
node (Line 2 and Line 18 of Algorithm 4).

The time complexity of Algorithm 4 is O(m), because
each edge is accessed at most three times: push neighbors
into H , degree check, and compute the cascade of shrink.

Degree Check The degree bound of a vertex u ∈ CF(x) is
denoted by d+(u). Specifically, d+(u) = d+

s (u) + d+
u (u) +

d>(u), in which d+
s (u) (resp. d+

u (u)) is the number of
survived (resp. unexplored) neighbors in {x}∪ (tca≤=(u)∩
H) ∪ tca>=(u), and d>(u) is the number of neighbors in
⋃

id∈sn(u)\{iu} tca[u][id]. The following theorem indicates
that we can exclude a candidate follower u if d+(u) <

c(u,G) + 1. The discard of a vertex may invoke the discard
of other vertices, as shown inAlgorithm 5.When the deletion
cascade terminates, the tags of all the vertices affected by the
discard of u will be correctly updated.

Theorem 8 A vertex u ∈ CF(x) cannot be a follower of x if
d+(u) < c(u,G) + 1.

Proof We denote the graph after anchoring x by Gx , and let
k+ = c(u,G) + 1. We show if d+(u) < c(u,G) + 1, then
deg(u,Ck+(Gx)) < k+, so u cannot be a follower of x . u’s
neighbors can be divided into those in

⋃
id∈pn(u) tca[u][id],

tca≤=(u) ∪ tca>=(u) and
⋃

id∈sn(u)\{iu} tca[u][id], respec-
tively. Obviously the neighbors of

⋃
id∈pn(u) tca[u][id] are

not in Ck+(Gx), because they cannot increase the core-
ness by 2 according to Theorem 4. For the neighbors in
tca≤=(u) ∪ tca>=(u), they are all considered in d+

s (u) or
d+
u (u), unless they are discarded or never pushed to H ,

both of which mean they are not in Ck+(Gx). At last,
for the neighbors in

⋃
id∈sn(u)\{iu} tca[u][id], they satisfy

| ⋃id∈sn(u)\{iu} tca[u][id]| = d>(u). Since d+(u) considers
all the neighbors of u which are possible to be in Ck+(Gx),
d+(u) is a degree bound of deg(u,Ck+(Gx)). �

For simplicity, in the following examples, the id of a vertex
ui is ui itself where i ∈ [1, V (G)] ∧ i ∈ N. For two vertices
ui and u j , we set ui < u j iff i < j .

Example 6 In Fig. 5b, we explain an example of using Algo-
rithm4 to compute the followers ofu1 froma single tree node.
For the core component tree T , we can see there are three tree
nodes T N1, T N2 and T N3,where T N1.V = {u1}, T N1.K =
1 and T N1.I = u1; T N2.V = {u2, u3, u4, u5, u6},
T N2.K = 2 and T N2.I = u2; T N3.V = {u7, u8, u9, u10},
T N3.K = 3 and T N3.I = u7. Initially, u1 itself is set sur-
vived and we push the only adjacent vertex u2 which is in
tca[u1][u2] into the min Heap H . Then, we pop u2 and have
d+
s (u2) = 1, d+

u (u2) = 2 and d>(u2) = 0, so u2 survives the
degree check since d+(u2) = c(u2) + 1 and we set u2 sur-
vived.We put the vertices of tca>=(u2) into the heap so u5 and
u6 are now in H . We first explore u5 and have d+

s (u5) = 1,
d+
u (u5) = 0, d>(u5) = 2 and d+(u5) = c(u5) + 1, so
we set u5 survived. As tca>=(u5) = ∅, we do not put any
more vertices into H for now. Then, we explore u6 and have
d+
s (u6) = 1, d+

u (u6) = 0 and d>(u6) = 1. Note that u3
and u4 are unexplored neighbors of u6 in tca≤=(u6), but they
will not be added into H so cannot be counted in d+

u (u6).
d+(u6) < c(u6) + 1 so we will discard it. As illustrated in
Algorithm5, for each survived neighbor of u6 which is u2,we
make d+(u2) = d+(u2)−1 = 2 so that d+(u2) < c(u2)+1.
Sowe discard u2 andmake d+(u5) = d+(u5)−1 = 2. Obvi-
ously d+(u5) < c(u5) + 1 and gets discarded. Finally, the
heap H becomes empty and anchoring u1 has no follower.

Reusing Followers Since we compute the followers of x
regarding each tree node id ∈ sn(x) separately, it is sim-
ple to reuse the followers computed from the last iteration.
Specifically, after anchoring each vertex x , we erase some
follower results by Algorithm 3. Once a tree node id is vis-
ited (Line 2, Algorithm 4), we first checkwhether id ∈ rn(x)
or not. If id ∈ rn(x), the follower set of x in this tree node
is not erased by Algorithm 3. Thus, we do not need to com-
pute these followers (Lines 3–17, Algorithm 4) again, and
use the existing F[x][id] instead. If id /∈ rn(x), we execute
the Lines 3–17 of Algorithm 4 to find the correct followers.

5.5 The GAC algorithm

We first introduce an upper bound of follower number.

Upper Bound-Based Pruning We introduce an easy-to-
compute upper bound to further prune unpromising candi-
dates before the computation of followers. For a vertex x , by

123

Q. Linghu et al.

Eq. 1, we firstly get the upper bound of followers from its
own tree node T [x]. Then for each id ∈ sn(x)\{ix }, we get
an upper bound UB>

id(x) by Eq. 2. At last we can compute
the total upper boundUBσ (x) by Eq. 3. When tca>=(u) = ∅
for a vertex u, we set UBiu (u) to 0.

UBix (x) =
∑

u∈tca>=(x)

(UBiu (u) + 1) (1)

UB>
id(x) =

∑

u∈tca[x][id]
(UBiu (u) + 1) (2)

UBσ (x) = UBix (x) +
∑

id∈sn(x)\{ix }
UB>

id(x) (3)

Theorem 9 Given a graph G and an anchor vertex x,
|F[x][ix]| ≤ UBix (x), and for each id ∈ sn(x)\{ix },
|F[x][id]| ≤ UB>

id(x). So, g({x},G) ≤ UBσ (x).

Proof According to Eqs. 1 and 2, all the vertices of⋃
id∈sn(x) T [id].V which are reachable by x via upstair paths

are counted at least once in the equations. Therefore, based
on Theorem 7, we can prove that |F[x][ix]| ≤ UBix (x)
and |F[x][id]| ≤ UB>

id(x) for each id ∈ sn(x)\{ix }.
Then, based on Eq. 3 and Theorem 5, we can conclude that
g({x},G) ≤ UBσ (x). �

About the computation of the upper bound, after getting
the partial ordering (i.e., shell-layer pairs) of V (G), we use
topological sorting to construct a compatible total ordering
of V (G). Then, we can accumulatively compute the upper
bound of each vertex with the reverse sequence of the total
ordering with a time complexity of O(m).

Example 7 In Fig. 5a, after getting the shell-layer pair of each
vertex, P[u1] = (2, 1), P[u2] = (2, 2), P[u3] = (2, 3), and
P[u4] = P[u5] = (3, 1). Now in T , we have T N1 where
T N1.V = {u1, u2, u3}, T N1.K = 2 and T N1.I = u1.
T N2.V = {u4} where T N2.K = 3 and T N2.I = u4.
T N3.V = {u5} where T N3.K = 3 and T N3.I = u5.
Then, we get a total ordering of them: u1 ≺ u2 ≺ u3 ≺
u4 ≺ u5. We compute their upper bounds following this
order. For u4 and u5, UBu4(u4) = UBu5(u5) = 0 since
tca>=(u4) = tca>=(u5) = ∅. For u3, tca>=(u3) = ∅ so
UBu1(u3) = 0. tca[u3][u4] = {u4} and tca[u3][u5] = {u5}
, so thatUB>

u4(u3) = (UBu4(u4)+ 1) = 1 andUB>
u5(u3) =

(UBu5(u5) + 1) = 1. Therefore, UBσ (u3) = UBu1(u3) +
UB>

u4(u3) + UB>
u5(u3) = 2. For u2, tca>=(u2) = {u3} so

UBu1(u2) = (UBu1(u3) + 1) = 1, and tca[u2][u5] = {u5}
so that UB>

u5(u2) = (UBu5(u5) + 1) = 1. Then we
have UBσ (u2) = UBu1(u2) + UB>

u5(u2) = 2. At last,
we get tca>=(u1) = {u2} and tca[u1][u4] = {u4}, so we
can get UBu1(u1) = (UBu1(u2) + 1) = 2, UB>

u4(u1) =
(UBu4(u4)+1) = 1,UBσ (u1) = UBu1(u1)+UB>

u4(u1) =
3.

Algorithm 6: GAC(G, b)
Input : G : a social network, b : number of anchors
Output : A : the set of anchor vertices
CoreDecomp(G, ∅);1
T ← BuildCCT(G, root);2
Compute upper bounds of follower numbers;3
for i from 1 to b do4

λ := −1; a := null;5
for each u ∈ V (G) with decreasing orderUBσ (u) do6

if u /∈ A andUBσ (u) > λ then7
F[u] := FindFollowers(u, G, T);8
if |F[u]| > λ then9

a := u; λ := |F[u]|;10

A := A ∪ {a}; deg(a,G) := +∞;11
ResultReuse(a, G, T);12
Refine upper bounds;13

return A14

Upper Bound RefiningAfter anchoring a vertex in each itera-
tion, we can retain and update some computed upper bounds
based on our tree node classified adjacency. Firstly, for each
id ∈ rn(u) of a non-anchor vertex u, UBix (x) or UB>

id(u)

stays the same, so does not need to be recomputed. Sec-
ondly, if F[u][id] has been computed and is not erased in
Algorithm 3, it can replace UBix (x) or UB>

id(u) so that a
more accurate bound is found.

Combining the Techniques Algorithm 6 shows the detail of
our final greedy algorithm which combines all the proposed
techniques. We firstly apply Algorithm 1 (Line 1) to get the
initial coreness of each vertex of the given graph G. Then,
we apply Algorithm 2 (Line 2) to build the core compo-
nent tree for the first time, followed by the computing of our
upper bound of follower numbers (Line 3), which will be
updated after anchoring every vertex (Lines 12–13). Then,
the greedy heuristic starts (Line 4). In each iteration, we use
a to record the best anchor vertex found so far and use λ

to record the number of followers of the best anchor (Line
5). We sequentially compute the followers for the vertices in
decreasing order of their upper bounds (Line 6). Only if the
upper bound of a vertex u is larger than λ and u is not an
existing anchor (Line 7), we will continue the follower com-
putation for u (Lines 8–10). Note that we will not compute
the follower number for u in the tree nodes where the num-
bers of followers do not change from last iteration and can be
reused. After the follower computation of current iteration,
the best anchor a is added to the set A, and the degree of a
is set to be positive infinity. After b iterations, Algorithm 6
returns the set A of b anchor vertices (Line 14).

123

Anchored coreness: efficient reinforcement of social networks

Fig. 6 k-shell component

6 Distributed greedy algorithm

We introduce a distributed greedy anchored coreness algo-
rithm, DGAC, in which a master machine is responsible
for resource scheduling and multiple slave machines are
responsible for specific computing tasks. DGAC can fur-
ther parallelize the computation via the multithreads of each
machine.

6.1 Shell component partition

In this subsection, we introduce the graph partition algo-
rithm and its maintenance algorithm after each iteration of
the greedy strategy. We firstly define k-shell component,
followed by the definitions regarding shell component parti-
tion which can divide the data graph into fine-grained units,
thus helps balance the computation among all the machines
in distributed setting. Examples 8 and 9 are the instances
to illustrate k-shell component and shell component parti-
tion, respectively. Based on these, we introduce Algorithm 7
(graph partition algorithm) and Algorithm 9 (partition main-
tenance algorithm) and then prove their correctness.

Definition 10 k-shell component. Given a graph G and the
k-shell Hk(G), a subgraph Sik is the ith k-shell component of
Hk(G), if Sik is a maximal induced connected component of
Hk(G).

Example 8 In Fig. 6, we have H1(G) = {u1}, H2(G) =
{u2, u3, u4} and H3(G) = {u5, u6, u7, u8, u9}. Within
H1(G), S11 is the only k-shell component with V (S11) =
{u1}. Within H2(G), S12 is the only k-shell component with
V (S12) = {u2, u3, u4}. But within H3(G), we have two k-
shell components S13 and S23 , in which V (S13) = {u8, u9} and
V (S23) = {u5, u6, u7}.
Shell Component Partition (SC, SF,SP) We use SC to
denote a shell component partition affiliated to one k-shell
component Sik , then SC has the following domains:

(1) SC .V , having u ∈ SC .V iff. u ∈ V (Sik);
(2) SC .V−, having u ∈ SC .V− iff. c(u,G) < k and

∃(u, v) ∈ E(G) ∧ v ∈ SC .V ;

Table 4 Summary of notations for SP , SC

Notation Definition

SC A shell component partition affiliated to Sik
SC .V The set of vertices with coreness equal to k of Sik
SC .V− The set of vertices with coreness less than k of Sik
SC .E The set of edges in SC

SC .h[u] Number of u’s neighbors having higher coreness

SC .C The anchor candidates set in SC

SF[u][SC] The follower set of u in SC

SP[u] The set of shell component partitions containing u

Table 5 Other notations for DGAC

Notation Definition

Sik The ith k-shell component

Vx (
⋃

SC∈SP[x] SC .V)\{x}
Gx The graph G with x anchored

GSC The subgraph formed by SC .V , SC .V−,
SC .E

N≤(u, SC); N>(u, SC) Set of such u’s neighbor v in SC with
P[v].k = P[u].k ∧ P[v].i ≤ P[u].i or
P[v].k < P[u].k (resp.
P[v].k = P[u].k ∧ P[v].i > P[u].i or
P[v].k > P[u].k)

d+
P (u, SC) The degree bound of u in partition SC

USC (u) The upper bound of u’s followers in SC

NS The number of slave machines

NT The number of threads within each slave
machine

Master Refer to the master machine

Slavei Refer to the ith slave machine

LB(u) Equation 4

LB Equation 5

(3) SC .E , having (u, v) ∈ SC .E iff. u ∈ SC .V ∧ v ∈
SC .V ∪ SC .V− ∧ (u, v) ∈ E(G);

(4) SC .h, having for each u ∈ SC .V , SC .h[u] = |{v|(u, v)

∈ E(G) ∧ c(v,G) > c(u,G)}|;
(5) SC .C , the candidate anchor set in SC , which will be

explained in Sect. 6.3 in detail.
(6) SP[u], the set of all the shell component partitions hav-

ing u, i.e., SP[u] = {SC | u ∈ SC .V ∪ SC .V−}.
(7) We use SF[u][SC] to denote the follower set of u in SC ,

i.e., SF[u][SC] = {v | v ∈ F(u) ∧ v ∈ SC .V }.

All the notations regarding shell component partition are
summarized in Table 4, and other notations for DGAC are
summarized in Table 5.

Example 9 In Fig. 7, we have 5 shell component parti-
tions SC1, SC2, SC3, SC4 and SC5, which are affiliated

123

Q. Linghu et al.

Fig. 7 Shell component partition

to 5 k-shell components S11 , S
1
2 , S

1
3 , S

2
3 and S14 from the

example in Fig. 6. For instance, SC4 is affiliated to S23 .
V (S23) = {u5, u6, u7} and E(S23) = {(u5, u6), (u6, u7)}.
SC4.V = {u5, u6, u7}, SC4.V− = {u1, u2} and SC4.E =
{(u1, u6), (u2, u7), (u5, u6), (u6, u7)}. For the edges between
SC4.V and the 5-clique, we do not store those specific edges
in SC4, but only record SC4.h[u5] = 3, SC4.h[u6] = 1 and
SC4.h[u7] = 3.

Algorithm 7 partitions the data graph G based on shell
component partitions. Firstly, we need to conduct core
decomposition (Line 1) on G so that we can get the coreness
of each vertex. We traverse all the vertices with ascend-
ing order of coreness (Line 2). Each vertex is marked
unassigned to shell component partition as default. Each
time meeting an unassigned vertex u in Algorithm 7 (Line
3), we create a new SC for u, set the related domains of SC
and set u as assigned (Lines 4–7). Then, we call Algorithm 8
(details following) to recursively collect all the verticeswhich
are supposed to be in SC (Line 8), followed by adding SC
to SP[u]. When all the vertices are set assigned (in Algo-
rithm 7 or Algorithm 8), we get the complete SP .

In Algorithm 8, for the vertex u, its neighbors N (u,G)

are classified into 3 categories. Lines 2–5 include such v ∈
N (u,G) with c(v) < c(u) to SC . Lines 14–15 add such
v ∈ N (u,G) with c(v) > c(u) to SC .h[u]. For such v ∈
N (u,G) with c(v) = c(u), apart from including v to SC ,
we also need to recursively call Algorithm 8 for v, because
v ∈ SC .V . (Lines 6–13)

After choosing an anchor vertex in each iteration, we use
Algorithm 9 to maintain the partition for the next iteration.
We prove the maintenance by Algorithm 9 is correct. We
firstly set all the vertices as unassigned (Lines 1–2). For the
anchoring of x , we define Vx = (

⋃
SC∈SP[x] SC .V)\{x}.

Then, in the post-anchor graph Gx with anchoring x , after
updating the coreness of the anchor vertex and its followers
(Lines 3–5), any k-shell component Sik having ∃v ∈ Vx s.t.

Algorithm 7: ShellPartition(G)
Input : G : the graph
Output : SP : the shell component partition of G
CoreDecomp(G, ∅);1
for each u ∈ V (G) in ascending c(u) order do2

if u is unassigned then3
SC ← an empty shell component partition;4
SC .V := SC .V ∪ {u};5
SC .h[u] := 0;6
u is set assigned;7
ShellConnect(u, G, SC);8
SP[u] := SP[u] ∪ {SC};9

return SP10

Algorithm 8: ShellConnect(u, G, SC)
Input : u : a vertex, G : the graph, SC : the shell component

partition containing u
for each v ∈ N (u,G) do1

if c(v) < c(u) then2
SC .E := SC .E ∪ {(u, v)};3
SC .V− := SC .V− ∪ {v};4
SP[v] := SP[v] ∪ {SC};5

else if c(v) = c(u) then6
SC .E := SC .E ∪ {(u, v)};7
if v is unassigned then8

SC .V := SC .V ∪ {v};9
SC .h[v] := 0;10
v is set assigned;11
ShellConnect(v, G, SC);12
SP[v] := SP[v] ∪ {SC};13

else if c(v) > c(u) then14
SC .h[u]++;15

else16

v ∈ V (Sik) and its affiliated shell component partition are
updated by Lines 6–13. The following lemmas and theorems
prove the other shell component partitions remain the same.

Lemma 2 For each non-anchor vertex u ∈ V (G)\A, there
is only one shell component partition SC having u ∈ SC .V .

Proof We prove it by contradiction. Assume u ∈ SC .V and
u ∈ SC ′.V . Then the Sik that SC is affiliated to and the Si

′
k′

that SC ′ is affiliated to satisfy (1) k = k′ = c(u); and (2)
V (Sik) and V (Si

′
k′) belong to one connected component since

they are both connected to u. Thus, SC and SC ′ would be one
shell component partition,which contradicts our assumption.
Proof completes. �

For each u ∈ SC .V , we define deg(u, SC) as the
degree of u in shell component partition SC . deg(u, SC) =
|{v | (u, v) ∈ SC .E}| + SC .h[u]. With this definition, we
can get the coreness for u ∈ SC .V , denoted by c(u, SC).

123

Anchored coreness: efficient reinforcement of social networks

Algorithm 9: MaintainSP(x , G)
Input : x : the anchor vertex, G : the graph
for each u ∈ V (G) do1

u is set as unassigned;2

c(x) := +∞;3
for each u ∈ F[x] do4

c(u)++;5

for each SC ∈ SP[x] do6
for each unassigned u ∈ SC .V with u �= x do7

SC ′ ← an empty shell component partition;8
SC ′.V := SC ′.V ∪ {u};9
SC ′.h[u] := 0;10
u is set assigned;11
ShellConnect(u, G, SC ′);12
SP[u] := SP[u] ∪ {SC ′};13

D is the set of expired SC ;14
for each assigned node u and each SC ∈ SP[u] do15

if u ∈ SC .V and SC is not new added then16
D := D ∪ {SC};17

for each SC ∈ D and each u ∈ SC .V− ∪ SC .V do18
SP[u] := SP[u]\{SC};19

Lemma 3 For a shell component partition SC and a vertex
u ∈ SC .V , the coreness of u in SC is the same as the coreness
of u in G, i.e., c(u, SC) = c(u,G).

Proof Let O denote a vertex deletion order of core decom-
position on G. And O deletes all the vertices which can be
deleted before each vertex in SC .V . After the deletion, for
each u ∈ SC .V , we denote the degree of u inG as deg(u,O).
When doing core decomposition on the subgraph formed by
SC .V−, SC .V and SC .E , we can delete all the vertices in
SC .V− before SC .V , because their degrees are all 1, and
the remaining subgraph is denoted by SC ′. Then, for each
u ∈ SC .V , deg(u, SC ′) = deg(u,O). Now we can follow
the same order to delete the vertices in SC .V as they follow
in O. Thus, c(u, SC) = c(u,G) for each u ∈ SC .V . �
Theorem 10 If a vertex x is anchored in the graph G, we
have F(x) ⊂ Vx .

Proof Consider a non-anchor vertex u /∈ Vx . According to
Lemma 2, there exists one SC , in which u ∈ SC .V , and
x /∈ SC .V ∪ SC .V−. According to Lemma 3, c(u,G) =
c(u, SC). Because x /∈ SC .V ∪SC .V−, when x is anchored,
c(u, SC) remains the same, so u /∈ F(x). Thus, F(x) ⊂ Vx .

�
Theorem 11 For a shell component partition SC in G, if for
each u ∈ SC .V , there does not exist a v ∈ Vx and a Sik in Gx

such that v ∈ V (Sik) ∧ u ∈ V (Sik), SC remains the same in
Gx .

Proof We prove it by contradiction. If SC is different in Gx ,
it can either be (1) SC .V− is different, (2) SC .V is different,
(3) SC .E is different, or (4) SC .h is different.

For (1), let us assume SC .V− is different (SC becomes
SC ′ in Gx). Sik is the k-shell component that SC ′ is affil-
iated to in Gx . This means ∃u ∈ SC .V− s.t. c(u,Gx) >

c(u,G) ∧ c(u,Gx) ≥ k. Because c(u,G) < k and u can
increase its coreness at most 1 based on Theorem 4, we have
c(u,Gx) = k, which means u ∈ Vx ∧ u ∈ V (Sik). This
contradicts the condition of the theorem.

For (2), let us assume SC .V is different. This means ∃u ∈
SC .V s.t. c(u,Gx) > c(u,G). Based on Theorem 10, u ∈
Vx , so for each v ∈ SC .V , v ∈ Vx . This contradicts the
condition of the theorem.

For (3), when both SC .V− and SC .V remain the same in
Gx , SC .E must be the same.

For (4), let us assume SC .h is different. Then we have
SC ′ in Gx where SC ′.V− = SC .V−, SC ′.V = SC .V and
SC ′.E = SC .E , but ∃u ∈ SC ′.V s.t. SC ′.h[u] > SC .h[u]
(none vertex’s coreness would decrease so SC ′.h[u] cannot
be less). Because N (u,G) are from SC .V−, SC .V or the
neighbor vertices counted in SC .h[u], there must be v ∈
N (u,G) ∩ (SC .V− ∪ SC .V) increasing its coreness. This
contradicts our assumption. �

We have proved all the shell component partitions are cor-
rectly updated by Algorithm 9; now we clarify that for each
non-anchor vertex u, the set of shell component partitions
containing u, SP[u], is updated correctly in Algorithm 9.
Lines 6–13 ensure all the new created shell component par-
titions have been inserted into SP . Theorem 11 proves part
of the shell component partitions remain the same, and Lines
14–17 collect all other expired shell component partitions.
Then, Lines 18–19 erase them from SP .

Partition Complexity The space complexity of our partition
isO(2 ·m + n). The extra storageO(n) is from SC .h where
we do not need to store the specific edges but only record
a number SC .h[u] for each u. For time complexity, Algo-
rithms 7, 8 and 9 are all O(m), because Algorithms 7 and 9
are both dominated by the subcall of Algorithm 8, and in
Algorithm 8, each neighbor v ∈ N (u,G) of each vertex u is
accessed once.

6.2 Independency and reuse

In this subsection, we introduce how each parallel unit (a
slave machine, a thread of a machine) can independently and
concurrently compute the followers in each shell component
partition and how our partition strategy makes part of the
computed followers reusable in the next iteration.

Theorem 12 For each vertex u ∈ V (G), |F(u,G)| =
∑

SC∈SP[u] |SF[u][SC]|.
Proof Based on Theorem 10, for each SC /∈ SP[u], SC does
not have any follower of u. Based on Lemma 2, for each SC
and SC ′ with SC ∈ SP[u] ∧ SC ′ ∈ SP[u], SF[u][SC] and

123

Q. Linghu et al.

SF[u][SC ′] do not have any overlap. Based on Lemma 3,
SF[u][SC] can be correctly computed within each SC ∈
SP[u]. Therefore, |F(u,G)| = ∑

SC∈SP[u] |SF[u][SC]|.
�

By Theorem 12, we know that each SF[u][SC] can be
computed independently and concurrently. In our parallel
algorithm,wedistribute each shell component partition SC to
one or more machines and use SC .C to distribute the anchor
candidates, so that for each u ∈ V (G) and each SC ∈ SP[u],
SF[u][SC] can be computed in the only machine having u ∈
SC .C . The specific distributing strategy will be explained in
Sect. 6.3. Algorithm 10 presents how one machine computes
the followers of one shell component partition SC . As each
single machine has multiple threads, we can parallelly com-
pute SF[u][SC] for each u ∈ SC .C (Line 2). The candidates
in SC .C are randomly and evenly allocated to each thread
of a machine. For the subgraph formed by SC .V−, SC .V
and SC .E , denoted by GSC , we can get the shell-layer pair
(Sect. 5.4) of each u ∈ SC .V− ∪ SC .V . Then, we have
N≤(u, SC) to denote the neighbors in N (u,GSC) where
each neighbor v has P[v].k = P[u].k ∧ P[v].i ≤ P[u].i
or P[v].k < P[u].k. And we have N>(u, SC) to denote
the neighbors in N (u,GSC) where each neighbor v has
P[v].k = P[u].k ∧ P[v].i > P[u].i or P[v].k > P[u].k.
With N≤(u, SC) and N>(u, SC)of eachu ∈ SC .V (Line 1),
Lines 3–15 can compute the followers. Similar to theDegree
Check in Sect. 5.4, we develop Degree Check in Partition,
and Theorem 13 ensures the correctness of Algorithm 10.
For computing the followers of each single u ∈ SC .C , the
time complexity of Algorithm 10 is the same as Algorithm 4,
O(m). Considering the number of threads NT and the number
of anchor candidates n in the worst case, the time complexity
of Algorithm 10 is O(n·m

NT
).

Degree Check in Partition For a vertex u ∈ SC .V , the par-
tition degree bound of u in SC is denoted by d+

P (u, SC).
Specifically, d+

P (u, SC) = d+
s (u, SC) + d+

u (u, SC) +
d>(u, SC), in which d+

s (u, SC) (resp. d+
u (u, SC)) is the

number of survived (resp. unexplored) neighbors in {x} ∪
(N≤(u, SC) ∩ H) ∪ N>(u, SC), and d>(u, SC) is equal to
SC .h[u]. The following theorem indicates that, for a shell
component partition SC , we can exclude a candidate fol-
lower u ∈ SC .V if d+

P (u, SC) < c(u,G) + 1. The discard
of a vertex may invoke the discard of other vertices in SC .V .
When the deletion cascade terminates, the tags of all the ver-
tices affected by the discard of u will be correctly updated.

Theorem 13 A vertex u ∈ SC .V cannot be a follower if
d+
P (u, SC) < c(u,G) + 1.

Proof According to the definitions of partition degree bound
and the degree bound in Sect. 5.4, for a vertex u ∈ SC .V ,
d+
P (u, SC) = d+(u,G). And based on the proof of Theo-

rem 8, this theorem also holds. �

Algorithm 10: FindFollowers(SC)
Input : SC : the shell component partition
Output : SF[·][SC] : the computed followers in SC
Get N≤(u, SC) and N>(u, SC) for each u ∈ SC .V ;1
for each x ∈ SC .C by parallel multi-threads do2

H := ∅;3
H .push(x);4
while H �= ∅ do5

u ← H .pop();6

if d+
P (u, SC) ≥ c(u,G) + 1 or u = x then7
u is set survived;8
for each v ∈ N>(u, SC) and v /∈ H do9

H .push(v);10

else11
u is set discarded ;12
Shrink(u) (Algorithm 5);13

for each survived vertex v except for x do14
SF[x][SC] := SF[x][SC] ∪ {v};15

return SF[·][SC]16

Followers Reuse In Algorithm 9, except those new added
shell component partitions, other shell component partitions
in SP remain the same. For these unchanged ones, due to the
independency of followers computation across shell compo-
nent partitions, the computed followers in last iteration can
be reused in the next iteration.

6.3 Computing resource scheduling

In order to evenly utilize our computing resource (multiple
machines and multithreads) and limit the communication
cost, we propose a scheduling strategy in this subsection.
Firstly, we propose a reasonable estimation of the computa-
tional amount of finding the followers of a vertex in a shell
component partition. We adapt the upper bound of followers
in Sect. 5.5 to upper bound in partition and then explain that
it is a reasonable estimation of computational amount.

Upper Bound in Partition. For a candidate anchor vertex
x ∈ SC .V− ∪ SC .V , the number of followers of x in
SC , SF[x][SC], has an upper bound, denoted byUBSC (x).
We have UBSC (x) = ∑

u∈N>(x,SC)(UBSC (u) + 1) if
|N>(x, SC)| > 0 and UBSC (x) = 0 if |N>(x, SC)| = 0.
We can accumulatively compute the upper bound in parti-
tion as the way of Sect. 5.5. Based on Theorem 9, it is easy
to prove that SF[x][SC] ≤ UBSC (x).

Distributing Strategy When computing SF[u][SC] of u ∈
SC .C , the computational amount is dominated by the heap
traverse during Lines 6–13 of Algorithm 10. And the num-
ber of vertices that can be added into the heap H is
correlated to UBSC (u), so we adopt UBSC (u) as the esti-
mated computational amount of SF[u][SC]. Along with
the followers reuse strategy mentioned in the last sec-

123

Anchored coreness: efficient reinforcement of social networks

Fig. 8 Computing schedule

tion, in each iteration, we only distribute such computing
task of SF[u][SC] which cannot be reused. We firstly
get the estimated average computational amount Cavg =
(
∑

u∈V (G)

∑
SC∈SP[u] UBSC (u))/NS , where Ns is the num-

ber of Slave machines. With a sequence S of all the
computing tasks, in which S(i) = SF[ui][SCi], and the
computational amount C j (initialized as 0) of each machine
Slave j , we distribute the tasks as following. Starting from
Slave1 andS(1), ifUBSC1(u1) > 0,C1 = C1+UBSC1(u1),
we add u1 to SC1.C and send SC1 to Slave1, so that
S(1) is distributed to Slave1, until the j th task S(j) is
distributed to Slave1 satisfying

∑ j
i=1UBSCi (ui) ≤ Cavg

and
∑ j+1

i=1 UBSCi (ui) > Cavg . Then we can start distribut-
ing tasks for the next machine. For machine Slave j with
j ∈ [1, Ns − 1], we distribute tasks as the above way, and
the last machine SlaveNs have all the remaining tasks. Note
that it is easy to avoid sending one shell component partition
multiple times to one machine.

Example 10 Figure 8 gives a scheduling example in the 5-
machine distributed environment and the example is about
the graph G in Fig. 6. Firstly, the Master machine decom-
poses G into the five shell component partitions as in
Fig. 7. Then, we compute all the upper bounds in parti-
tion. In SC1, UBSC1(u1) = 0. In SC2, UBSC2(u2) = 0,
UBSC2(u3) = 1 andUBSC2(u4) = 2. In SC3,UBSC3(u9) =
0, UBSC3(u8) = 1 and UBSC3(u2) = UBSC3(u3) =
UBSC3(u4) = 2. In SC4, UBSC4(u5) = UBSC4(u7) = 0,
UBSC4(u6) = 2, UBSC4(u2) = 1 and UBSC4(u1) = 3.
In SC5, for the vertices in the 5-clique, the upper bounds
in partition are 0. UBSC5(u6) = 1, UBSC5(u8) = 2, and
UBSC5(u5) = UBSC5(u7) = UBSC5(u9) = 3. After using
our distributing strategy, the shell component partitions and
the corresponding candidate anchors are distributed to 4
Slave machines. When each machine has 4 threads, it can
parallelly compute the followers of candidate anchors within
one machine. For instance, in Slave1, thread 1 (T1) com-
putes SF[u3][SC2], thread 2 (T2) computes SF[u4][SC2],
thread 3 (T3) computes SF[u8][SC3] and thread 4 (T4) com-

putes SF[u2][SC3]. Each Slave sends the followers to the
Master , and Master collects them then has the complete
SF .

6.4 The DGAC algorithm

In this section, we firstly introduce our lower bound based
pruning technique to further accelerate our algorithm, then
we combine all the elements and introduce the distributed
algorithm DGAC. In each iteration of the greedy strategy, the
time cost of DGAC is dominated by the parts of Sects. 6.1–
6.3. Thus, for an anchoring budget b, the time complexity of
DGAC is O(b·n·m

NS ·NT
).

Lower Bound Based Pruning In each iteration, we compute a
lower bound of followers LB(u) of each non-anchor vertex
u ∈ V (G)\A as Equation 4. Note that, for a shell component
partition SC ∈ SP[u], if SF[u][SC] has not been computed
in last iteration or cannot be reused, we let SF[u][SC] = ∅.
Then, we can compute a lower bound of followers of this
iteration LB as Eq. 5. Theorem 14 shows how the lower
bound manages to prune some anchor candidates in each
iteration.

LB(u) =
∑

SC∈SP[u]∧SF[u][SC]�=∅
|SF[u][SC]| (4)

LB = max{LB(u) | u ∈ V (G)\A} (5)

Theorem 14 GivenLB in an iteration, for a non-anchor ver-
tex u ∈ V (G)\A, U Bσ (u) = ∑

SC∈SP[u](UBSC (u)). If
U Bσ (u) < LB, u is not the best anchor of the iteration.

Proof According to Eq. 5, there exists a u′ with LB(u′) =
LB. We have |F(u′)| ≥ LB(u′) from Eq. 4 and have
|F(u)| ≤ UBσ (u) from the definition of UBσ (u). Given
UBσ (u) < LB, we can conclude |F(u)| < |F(u′)|, so that
u does not have the maximum followers and cannot be the
best anchor. �

Based on the lower bound-based pruning, Algorithm 11
is called after Algorithm 7 finishes the graph partitioning
or Algorithm 9 maintains the partition, and before the Mas-
ter machine distributes specific computing tasks. Firstly, we
only compute the upper bound in partition of the vertices
in the new added shell component partitions (Line 1). In
Lines 3–10, we compute the upper bound UBσ (u) of the
total number of followers for each u ∈ V (G)\A. Note that,
for the reusable part of computed followers, we use them for
a tighter bound (Line 7). By only adding the reusable fol-
lowers for a vertex u, we can get the lower bound LB(u)

(Line 8). TheLB (Line 2, Lines 11–12) is to record the max-
imum LB(u) among u ∈ V (G)\A. By LB, we can prune
such vertex u withUBσ (u) ≤ LB (Lines 13–16). Only such

123

Q. Linghu et al.

Algorithm 11: PruneCandidates(G)
Input : G : a social network with all the above definitions as

global variables
Compute UBSC (·) only for new added SC ;1
LB := 0;2
for each u ∈ V (G)\A do3

UBσ (u) := 0; LB(u) := 0;4
for each SC ∈ SP[u] do5

if SF[u][SC] �= ∅ then6
UBσ (u) := UBσ (u) + |SF[u][SC]|;7
LB(u) := LB(u) + |SF[u][SC]|;8

else9
UBσ (u) := UBσ (u) +UBSC (u);10

if LB(u) > LB then11
LB := LB(u);12

for each u ∈ V (G)\A do13
if UBσ (u) > LB then14

for each SC ∈ SP[u] with SF[u][SC] = ∅ do15
SC .C := SC .C ∪ {u};16

Algorithm 12: DecideAnchor(G)
Input : G : a social network with all the above definitions as

global variables
Output : a : the anchor vertex of current iteration
λ := −1; a := null;1
for each u ∈ V (G)\A do2

if ∃SC ∈ SP[u] with SF[u][SC] = ∅ then3
Continue;4

else5
F(u,G) := ⋃

SC∈SP[u] SF[u][SC];6

if |F(u,G)| > λ then7
a := u; λ := |F(u,G)|;8

return a9

vertex u with UBσ (u) > LB (Line 14) needs to be added
into SC .C for SC ∈ SP[u] where SF[u][SC] has not been
computed in last iteration (Line 15). The Master empties
SC .C for each shell component partition SC in SP before
each iteration starts, and only considers the updated SC .C
when distributing the computing tasks.

Algorithm 12 is called after the Master machine collects
the computed followers result. Note that, for a vertex u ∈
V (G)\A, if ∃SC ∈ SP[u] with SF[u][SC] = ∅ (Line 3),
thatmeansu is prunedbyAlgorithm11, sodoes not need tobe
considered as the anchor in the current iteration. We traverse
all the non-anchor vertices (Line 2) and keep updating the
best anchor so far (Lines 6–8). Finally, we get the best anchor
in this iteration (Line 9).

Combining all the elements, the abstract pseudo-code of
DGAC is summarized as Algorithm 13.

Algorithm 13: DGAC(G, b)
Input : G : a social network, b : number of anchors
Output : A : the set of anchor vertices
SP := ShellPartition(G) [Master calling];1
for i teration from 1 to b do2

PruneCandidates(G) [Master calling];3
Use scheduling strategy (Sect. 6.3) [Master calling];4
for each Slavei with i ∈ [1, Ns] in parallel do5

for each received SC j
i of Slavei do6

SF[·][SC j
i] := FindFollowers(SC j

i);7

Send SF[·][SC j
i] toMaster;8

Collect all the computed followers [Master calling];9
a := DecideAnchor(G) [Master calling];10
A := A ∪ {a}; deg(a,G) := +∞;11
MaintainSP(a, G) [Master calling];12

return A13

DGAC for Single Machine The algorithm DGAC can be
adapted to a parallel algorithm in a single machine with mul-
tiple threads. The main changes are explained as follows:

(1) We regard each available thread as one independent slave
machine when using our distributing strategy.

(2) Instead of transferring data among machines, in one
machine, we only need to assign different shell com-
ponent partitions to each thread.

(3) Each thread independently calls Algorithm 10 to con-
duct computation. When it comes to Line 2, each thread
simply serializes the computation of followers for the
anchor candidates in its SC .C .

7 Experimental evaluation

Datasets.We use eight real-life datasets in our experiments.
Brightkite, Gowalla, Youtube and Livejournal
are from http://snap.stanford.edu/. Arxiv, NotreDame,
Stanford and DBLP are from http://konect.uni-koblenz.
de/. Due to the Space limitation, we abbreviate the dataset
names as their capital first letters when necessary. Table 6
shows the statistics of the datasets, listed in increasing order
of edge numbers.

Parameters All the programs are implemented in C++ and
compiledwithG++onLinux.The experiments are conducted
on a cluster with 9 machines having 1 Gbps network. They
all have 3.4 GHz Intel Xeon CPU with 4 cores (8 threads
available) and Redhat system. We use MPICH [1] to transfer
data among the machines and use OpenMP [2] to utilize the
multithreads within one machine.

AlgorithmsToward effectiveness, wemainly compare 6 algo-
rithms with our GAC algorithm, including 4 heuristics, the
exact solution, and the algorithm for anchored k-core prob-

123

http://snap.stanford.edu/
http://konect.uni-koblenz.de/
http://konect.uni-koblenz.de/

Anchored coreness: efficient reinforcement of social networks

Table 6 Statistics of datasets

Dataset Nodes Edges davg dmax kmax

B. 58,228 194,090 6.7 1098 52

A. 34,546 421,578 24.4 846 30

G. 196,591 456,830 9.2 10,721 51

N. 325,729 1,497,134 6.5 3812 155

S. 281,903 2,312,497 16.4 38,626 71

Y. 1,134,890 2,987,624 5.3 28,754 51

D. 1,566,919 6,461,300 8.3 2023 118

L. 3,997,962 34,681,189 17.4 14,815 360

Table 7 Summary of algorithms

Algorithm Description

Exact Identifies the optimal solution by searching
all possible combinations of b anchors

Rand Randomly chooses the b anchors from V (G)

Deg Chooses the b anchors from V (G) with the
highest degree

Deg-C Chooses the b anchors with the highest value
of deg(u,G) − c(u) for each u ∈ V (G)

SD Chooses the b anchors with the highest
successive degree deg�(·) for every
u ∈ V (G), where deg�(u) = |{v | v ∈
N (u,G) & P(v) � P(u)}|

OLAK The state-of-the-art algorithm for anchored
k-core problem [65]

GAC Algorithm 6

DGAC Algorithm 13

DGAC(-C) DGAC without the time of data
communication between machines.

GAC-U GAC without upper bound pruning (Sect. 5.5)

GAC-U-R GAC-U without result reusing (Algorithm 3)

Baseline GAC-U-R using core decomposition
(Algorithm 1) to compute coreness gain,
without Algorithm 4

lem. Toward the efficiency of our serial algorithm GAC, we
incrementally equip the baseline with our proposed tech-
niques to evaluate the performance. Toward the efficiency
of our distributed algorithm DGAC, we compare its time cost
(1 master + 8 slaves each with 8 threads as default) to GAC
and then vary the number of slave machines and the number
of threads to test its scalability. We conducted experiments
by varying the budget b from 1 to 100where the default value
is 100. Table 7 lists all the evaluated algorithms.

7.1 Effectiveness

Comparison with Other Heuristics In Fig. 9, we compare
the coreness gain from GAC with other heuristics (Rand,
Deg, Deg-C, and SD). The motivation of the basic methods

(a)

(c) (d)

Fig. 9 Coreness gain from different heuristics

is as follows. For Deg, a vertex with larger degree means
the anchoring of it can potentially influence more vertices
through its large number of neighbor vertices. For Deg-C,
according to Theorem 7, anchoring a vertex u can only
increase the coreness of vertices with coreness higher than
c(u). Thus, anchoring a vertex with relatively higher degree
and lower coreness may be more effective. For SD, the suc-
cessive degree of a vertex u is defined as deg�(u) = |{v | v ∈
N (u,G) & P(v) � P(u)}| where P(u) = (k, i) means u
is in the i th layer of the k-shell. According to Theorem 7,
for a vertex u, only the vertices in N (u,G) that contribute to
deg�(u) is reached by u via upstair paths. Thus, anchoring a
vertex with large successive degree may be effective. Table 7
shows the details.

As shown in Fig. 9a, the performance of Rand is theworst
as it chooses random vertices to anchor. The performance of
Deg and Deg-C is better than Rand as they choose vertices
with large degrees to anchor. SD has more coreness gain
because the vertices with higher successive degree havemore
candidate followers (Theorem 7). Compared with the above
heuristics, GAC achieves the much larger coreness gains on
all the datasets. The effect of varying b is shown in Fig. 9c, d.
The coreness gain of GAC increases with larger b values and
is better than all other four heuristics under all the settings.

Comparison with Exact SolutionWe also compare the result
of GACwith the Exact algorithm, which identifies the opti-
mal b anchors by enumerating all possible combinations of
b vertices. Due to the huge time cost of Exact, we extract
small datasets by iteratively extracting a vertex and all its
neighbors, until the number of extracted vertices reaches 100.
For both Brighkite and Arxiv, we extracted 10 such
subgraphs and report the average coreness gain of them. The
runtimes are also reported. Figure 10 shows that the core-
ness gain of GAC is always at least 70% of Exact, and GAC

123

Q. Linghu et al.

(a) (b)

Fig. 10 GAC versus Exact

Table 8 Characteristics of anchor set

Dataset Degavg Deganc pDeg pCN pSD

B. 7.35 37.76 0.884 0.891 0.893

A. 24.37 29.71 0.670 0.663 0.678

G. 9.67 43.86 0.904 0.919 0.919

N. 6.69 11.28 0.808 0.828 0.846

S. 14.14 56.09 0.745 0.763 0.788

Y. 5.27 81.85 0.985 0.982 0.982

D. 8.08 27.85 0.905 0.896 0.911

L. 17.35 145.74 0.935 0.940 0.943

(b) (c)

GAC OLAK9/OLAK11 OLAK27/OLAK35 OLAK45/OLAK59

Fig. 11 Distribution of anchors on coreness

is faster than Exact by up to 5 orders of magnitude. Note
that the coreness gain percentage of GAC over Exact may
increase with larger b values, e.g., from b = 4 to b = 5.

Characteristics of Anchor Set Table 8 shows the average
degree of anchors (Deganc) from GAC is much larger than the
average degree of all the vertices in the graph (Degavg). Then,
we investigate the average ranking of an anchor in all the
vertices regarding degree, coreness, and successive degree,
denoted by pDeg, pCN, and pSD, respectively. According to
Theorem 7, a vertex with larger successive degree has more
potential followers. For each anchor x ∈ A, we get its rank-
ing in all the vertices, denoted by Ox

Deg, Ox
CN and Ox

SD, in
ascending order of degree, coreness and successive degree,

respectively. Then, pDeg =
∑

x∈A Ox
Deg

|A||V (G)| , pCN =
∑

x∈A Ox
CN|A||V (G)|

and pSD =
∑

x∈A Ox
SD|A||V (G)| . Table 8 shows the rankings of anchors

are higher than around 80% of the vertices in the graph, i.e.,
the anchors tend to be high-degree vertices while not the
top vertices with extremely large degrees. Besides, for the

Table 9 Statistics of top-b solutions

Dataset GainUB GainDG GainRD JUB
DG JUB

RD

B. 2357 2598 2488 0.538 0.538

A. 5426 5391 5503 0.739 0.681

G. 4260 4259 4258 0.754 0.887

N. 2798 2803 2803 0.653 0.681

S. 7748 7695 7727 0.695 0.739

Y. 4571 4525 3782 0.361 0.370

D. 4159 4166 4396 0.802 0.695

L. 27067 27113 27072 0.869 0.887

avgCheckin avgCoreness 3-core 6-core
10-core 14-core 18-core 22-core

Fig. 12 #Checkin, coreness and k-core size

anchors, we find that PSD is slightly higher than PDeg and
PCN on 7 of the 8 datasets. However, the backward reasoning
is not effective, i.e., the vertices with large successive degree
are not effective anchors, as shown by SD in Fig. 9. More-
over, Fig. 11 shows the distribution of 100 anchors (from
GAC) on coreness is relatively uniform, i.e., the coreness val-
ues of the anchors can be either small, moderate, or large.

Analysis of Top-b Solutions In one iteration of the GAC algo-
rithm, when there are more than one best anchor, all of which
have the same largest coreness gain, we break the ties by the
follower upper bound of the candidate anchors (Sect. 5.5).
For clearness, we denote GAC by GAC-UB. Besides, we
may use other criteria to break the ties in the greedy algo-
rithm: choosing the vertex with the largest degree (denoted
by GAC-DG), or randomly choosing a vertex (denoted by
GAC-RD). As shown in Table 9, the coreness gains of differ-
ent solutions (anchor sets) are very similar, where the values
are denoted byGainUB,GainDG andGainRD accordingly, and
the largest value for each dataset is marked in bold. More-
over, as shown in Table 9, there are many common anchors
in different solutions, as the similarities (Jaccard Index) of
the solutions are mostly over 0.5, where JU B

DG = |AUB∩ADG |
|AUB∪ADG |

and JU B
RD = |AUB∩ARD |

|AUB∪ARD | . In terms of running time, the three
strategies are almost the same, because the time cost to break
the ties is dominated by other parts of the greedy algorithm.

123

Anchored coreness: efficient reinforcement of social networks

Correlation with #Checkin We generate 19 different net-
works from Gowalla based on the user check-ins, where the
i th network is the induced subgraph by the users with at least
1 check-in during the (i + 1)th month, except for the first
and the last months where the data are incomplete. We con-
sider the number of user check-ins because a user with more
friends may be more active in Gowalla network.

For each network, we divide the sum of #checkins, the
sum of coreness, and the size of k-core, by the number of
users, respectively. As shown in Fig. 12, the pattern of size
proportions of k-cores is more fluctuated compared to the
pattern of average#checkins and average coreness, especially
for large k values. However, if we choose a small k for OLAK,
it generally has small coreness gain as shown in Fig. 14. The
pattern of average coreness over the first 7 months in Fig. 12
is not similar to average #checkins, which may due to the
extremely few numbers of users (less than 100) for these
months. Overall, using coreness values to reinforce a social
network (anchored coreness) is more reasonable than using
the size of k-core (anchored k-core).

Comparison with OLAK For each dataset, we run OLAK
with every possible input of k and record every time cost.
In Fig. 13, we use OLAK(avg) to denote the average time
of all the inputs k for each dataset, and use OLAK(all)
to denote the total time of all the inputs k. We compare
OLAK(avg) and OLAK(all) with GAC and DGAC. Note
that the anchor budget b = 100 for all the above algorithms.
In Fig. 13, we can see OLAK(avg) is always the fastest; this
is because for one single input k, the number of anchor candi-
dates isO(kmax) less than that of GAC. Even further, for each
anchor candidate, the search space of followers in OLAK is
also O(kmax) less than that of GAC. Therefore, GAC is theo-
retically O(k2max) (resp. O(kmax)) slower than OLAK(avg)
(resp. OLAK(all)). Considering the value of kmax of each
dataset in Table 6, our algorithm GAC (resp. DGAC) runs
efficiently, faster than OLAK(all) and around two orders
of magnitude (resp. one order of magnitude) slower than
OLAK(avg).

Table 10 is added to show that the largest coreness gain
(denoted by maxOLAK) that OLAK can achieve only reaches
46–77% of the coreness gain by GAC, on all the datasets.
For the anchor set Ak computed by OLAKwith each possible
input k, we compute the total sum of coreness gain from all
the vertices and all the coreness value with the anchoring of
Ak . Then, we can compute the largest and average coreness
gain (denoted by maxOLAK and avgOLAK) for different k val-
ues on each dataset. Table 10 also shows that avgOLAK is only
4–41% of the coreness gain of GAC. Besides, Fig. 14 shows
the best k for OLAK is rather different for different datasets.
There is no uniform preference on large, moderate, or small
k values for different datasets.

Fig. 13 Time cost, OLAK, GAC and DGAC

Figure 11 shows the distribution of 100 anchors from GAC
and OLAK on coreness value. Figure 15 shows the distribu-
tion of followers from GAC and OLAK on coreness value. For
each coreness value xi on the horizontal ordinate of Fig. 11
(resp. Fig. 15), its value on the vertical ordinate is the num-
ber of anchors (resp. followers) with original coreness value
within (xi−1, xi]. We can see that the distribution of anchors
from GAC is relatively uniform, compared with the anchors
from OLAK, where OLAK9 denotes the anchors from OLAK
with k = 9. Given an input k, the coreness values of the 100
anchors from OLAK can only be less than k (mostly have the
coreness of k−1), which is consistent with the theory in [65].
Besides, Fig. 15 shows the distribution of followers, which
has the similar result as the distribution of anchors. We then
explore the overlap of anchoring results of GAC and OLAK
by computing the Jaccard Index between their anchor sets,
which is shown in Table 11. Specifically, for each dataset,
GAC has the only anchor set AGAC . For each k value input
to OLAK, we have the anchor set Ak

OLAK, so we can compute

the Jaccard Index J k = |AGAC∩Ak
OLAK |

|AGAC∪Ak
OLAK | . Then, we compute

avgJaccard (resp. maxJaccard) which is the average (resp. max-
imum) value of J k of all the inputs k. From Table 11, we can
find the avgJaccard and maxJaccard of all the datasets are quite
small, which means the anchor set of OLAK and GAC have
little overlap.

Finally, we present a case study on DBLP dataset which
is shown in Fig. 16. We choose the anchor budget b = 5 for
GAC and OLAK (with inputs k = 10, 20, 30). As the number
of vertices and edges are huge for DBLP, we only visualize
the anchors and followers and the edges induced by them.
Note that the followers of OLAK are the ones improving their
coreness fromanyoriginal coreness value.All the vertices are
drawn within a number of concentric circles. The followers
are drawn by grey-color nodes, and the ones having the same
coreness value before the anchoring are put in the same circle.
The anchors are drawn by bold black-color nodes. Note that,
when we input k = 30 for OLAK, the 5th anchor has no
follower, so there are 4 anchors in Fig. 16d. We can find the
followers of GAC are muchmore than OLAK nomatter which
inputs. Also, there are 16, 6, 4 and 2 circles in (a), (b), (c)
and (d), respectively, in Fig. 16, which means the followers
of GAC are more diverse and this is consistent with the result
of Fig. 15.

123

Q. Linghu et al.

Table 10 Coreness gain, OLAK
versus GAC

Dataset B. (%) A. (%) G. (%) N. (%) S. (%) Y. (%) D. (%) L. (%)

avgOLAK 41 34 38 4 25 36 12 21

maxOLAK 61 60 66 54 70 77 46 59

Table 11 Overlap of followers
set, OLAK versus GAC

Dataset B. A. G. N. S. Y. D. L.

avgJaccard 0.021 0.006 0.004 0.002 0.019 0.005 0.001 0.004

maxJaccard 0.058 0.02 0.02 0.053 0.064 0.02 0.02 0.031

(a) (b)

Fig. 14 Coreness gain on different inputs of k

Comparison with Variations of OLAK We reasonably adjust
OLAK aiming to globally reinforce social networks, i.e., to
maximize the coreness gain from all the vertices but not lim-
ited to the vertices in (k − 1)-shell as in the original OLAK
with a fixed input k. We develop two variation algorithms
OLAK-v1 and OLAK-v2. For both of them, on each dataset,
we firstly input every possible k value to the original OLAK
with b = 100, to get the anchor set Ak for each k ∈ [2, kmax].
The union of all such Ak is the candidate anchors pool Ap

of OLAK-v1 and OLAK-v2. Then OLAK-v1 works as fol-
lows: (1) Compute the coreness gain g(u) for each u ∈ Ap;
(2) In each of the 100 iterations, we choose a non-anchor
vertex in Ap that has the largest coreness gain on G as the
new anchor. OLAK-v2 works as follows: In each of the 100
iterations, we choose a random k ∈ [2, kmax] in Ak , and we
update the coreness gain of each non-anchor vertex (using
the reuse mechanism of GAC). Then, we choose the vertex
with the largest coreness gain on current graph (with existing
anchors) as the new anchor. Figure 17a shows the coreness
gain of OLAK-v1 and OLAK-v2 comparing with GAC. We
find that, the coreness gain of GAC is always larger than
OLAK-v1 and OLAK-v2. In larger datasets, the coreness
gain gap is even larger. Figure 17b shows the time cost of
OLAK-v1 and OLAK-v2 comparing with GAC and DGAC,
we find either OLAK-v1 or OLAK-v2 is always slower than
both GAC and DGAC.

7.2 Efficiency of GAC

Overall Performance Figure 18a shows the total running
time of GAC, GAC-U and GAC-U-R on all the 8 datasets

(b) (c)

GAC OLAK9/OLAK11 OLAK27/OLAK35 OLAK45/OLAK59

Fig. 15 Distribution of followers on coreness

(a) (b)

(c) (d)

Fig. 16 Case study on DBLP, b = 5

when b = 100. GAC-U-R does not return on Youtube
and Livejournal after 10 days and thus the runtime is
not reported. With our reusing mechanism (Algorithm 3),
GAC-U is faster than GAC-U-R by 1 order of magnitude
on average. Further benefitting from the upper bound-based
pruning (Sect. 5.5), the runtime of GAC is usually faster than
GAC-U by more than 3 times. The details are as follows.

Efficient Followers Computing Equipped with Algorithm 4,
the efficient followers computing of the anchors, GAC-U-R
is faster than Baseline by at least 1 order of magnitude

123

Anchored coreness: efficient reinforcement of social networks

(a)

(b)

Fig. 17 Variations of OLAK versus GAC and DGAC

(a)

(d)(c)

 Baseline GAC-U-T GAC-U GAC

Fig. 18 Time cost of different algorithms

on Brightkite, as shown in Fig. 18c. As it is very time-
consuming to compute the coreness gain of candidate anchors
using core decomposition, we can only report the runtime of
Baseline on Brightkite.

IntermediateResult ReusingByapplying the core component
tree (Sect. 5.1) and the result-reusing mechanism (Algo-
rithm 3), GAC-U always outperforms GAC-U-R on runtime
by at least 1 order of magnitude, as shown in Fig. 18. Note
that GAC-U-R can only find 10 anchors on Livejournal
within the time limit. The scalability of GAC-U is also better
than GAC-U-R in the experiments. The outperformance is
because we can prune the search space by reusing the inter-
mediate results associated with the tree nodes, when they
keep the same for one anchoring. In Fig. 19a, the number of
visited tree nodes of GAC-U is around 10% of GAC-U-R.

(a)

(b)

Fig. 19 Visited amount

Fig. 20 Time cost, GAC, DGAC and ideal DGAC

(a) (b)

Fig. 21 Time cost varying b, GAC versus DGAC

Candidate Anchors Pruning In Fig. 18, we can see our final
algorithm GAC achieves further speedup based on GAC-U
when the upper bound pruning is equipped (Sect. 5.5). The
processing time of GAC is only 20–30% of GAC-U because
GAC reduces the search space by pruning the vertices with
insufficient upper bounds of coreness gains. In Fig. 19a, b,
the number of visited tree nodes and the number of visited
vertices in GAC are much less than that in GAC-U.

7.3 Efficiency of DGAC

We compare the efficiency of DGAC to GAC on all the 8
datasets. In this section, DGAC is conducted on 9machines (1
master + 8 slaves). As our cluster only has 1Gbps network,
the data communications between the master machine and
slave machines occupy a large proportion of running time.
In Fig. 20, we use DGAC(-C) to denote the total running
time minus communication time of DGAC, to also show the

123

Q. Linghu et al.

Fig. 22 Time cost, first iteration versus average of [2, 99]-iteration

(a) (b)

Fig. 23 Time cost of DGAC (skipping individual components)

ideal algorithm execution time. We can see that, with 8 slave
machines having 8 available threads each,DGAC is faster than
GAC on all the datasets. On larger datasets such as DBLP and
Livejournal, the gap of time cost is more significant,
i.e., DGAC is nearly one order of magnitude faster than GAC.
For smaller datasets such as Brightkite and Arxiv, we
find the data communication time takes more than half of
the running time of DGAC, in which the time of DGAC(-C)
reflects the successful parallelization of DGAC. Figure 21a,
b shows the details of running time of GAC and DGAC with
b from 1 to 100. We can see that the running time ratio of
GAC and DGAC keeps stable with different b values, which
means DGAC keeps having the advantage of parallelization
with different input of anchor budget b.

We find that the time cost gaps of GAC and DGAC are
different on different datasets. In our resource scheduling
strategy, an estimation of computation cost of anchoring a
vertex is used to assign the vertices for computation to each
slave machine. The accuracy of cost estimation is different
on different datasets, while our proposed upper bound for
estimation is much more effective than other methods, e.g.,
degree, coreness and partition size, in our preliminary experi-
ments.As different anchor candidates of one shell component
partition can be assigned to different slave machines, the
partition is relevant to both the cost estimation and the data
communication cost, while it is not the deterministic factor.
The time cost from each machine is more relevant to the
assigned vertex set for computation.

Validation of Individual techniques of DGAC We validate
three techniques of DGAC individuallywhich are reusemech-
anism (Sect. 6.2), computing resource scheduling (Sect. 6.3)
and lower bound based pruning (Sect. 6.4). Running DGAC
without equipping the reuse mechanism is cost-prohibitive
especially for large b. To show the effectiveness of the reuse

(a) (b)

Fig. 24 Time cost, varying the number of machines (8 threads)

mechanism, we report the time cost of the first iteration and
the average time cost of 2–99 iterations in the greedy algo-
rithm. The results are shown in Fig. 22. We can find the time
cost of the first iteration is around one order of magnitude
more than the average time cost of 2–99 iterations. This is
because DGAC does not have any computed followers result
to reuse at the first iteration, and our reuse mechanism can
decide a large part of computed followers to reuse in later iter-
ations. DGAC skipping the lower bound pruning is denoted
by Skip-LB in Fig. 23. And we run DGAC using a random
resource scheduling strategy (each shell component partition
is randomly sent to a slave machine which computes the fol-
lowers of all the candidate vertices in this partition), which is
shown by Rand-Sch in Fig. 23. We can find that DGAC is
always the fastest. Skip-LB or Rand-Sch has close per-
formance toDGAC in some cases, while it fails on other cases.
Thus, both our computing resource scheduling strategy and
lower bound pruning are effective for accelerating DGAC.

7.4 Scalability of DGAC

Varying the Number of MachinesWe show the scalability of
DGAC, varying the number of slave machines. In Fig. 24, we
use comm to separately show the time of data communica-
tion with different number of slave machines. The time cost
of DGAC is roughly inversely proportional to the number of
slaves machines (2, 4, 6 and 8) on most of datasets. This is
because we use the upper bound of followers (Sect. 6.3) as
the estimation of computational amount of finding followers.
The time cost of data communication (comm in Fig. 24a, b)
slightly increases with the number of slavemachines increas-
ing. This is because the total data amount that needs to be
transferred is close with different number of machines, but
more machines involved cause a slightly more cost of data
dividing and scheduling.

Varying the Number of Threads We also vary the number of
threads within one single machine and test the cost of our
algorithm in Fig. 25. As Sect. 6.4 illustrates, our DGAC algo-
rithm is easily adapted to a parallel algorithm on onemachine
with multithreads, in which we simply treat each thread as
one slave machine having only one thread in DGAC to share
the followers computing tasks. DGAC11, DGAC

2
1, DGAC

4
1 and

123

Anchored coreness: efficient reinforcement of social networks

(a) (b)

Fig. 25 Time cost, varying the number of threads (1 machine)

DGAC81 are conducted on 1 single machine with 1, 2, 4 and
8 threads, respectively. Figure 25 shows the trend of time
cost of these 4 algorithms with b from 1 to 100. We find that
the more threads we use, the less time the algorithm costs.
The most significant time cost gap is between DGAC11 and
DGAC21, and with the number of threads becoming larger,
the time cost gap becomes less. This is because with more
threads involved, the last finished thread becomes the bottle-
neck of the whole algorithm. We can also find that the trends
of the 4 lines are always similar, even though sometimes they
do not grow smoothly. This is because the effect of our reuse
mechanism varies from different chosen anchors in different
iteration, but is regardless of the number of threads.

8 Conclusion

In this paper, we propose and study the anchored coreness
problem aiming to anchor a set of vertices such that the core-
ness gain from all the vertices is maximized. We prove the
problem isNP-hard andAPX-hard.A serial greedy algorithm
is proposed to be conducted in single-machine environment
with a novel tree-based result reusing mechanism. We also
propose effective pruning techniques to reduce the search
space. The preliminary version is published in [44]. Then, we
extend our algorithm to distributed computing environment
with a novel graph partition strategy to ensure the computing
independency of each machine. Extensive experiments on 8
real-life networks demonstrate the effectiveness of ourmodel
and the efficiency of our algorithms. The reusing mechanism
and graph partition strategy shed light on the computations
of other problems on hierarchical decomposition, e.g., truss
decomposition. It shows that the computation can be divided
into independent units and the reuse of intermediate results
is feasible.

Acknowledgements Fan Zhang is supported by NSFC62002073.
Xuemin Lin is supported by ARCDP200101338. Wenjie Zhang is sup-
ported by ARC DP210101393 and ARC DP200101116. Ying Zhang is
supported by FT170100128 and ARC DP180103096.

References

1. MPICH. https://www.mpich.org/

2. OpenMP. https://www.openmp.org/
3. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique

detection. In: LATIN, pp. 598–612 (2002)
4. Aksu, H., Canim, M., Chang, Y., Korpeoglu, I., Ulusoy, Ö.: Dis-

tributed k -core view materialization and maintenance for large
dynamic graphs. IEEE Trans. Knowl. Data Eng. 26(10), 2439–
2452 (2014)

5. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.:
Large scale networks fingerprinting and visualization using the k-
core decomposition. In: NeurIPS, pp. 41–50 (2005)

6. Aridhi, S., Brugnara,M.,Montresor, A., Velegrakis, Y.: Distributed
k-core decomposition and maintenance in large dynamic graphs.
In: DEBS, pp. 161–168. ACM (2016)

7. Bader, G.D., Hogue, C.W.V.: An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinform. 4, 2 (2003)

8. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decom-
position of networks. arXiv:cs.DS/0310049 (2003)

9. Bhawalkar, K., Kleinberg, J.M., Lewi, K., Roughgarden, T.,
Sharma,A.: Preventing unraveling in social networks: the anchored
k-core problem. In: ICALP, pp. 440–451 (2012)

10. Bhawalkar, K., Kleinberg, J.M., Lewi, K., Roughgarden, T.,
Sharma,A.: Preventing unraveling in social networks: the anchored
k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

11. Blanco, M.P., Low, T.M., Kim, K.: Exploration of fine-grained par-
allelism for load balancing eager k-truss on GPU and CPU. In:
HPEC, pp. 1–7. IEEE (2019)

12. Bola, M., Sabel, B.A.: Dynamic reorganization of brain functional
networks during cognition. NeuroImage 114, 398–413 (2015)

13. Bonchi, F., Khan, A., Severini, L.: Distance-generalized core
decomposition. In: SIGMOD, pp. 1006–1023 (2019)

14. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM 16(9), 575–576 (1973)

15. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model
of internet topology using k-shell decomposition. Proc. Natl. Acad.
Sci. 104(27), 11150–11154 (2007)

16. Chan, T.H., Sozio, M., Sun, B.: Distributed approximate k-core
decomposition and min-max edge orientation: breaking the diam-
eter barrier. In: IPDPS, pp. 345–354. IEEE (2019)

17. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently
computing k-edge connected components via graph decomposi-
tion. In: SIGMOD, pp. 205–216 (2013)

18. Cheng, J., Ke,Y., Chu, S., Özsu,M.T.: Efficient core decomposition
in massive networks. In: ICDE, pp. 51–62 (2011)

19. Cheng, J., Ke, Y., Fu, A.W., Yu, J.X., Zhu, L.: Finding maximal
cliques in massive networks by h*-graph. In: SIGMOD, pp. 447–
458 (2010)

20. Chitnis, R., Fomin, F.V.,Golovach, P.A.: Parameterized complexity
of the anchored k-core problem for directed graphs. Inf. Comput.
247, 11–22 (2016)

21. Chitnis, R.H., Fomin, F.V., Golovach, P.A.: Preventing unraveling
in social networks gets harder. In: AAAI (2013)

22. Chwe, M.S.-Y.: Communication and coordination in social net-
works. Rev. Econ. Stud. 67(1), 1–16 (2000)

23. Cohen, J.: Trusses: cohesive subgraphs for social network analysis.
Natl. Secur. Agency Tech. Rep. 16, 3.1 (2008)

24. Conte, A., Firmani, D., Patrignani,M., Torlone, R.: Shared-nothing
distributed enumeration of 2-plexes. In: CIKM, pp. 2469–2472.
ACM (2019)

25. Conte, A., Matteis, T.D., Sensi, D.D., Grossi, R., Marino, A., Ver-
sari, L.: D2K: scalable community detection in massive networks
via small-diameter k-plexes. In: SIGKDD, pp. 1272–1281. ACM
(2018)

26. Das, A., Sanei-Mehri, S., Tirthapura, S.: Shared-memory parallel
maximal clique enumeration from static and dynamic graphs.ACM
Trans. Parallel Comput. 7(1), 5:1-5:28 (2020)

123

https://www.mpich.org/
https://www.openmp.org/
http://arxiv.org/abs/cs.DS/0310049

Q. Linghu et al.

27. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classi-
fication of dense implicit communities in the web graph. TWEB
3(2), 7:1-7:36 (2009)

28. Esfandiari, H., Lattanzi, S., Mirrokni, V.S.: Parallel and streaming
algorithms for k-core decomposition. In: ICML, Volume 80 of Pro-
ceedings of Machine Learning Research, pp. 1396–1405. PMLR
(2018)

29. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community
search over large spatial graphs. PVLDB 10(6), 709–720 (2017)

30. Feige, U.: A threshold of ln n for approximating set cover. J. ACM
45(4), 634–652 (1998)

31. García, D.,Mavrodiev, P., Schweitzer, F.: Social resilience in online
communities: the autopsy of friendster. In: Conference on online
social networks, pp. 39–50 (2013)

32. Giatsidis, C., Malliaros, F.D., Thilikos, D.M., Vazirgiannis, M.:
Corecluster: A degeneracy based graph clustering framework. In:
AAAI, pp. 44–50 (2014)

33. Hua, Q., Shi, Y., Yu, D., Jin, H., Yu, J., Cai, Z., Cheng, X., Chen,
H.: Faster parallel coremaintenance algorithms in dynamic graphs.
IEEE Trans. Parallel Distrib. Syst. 31(6), 1287–1300 (2020)

34. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-
truss community in large and dynamic graphs. In: SIGMOD, pp.
1311–1322 (2014)

35. Jin, H., Wang, N., Yu, D., Hua, Q., Shi, X., Xie, X.: Core mainte-
nance in dynamic graphs: a parallel approach based on matching.
IEEE Trans. Parallel Distrib. Syst. 29(11), 2416–2428 (2018)

36. Kabir, H.,Madduri, K.: Parallel k-core decomposition onmulticore
platforms. In: IPDPS workshops, pp. 1482–1491. IEEE Computer
Society (2017)

37. Kabir,H.,Madduri,K.: Parallel k-truss decomposition onmulticore
systems. In: HPEC, pp. 1–7. IEEE (2017)

38. Karp, R.M.: Reducibility among combinatorial problems. In: Com-
plexity of computer computations, pp. 85–103 (1972)

39. Khaouid,W.,Barsky,M.,Venkatesh, S., Thomo,A.:K-core decom-
position of large networks on a single PC. PVLDB 9(1), 13–23
(2015)

40. Kitsak,M., Gallos, L.K., Havlin, S., Liljeros, F.,Muchnik, L., Stan-
ley, H.E., Makse, H.A.: Identification of influential spreaders in
complex networks. Nat. Phys. 6(11), 888 (2010)

41. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data (2014)

42. Li, R., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.:
Skyline community search inmulti-valued networks. In: SIGMOD,
pp. 457–472 (2018)

43. Lin, J.-H.,Guo,Q.,Dong,W.-Z., Tang,L.-Y., Liu, J.-G.: Identifying
the node spreading influence with largest k-core values. Phys. Lett.
A 378(45), 3279–3284 (2014)

44. Linghu, Q., Zhang, F., Lin, X., Zhang, W., Zhang, Y.: Global rein-
forcement of social networks: the anchored coreness problem. In:
SIGMOD, pp. 2211–2226. ACM (2020)

45. Malliaros, F.D., Rossi, M.-E.G., Vazirgiannis, M.: Locating influ-
ential nodes in complex networks. Sci. Rep. 6, 19307 (2016)

46. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling
engagement dynamics in social graphs. In: CIKM, pp. 469–478
(2013)

47. Mandal,A.,Hasan,M.A.:Adistributed k-core decomposition algo-
rithm on spark. In: BigData, pp. 976–981. IEEE Computer Society
(2017)

48. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering
and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)

49. Montresor, A., Pellegrini, F.D., Miorandi, D.: Distributed k-core
decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300
(2013)

50. Morone, F., Del Ferraro, G.,Makse, H.A.: The k-core as a predictor
of structural collapse in mutualistic ecosystems. Nat. Phys. 15(1),
95 (2019)

51. Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques.
In: SIGKDD, pp. 228–238 (2005)

52. Seidman, S.B.:Network structure andminimumdegree. Soc.Netw.
5(3), 269–287 (1983)

53. Seki, K., Nakamura, M.: The collapse of the friendster network
started from the center of the core. In: ASONAM, pp. 477–484
(2016)

54. Seki, K., Nakamura, M.: The mechanism of collapse of the
Friendster network: what can we learn from the core structure of
Friendster? Soc. Netw. Anal. Min. 7(1), 10:1-10:21 (2017)

55. Shao, Y., Chen, L., Cui, B.: Efficient cohesive subgraphs detection
in parallel. In: SIGMOD, pp. 613–624 (2014)

56. Smith, S., Liu, X., Ahmed, N.K., Tom, A.S., Petrini, F., Karypis,
G.: Truss decomposition on shared-memory parallel systems. In:
HPEC, pp. 1–6. IEEE (2017)

57. Tootoonchi, B., Srinivasan, V., Thomo, A.: Efficient implementa-
tion of anchored 2-core algorithm. In: ASONAM, pp. 1009–1016
(2017)

58. Ugander, J., Backstrom, L.,Marlow, C., Kleinberg, J.M.: Structural
diversity in social contagion. Proc.Natl. Acad. Sci. U.S.A. 109(16),
5962–5966 (2012)

59. Wang, J., Cheng, J.: Truss decomposition in massive networks.
PVLDB 5(9), 812–823 (2012)

60. Wang, Z., Chen, Q., Hou, B., Suo, B., Li, Z., Pan, W., Ives, Z.G.:
Parallelizing maximal clique and k-plex enumeration over graph
data. J. Parallel Distrib. Comput. 106, 79–91 (2017)

61. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core
graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)

62. Wu, S., Sarma, A.D., Fabrikant, A., Lattanzi, S., Tomkins, A.:
Arrival and departure dynamics in social networks. In: WSDM,
pp. 233–242 (2013)

63. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Sto-
ica, I.: Spark: Cluster computing with working sets. In: HotCloud.
USENIX Association (2010)

64. Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discov-
ering strong communities with user engagement and tie strength.
In: DASFAA, pp. 425–441 (2018)

65. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an effi-
cient algorithm to prevent unraveling in social networks. PVLDB
10(6), 649–660 (2017)

66. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical
users for social network engagement: the collapsed k-core problem.
In: AAAI, pp. 245–251 (2017)

67. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently rein-
forcing social networks over user engagement and tie strength. In:
ICDE, pp. 557–568 (2018)

68. Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core
decomposition to analyze the static structure of large-scale software
systems. J. Supercomput. 53(2), 352–369 (2010)

69. Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery
for social network visual analysis. PVLDB 6(2), 85–96 (2012)

70. Zhou, R., Liu, C., Yu, J.X., Liang,W., Chen, B., Li, J.: Findingmax-
imal k-edge-connected subgraphs from a large graph. In: EDBT,
pp. 480–491 (2012)

71. Zhou,Y.,Xu, J.,Guo,Z.,Xiao,M., Jin,Y.: Enumeratingmaximal k-
plexes with worst-case time guarantee. In: AAAI, pp. 2442–2449.
AAAI Press (2020)

72. Zhou, Z., Zhang, F., Lin, X., Zhang, W., Chen, C.: K-core max-
imization: an edge addition approach. In: IJCAI, pp. 4867–4873
(2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://snap.stanford.edu/data

	Anchored coreness: efficient reinforcement of social networks
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Problem analysis
	5 A greedy approach
	5.1 Core component tree
	5.2 Restriction of candidate followers
	5.3 Reuse of intermediate results
	5.4 Coreness gain computation
	5.5 The GAC algorithm

	6 Distributed greedy algorithm
	6.1 Shell component partition
	6.2 Independency and reuse
	6.3 Computing resource scheduling
	6.4 The DGAC algorithm

	7 Experimental evaluation
	7.1 Effectiveness
	7.2 Efficiency of GAC
	7.3 Efficiency of DGAC
	7.4 Scalability of DGAC

	8 Conclusion
	Acknowledgements
	References

