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Abstract
Morris (Rev Econ Stud 67:57–78, 2000) defines the p-cohesion by a connected subgraph
in which every vertex has at least a fraction p of its neighbors in the subgraph, i.e., at
most a fraction (1 − p) of its neighbors outside. We can find that a p-cohesion ensures not
only inner-cohesiveness but also outer-sparseness. The textbook on networks by Easley and
Kleinberg (Networks, Crowds, and Markets - Reasoning About a Highly Connected World,
Cambridge University Press, 2010) shows that p-cohesions are fortress-like cohesive sub-
graphs which can hamper the entry of the cascade, following the contagion model. Despite
the elegant definition and promising properties, to our best knowledge, there is no exist-
ing study on p-cohesion regarding problem complexity and efficient computing algorithms.
In this paper, we fill this gap by conducting a comprehensive theoretical analysis on the
complexity of the problem and developing efficient computing algorithms. We focus on the
minimal p-cohesion because they are elementary units of p-cohesions and the combination
of multiple minimal p-cohesions is a larger p-cohesion. We demonstrate that the discovered
minimal p-cohesions can be utilized to solve the MinSeed problem: finding a smallest set
of initial adopters (seeds) such that all the network users are eventually influenced. Exten-
sive experiments on 8 real-life social networks verify the effectiveness of this model and the
efficiency of our algorithms.

Keywords Cohesive subgraph · Information barrier · Social network · MinSeed

1 Introduction

Graphs have been widely used in many real-life applications. A variety of cohesive subgraph
models are proposed for graph analysis, including k-core, k-truss, clique, p-cohesion and
so on. Given a graph and a real number p ∈ (0, 1), a p-cohesion is defined as a connected
subgraph where every vertex has, at least, a fraction p of its neighbors in the subgraph [29].
This definition implies that every vertex in a p-cohesion has, at most, a fraction (1 − p)
of its neighbors outside of the p-cohesion. The advantages of the p-cohesion model over
other existing cohesive subgraph models are twofold: First, with a large p value, we can find
a p-cohesion ensures not only inner-cohesiveness, as the vertices inside a p-cohesion are
cohesive; but also outer-sparseness, as the outside neighbors of the p-cohesion have a sparse
connection to the p-cohesion; second, in many applications, it is more natural to consider
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Fig. 1 A Graph, p = 0.6

the percentage of the neighbors instead of the same number of neighbors (such as the k
value in a k-core) within the cohesive subgraph. For instance, in real-life social networks, a
large-degree user may need more neighbors than a small-degree user to encourage her/him
to adopt a behavior [4].

The p-cohesion is also related to the contagionmodel, which is introduced in [29] to study
the interaction of large populations: Given a graph with some initial adopters of a behavior
“A” and a cascading threshold r ∈ (0, 1), a user will adopt “A” if at least a fraction r of
his/her neighbors already adopted “A.” Clearly, with the contagionmodel, for any p-cohesion
S with p > (1 − r), none of the users in S will adopt “A” if S does not contain any initial
adopters; in other words, the influence coming from outside of S alone cannot affect any user
in S. In this sense, a p-cohesion is a fortress regarding the contagion model.

Example 1 Figure 1 shows a small graph. Suppose p = 0.6, we use the gray-filled rectangles
to label every user u with the smallest number of neighbors required for u to stay in a p-
cohesion. A minimal p-cohesion S is marked in the dashed circle, which is the subgraph
induced by vertices u1, u2, u3, u4 and u5. Suppose r = 0.5 in the contagion model and there
is no initial adopter in S for product “A,” any user in S will not adopt “A” even if all the
other users (not in S) adopted “A.”

The fortress-like cohesive subgraphs (i.e., p-cohesions) are critical for information diffu-
sion related applications. They may be information islands in social networks, focalization
in viral marketing, etc. We may benefit from exploiting the fortress property of p-cohesions.
For instance, in viral marketing, it is usually hard to peddle a new product to homogeneous
users in social groups (e.g., p-cohesions) who use another competing product, while these
users form a business focalization [12]. Offering incentives such as discounts or free product
trials to users in p-cohesions may help in the successful marketing of a new product.

In this paper, we are interested in the minimal p-cohesion problem where we say a p-
cohesion S is minimal if there does not exist a proper subgraph S′ of S (S′ ⊂ S) which is also
a p-cohesion. This is because: (1) they are elementary units of p-cohesions, and the union
of multiple minimal p-cohesions forms a larger p-cohesion; (2) we may avoid enumerating
an overwhelming number of p-cohesions; and (3) it is more useful to find small fortresses
in influence-related applications. For instance, it is immediate that the whole graph or a
connected component is a p-cohesion for any p value, but this is not interesting.

Minimal p-cohesions also enable us to find good heuristics for theMinSeed problemunder
the contagionmodel; that is, given a target graph and a cascading threshold r , find aminimum
set of seeds such that the whole graph is eventually influenced. The minimal p-cohesions can
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hinder the entry of cascades to it, and the vertices inside a p-cohesion are relatively isolated
from the outside vertices. Therefore, by giving certain priorities to seed the vertices inside
the minimal p-cohesions, we may break the entry barriers of the p-cohesions by the great
influence power of the selected seeds. The p-cohesion can thus benefit the applications of
influence studies, e.g., viral marketing and online fraud control [18].

In this paper, we study two representative problems with regard to the p-cohesion model:
minimum p-cohesion search and diversified p-cohesion enumeration.

– Minimum p-cohesion search aims to find the smallest p-cohesion containing the given
query vertex, i.e., the p-cohesion with the smallest number of vertices to which a user
(query vertex) belongs. We show this problem is NP-hard, and some heuristics are pro-
posed to efficiently identify a p-cohesion with a small size for the given query vertex.

– Diversified p-cohesion enumeration aims to find a set of disjoint p-cohesions which
can cover as many vertices as possible. Here, we consider diversity because, in practice,
the user may be overwhelmed by the exponential number of minimal p-cohesions. Thus,
in this paper, we design efficient algorithms to find a set of disjoint minimal p-cohesions.

1.1 Contributions

Despite the elegant definition and promising properties of the p-cohesion model, to our best
knowledge, there is no study on the problem hardness or the efficient computing algorithms.
The major contributions of this paper are as follows.

On the theoretical side, we prove that (1) the problem of finding the smallest p-cohesion
is NP-hard and it does not admit any constant-factor approximation, unless P=NP; and (2)
the number of minimal p-cohesions can be exponential in the graph size. On the practical
side, we propose efficient algorithms to find a small p-cohesion containing a query vertex,
as the basic computing unit for p-cohesion related computations. Due to the huge number of
p-cohesions, we also propose efficient algorithms based on the computing unit to identify a
set of disjoint minimal p-cohesions. As an application example, the algorithms are applied in
the MinSeed problem to reduce the seeding cost, by carefully utilizing the fortress property
of p-cohesions. Comprehensive experiments are conducted to demonstrate the effectiveness
of p-cohesion on modeling cohesive subgraphs, compared with other classical cohesive
subgraph models. Due to the fortress property, the proposed algorithms are also effective on
solving influence problems such as influencemaximization, under different influence cascade
models. Extensive efficiency reports show that our algorithms can fast return on large real-life
graphs.

2 Related work

2.1 Cohesive subgraphmodels

Various subgraph models are proposed to accommodate different scenarios, including p-
cohesion studied in this paper. Clique [11,26] is the most cohesive subgraph where every
two vertices are adjacent. Because of the over-restriction of the clique model, some clique
relaxation models are proposed such as k-plex [34], k-core [21,25,33], k-truss [9,44], k-
fami [43] and dense subgraph [13,31], to name a few. It is intractable to compute somemodels
such as clique enumeration and finding the densest k subgraph, as there is no polynomial-time
algorithm existed.
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Somecohesive subgraphworks aim to discover small-size subgraphs.Amini et al. [2] study
some degree-constrained subgraph problems including the minimum-size k-core search. Cui
et al. [10] propose efficient algorithms to locally search the k-core. Barbieri et al. [5] pro-
pose greedy algorithms to search the minimum k-core for one or multiple query vertices.
Wood et al. [39] study the k-assemblies based on minimal k-core computation. The above
cohesive subgraph models only consider the cohesiveness inside the subgraphs and ignore
the interactions from outside. The work most-related with p-cohesion is the k-defensive
alliance [15,32,41] which finds a subgraph S where each vertex v in S has at least k more
neighbors in S than out of S. When k = 0, the model corresponds to the p-cohesion with
p = 0.5. However, there is no such mapping between the two models for an arbitrary p
value. We stress that none of the above subgraph models possess the fortress property of
p-cohesion to defend the influence of information cascades.

According to the definition of p-cohesion [29], different vertices in a p-cohesion subgraph
need different number of neighbors inside the subgraph to remain engaged. Therefore, it is
infeasible to apply themethods with fixed threshold for each unit (vertex or edge), e.g., k-core
and k-truss computations. The framework of clique enumeration [7] can be utilized to find
minimal p-cohesions, while this exact solution can only handle very small graphs, e.g., it
cannot finish in one week for a graph with 80 vertices in our experiments. It is consistent with
the hardness results of p-cohesion computation proved in this paper: Finding the minimum
p-cohesion is NP-hard to approximate for any constant factor, and there are graphs with an
exponential number of minimal p-cohesions.
Influence cascade models Morris [29] introduces the contagion model and p-cohesion to
characterize social choices in local interaction systems. The paper also studies the diffusion
of a behavior from a finite set of initial adopters to all network users. Ugander et al. [37] show
that the contagion probability of a user is strongly influenced by his local neighbors, e.g.,
neighbors in cohesive subgraphs. Zarezade et al. [42] study correlated cascades based on the
fact that the adoption of a behavior by a user is influenced by the aggregation of the behaviors
of his/her neighbors. Easley and Kleinberg [12] make the same observation as the above in
various applications. They further emphasize the contagion model and the p-cohesion that it
is difficult for new innovations to enter tightly knit social groups (i.e., p-cohesions), because
people tend to interact with their friends or acquaintances.

In addition to the contagionmodel, there are some other information cascademodels, such
as independent cascade model (IC) and linear threshold (LT) model [19], where the influence
maximization problem and seed minimization problem have been extensively studied, e.g.,
[3,16,35,45]. It uses polynomial time to compute the influence spread of given seeds in the
contagionmodel,while this influence computation isNP-hard for both IC andLTmodels [27].
For a set of seeds, the spread area of their influence is certain in contagion model, while the
influence spread is uncertain and complex in IC and LT models due to the possible world
assumption.

3 Preliminaries

Assume there is an unweighted and undirected graph G = (V , E) with n vertices and m
edges, where V (resp. E) represents the set of vertices (resp. edges). S denotes a subgraph of
G. Let N (u, S) denote the set of adjacent vertices (i.e., neighbors) of u in S. Let deg(u, S)

denote the number of vertices in S which are adjacent to u. We may omit the target graph in
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Table 1 Summary of Notations Notation Definition

G An unweighted and undirected graph

S A subgraph of G

V (S) The vertex set of S

E(S) The edge set of S

G(V ) The induced subgraph of a vertex set V on G

u, v; e A vertex in G; an edge in G

n, m The number of vertices and edges in G

N (u, S) The adjacent vertices of u in S

deg(u, S) The number of adjacent vertices of u in S

E(u) The set of incident edges to u in G

D A set of seed vertices

notations when the context is clear, e.g., using deg(u) instead of deg(u,G). In this paper, if
a vertex is deleted, its incident edges are also deleted accordingly.

The contagion model in [12,29] defines the following cascading condition when some
vertices are activated and the others are not.

Definition 1 Cascading Condition. Given a graph G and a cascading threshold r ∈ (0, 1),
an inactivated vertex u ∈ V (G) will be activated iff the number of activated neighbors of u
is at least �r × deg(u,G)�.

The cascades in a graph may imply some interesting subgraphs which are named p-
cohesions.

Definition 2 p-Cohesion. Given a graph G and a real number p ∈ (0, 1), a connected
subgraph S is a p-cohesion of G, denoted by Cp(G), where deg(u, S) ≥ �p × deg(u,G)�
for every vertex u ∈ S.

Easley andKleinberg [12] prove that the p-cohesion subgraphs have the “fortress” property
to hamper the progression of information cascades.

Property 1 “Fortress.” Given a graph G and a real number p ∈ (0, 1), for an arbitrary
p-cohesion S of G, according to the Cascading Condition (Definition 1) with threshold
r > 1 − p, no vertex in S can be activated when all vertices in S are inactivated initially,
even if all the vertices in V (G)\V (S) are activated.

Definition 3 Minimal p-cohesion. Given a graph G and a real number p ∈ (0, 1), a p-
cohesion S of G is called minimal if it is an elementary unit of p-cohesion, i.e., every proper
subgraph S′ ⊂ S is not a p-cohesion.

Problem statement Given an undirected and unweighted graph G, and a real number p ∈
(0, 1), we aim to develop algorithms for the following two representative problems: (1)
Minimum p-Cohesion Search (MPCS): Given a query vertex q , find the smallest p-cohesion
containing q in G; and (2) Diversified p-Cohesion Enumeration (DPCE): Enumerate a set
of disjoint minimal p-cohesions.
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Fig. 2 Construction Example of Theorem 1, p = 1
2

4 Minimum p-cohesion search

In this section, we study the minimum p-cohesion search problem, i.e., MPCS. Firstly, we
analyze the complexity of the problem, and then present the solution.

4.1 Problem analysis

In this section, we prove that the MPCS problem is NP-hard to approximate for any constant
factor. Let MinPC denote the computation to find the smallest p-cohesion in G (without
query vertices).

Theorem 1 The MPCS problem is NP-hard, for any fixed p ∈ (0, 1).

Proof We prove the hardness of MPCS by the hardness of finding a minimum p-cohesion
in G without query vertices, i.e., MinPC. If there is a polynomial solution for MPCS, we
can immediately come up with a polynomial solution to find the minimum p-cohesion in G
(MinPC) by conducting MPCS on every vertex.

For MinPC, we show a reduction from Vertex Cover in cubic graphs which proved to be
NP-hard in cubic graphs [1,17]. Given an arbitrary cubic graph H as an instance of vertex
cover, with |V (H)| = n, we construct an instance G of MinPC as follows.

We may assume that |E(H)| = 3n
2 = 3 × 2l for some integer l, without loss of general-

ity [2]. As shown in Fig. 2, we construct a rooted tree T with a height of l + 1, where the
root vertex has 3 child vertices. Except for the root and leaves, every vertex in T has 1 parent
vertex and 2 child vertices. So T contains 3 × 2l leaf vertices, where the leaf set is denoted
by L . Then, we add a copy of L , denoted by F , and add a Hamiltonian cycle on L and F as
in the figure. The elements in F are identified with the elements in E(H). Now, we add a set
A which is a copy of V (H) with the identifications. Then, we add an edge between a vertex
u ∈ A and a vertex e ∈ F (i.e., corresponding to an edge in H ) if and only if u is incident to
e in H . Let ˜G be the graph constructed in this way.

Let ST denote a star-like subgraph which is induced by a center vertex and its � |˜G|
p �

neighbors, where |˜G| = |V (T )| + |V (F)| + |V (A)|. Then, for every vertex u in T (resp.
F), we connect u to every center vertex in k − 3 (resp. max(k − 4, 0)) copies of ST , where
k = � 2

p 	 + 1. The construction is completed.
Every vertex in the star-like subgraph has a degree one except the center vertices. When

2
3 < p < 1, we have that every vertex in F has a degree of 4 in G and every vertex in
V (G) \ F has a degree of 3 in G. When 0 < p ≤ 2

3 , every vertex in T and F has a degree of
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k in G. If a p-cohesion Cp contains a vertex in one of the star-like subgraphs, then Cp has
to contain more than |V (T )| + |V (F)| + |V (A)| vertices which makes Cp not a minimum
p-cohesion, as shown in the following.

According to the definition of p-cohesion, if a vertex u ∈ T ∪ F is in a minimum
p-cohesion (Cp) of G, u has at least 3 neighbors in Cp . Based on the construction, if a
minimum p-cohesion contains a vertex in T ∪ F , it has to contain every vertex in T ∪ F .
Furthermore, a minimum p-cohesion cannot only contain the vertices in T ∪ F or A. So a
minimum p-cohesion is induced by all the vertices in T ∪ F and a smallest subset of vertices
in A such that each vertex in F has at least a degree of 3 in the p-cohesion. Clearly, such
a p-cohesion contains at most |V (T )| + |V (F)| + |V (A)| number of vertices. Then, the
minimum p-cohesion search problem on G is exactly the Vertex Cover problem in H . �
Theorem 2 The MPCS problem does not admit a PTAS, unless P = NP.

Proof We still use the reduction in the proof of Theorem 1, and letG be the graph constructed
in the reduction from an arbitrary cubic graph H (as in Fig. 2), where |V (H)| = n, and
|E(H)| = 3n

2 = 3 × 2l for some integer l. As proved, the minimum p-cohesion search
problem on G is exactly the Vertex Cover problem in H . The p-cohesion of the constructed
graph G contains at most |V (T )| + |V (F)| + |V (A)| number of vertices, where |V (T )| =
1+ 3× 20 + 3× 21 + · · · + 3× 2l = 3× 2l+1 − 2 = 6n

2 − 2, |V (F)| = L = 3× 2l = 3n
2 ,

and |V (A)| = n. Thus, we have

OPTMinPC (G) = OPTVC (H) + |V (T )| + |V (F)| = OPTVC + 9n

2
− 2 (1)

where OPTMinPC (G) (resp. OPTVC (H)) is the size of the optimal solution for the MinPC
in the constructed graphG (resp. Vertex Cover in cubic graph H ). We omit the target graph in
notations when the context is clear, e.g., using OPTMinPC instead of OPTMinPC (G). Note
that any solution of MinPC in G of size SOLNMinPC induces a solution of Vertex Cover
problem in H of size SOLNVC = SOLNMinPC − 9n

2 + 2. Suppose that MinPC admits a
PTAS, i.e., for any ε > 0 we can find a solution for MinPC in polynomial time in graph G
of size SOLNMinPC ≤ (1 + ε) · OPTMinPC . Therefore, we can find a solution of Vertex
Cover in H in polynomial time with size

SOLNVC = SOLNMinPC − 9n

2
+ 2 ≤ (1 + ε) · OPTMinPC − 9n

2
+ 2 (2)

Based on Eqs. 1 and 2, we have

SOLNVC ≤ (1 + ε) · OPTVC + ε ·
(

9n

2
− 2

)

(3)

Since H is a cubic graph, any solution of Vertex Cover in H has at least |E(H)|
3 = n

2 nodes,
i.e., n

2 ≤ OPTVC . Using this in Eq. 3, we have

SOLNVC ≤ (1 + ε) · OPTVC + ε ·
(

9n

2
− 2

)

≤ (1 + 10 · ε) · OPTVC (4)

Thus, the existence of a PTAS for MinPC would imply the existence of a PTAS for Vertex
Cover in the cubic graphs, which is impossible unless P = NP [1]. �

Theorem 3 The MPCS problem does not admit any constant-factor approximation, unless P
= NP.
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Fig. 3 Error Amplification in the Proof of Theorem 3, p = 1
2

Proof Following the construction in Theorem 2, the theorem is proved by applying the
standard error amplification technique [2]. Let G1 = {G} be the family of graphs constructed
from the instances H of Vertex Cover (as in Fig. 2), G being a typical member of this family,
and let α > 1 be the factor of approximation of MinPC that exists by Theorem 1.

We construct a sequence of families of graph Gs , such that MinPC problem is hard to
approximate within a factor θ(αs) in the family Gs . This proves that MinPC does not have
any constant-factor approximation. In the following, Gs will denote a typical element of Gs
constructed from the element G ∈ G1. We describe the construction of G2 and obtain the
result by repeating the same construction inductively to obtain Gs .

We take a copy of the subgraph ˜G ⊂ G constructed in the proof of Theorem 1 and denote
it as G ′. It is proved that a p-cohesion Cp does contain any vertex in ST in the construction.
For every vertex u ∈ G ′, let du = deg(u,G ′). For each u, we construct a graph Gu as
follows. First, take another copy of the subgraph ˜G ⊂ G, denoted as G ′′, and choose du
arbitrary vertices x1, x2, . . . , xdu of degree three in T ⊂ G ′′, i.e., xi ∈ T , i = 1, 2, . . . , du .
Then, replace each of these vertices xi with a cycle of length four, and join three vertices of
the cycle to the three neighbors of xi , i = 1, . . . , du . Then, we connect the du edges incident
to u to the du vertices of degree two in the cycles. Let Gu be the graph constructed in this
way. An example is shown in Fig. 3.

Now, replace every vertex u ∈ G ′ with Gu mentioned above, denoted the constructed
graph as ˜G2. Similar to Theorem 1, let ST denote a star-like subgraph which is induced by

a center vertex and its � |˜G2|
p � neighbors. Then for every vertex u ∈ ˜G2 with degree 3 (resp.

with degree 4), we join u to every center vertex in k − 3 (resp. max(k − 4, 0)) copies of ST ,
where k = � 2

p 	 + 1. This completes the construction of the graph G2.

We have that |V (G2)| = |V (˜G)|2 + o(|V (˜G)|2) + o(� |˜G2|
p �), because each vertex of ˜G is

replaced with a copy of ˜G where we had replaced some of the vertices with a cycle of length

four, and we add some copies of ST to vertices in ˜G2, i.e., o(� |˜G2|
p �). To find a solution of the

MinPC problem in G2, for any u ∈ V (G), once a vertex in Gu is chosen, we have to solve
MinPC inG, which is hard up to a constant factor α. But approximating the number of u’s for
which we should touch Gu is also solving MinPC in G, which is hard up to the same factor
α. This proves that approximating MinPC in G2 is hard up to a factor α2. The proof of the
theorem is completed by repeating this procedure, applying the same construction to obtain
G3, and inductively Gs . Note that in each construction of Gi , the size of the ST is different,

which is � |˜Gi |
p �, where i = 1, 2, . . . , s. Note that Gi is a supergraph of ˜Gi by adding some
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Algorithm 1: SubPCExact(R, P , X , p, c)
Input : R, P , X : three data sets, p : a real number in (0, 1), c : a positive integer
Output : MinC : a p-cohesion containing q
if all v ∈ R are with deg(v,G(R)) ≥ �p × deg(v,G)� then1

if |R| < c then2
MinC = G(R), c = |R|;3
return;4

for each v ∈ P do5
R ← R ∪ {v}, X ← X ∪ {v};6
SubPCExact(R, (P ∪ {N (v) − R} − X ), X , p, c);7
R ← R − {v};8

return MinC9

Algorithm 2: ExactPC(S, p, q)
Input : S : a graph, p : a real number in (0,1), q : a query vertex
Output : MinCp : the minimum p-cohesion containing q
MinCp ← ∅, c = |V (S)|, R ← ∅, P ← ∅, X ← ∅;1
MinCp ← SubPCExact(R ∪ {q},P ∪ N (q), X , p, c);2
return MinCp3

copies of ST to some vertices in ˜Gi . In order to build Gs from Gs−1, we replace each vertex
u ∈ V (Gs−1) with a copy of Gs−1 in which deg(u,Gs−1) arbitrary vertices of degree three
have been replaced with a cycle of length four. �

4.2 Exact search algorithms

Algorithms 1 and 2 show the pseudo-code for finding the exact minimum p-cohesions con-
taining a query vertex, based on the framework proposed by Bron and Kerbosch [7] which
is to enumerate the maximal cliques in a backtracking manner. In Algorithm 1, we use
R to denote the intermediate vertex set of a p-cohesion containing the query vertex q .
G(R) is a p-cohesion that every vertex in R satisfies the definition of p-cohesion, i.e.,
deg(v,G(R)) ≥ �p × deg(v,G)�. Set P is the candidate set that the combining of P and
R may be a p-cohesion. By X , we denote the vertices that have been processed. p is the
parameter for p-cohesion, and c is the minimum size of all p-cohesions we found. Within
each recursive call, the algorithm considers vertices in P in turn. If there are no such vertices,
it backtracks. For each vertex v chosen from P , it makes a recursive call in which v is added
to R and X , respectively, and in which P is P ∪ (N (v) − R) − X , which finds and reports
all p-cohesions containing vertex v. Then, it removes v from R and P to exclude it in future
p-cohesions and continues with the next vertex in P .

In Algorithm 2, we invoke Algorithm 1 with R = {q}, P = N (q), X = {q} and c =
|V (S)|, where S is the input graph. The p-cohesion returned by Algorithm 1 is the minimum
p-cohesion containing query vertex q . Note that we can also enumerate all the p-cohesions
of a graph, i.e., execute Algorithm 1 with “SubPCExact(∅, V (G), ∅, p, |V (G)|).”

As our experiments on real-life graphs find that the size of aminimal p-cohesion is close to
the minimum p-cohesion, and the number of minimal p-cohesions is enormous, considering
the hardness results of p-cohesion computation,we design heuristic algorithms to fast retrieve
a minimal p-cohesions or a set of disjoint minimal p-cohesions.
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Algorithm 3: Collapse(S, p, u)
Input : S : a graph, p : a real number in (0,1), u : a vertex
Output : Cp : a smaller p-cohesion or an empty set
S ← S \ {u ∪ E(u)};1
while ∃v ∈ V (S) with deg(v, S) < �p × deg(v,G)� do2

S ← S \ {v ∪ E(v)};3

return S4

4.3 Heuristic search algorithms

Global search algorithm.As previously mentioned, the whole graph or a connected compo-
nent is a p-cohesion. By removing a vertex from a p-cohesion, it may cause the collapse
of the p-cohesion, resulting in a smaller p-cohesion or an empty set. In Algorithm 3, we
show the removal of a vertex may lead to the shrink of the p-cohesion.

Let u be a vertex that should be removed from a graph S. After removing u and the edges
incident to u, if there is a vertex v in S violating the p-cohesion constraint (Line 2), we
remove v and its incident edges from S at Line 3. The algorithm returns a smaller p-cohesion
or an empty set.

Time complexity. If a vertex u is deleted at Line 1 or 3, only the neighbors of u may violate the
definition of p-cohesion (Line 2). Thus, each vertex is visited once for deletion and each edge
is visited once for degree update and vertex marking. The time complexity of Algorithm 3 is
O(m + n).

Space complexity. The subgraph S and the neighbor set take O(m + n) space, respectively.
The degree set, to-delete set and vertex index take O(n) respectively. The space complexity
of Algorithm 3 is O(m + n).

Example 2 Figure 1 shows a graph with the label of the smallest number of neighbors
required for every vertex in a p-cohesion, when p = 0.6. If the input graph S is induced by
{u1, . . . , u13}, and u = u12, in Algorithm 3, the deletion of u leads to the removal of u11, u13
and u10 (Lines 2-3) according to the label (p-cohesion constraint). The returned S is induced
by {u1, . . . , u9}. In Algorithm 3, if the input graph S is induced by {u1, u2, u3, u4, u5}, and
u = u4, the deletion of u leads to the removal of u5, u2, u3 and u1, such that the returned S
is an empty set.

Based on the above collapse procedure, we propose a global search algorithm to
compute a minimal p-cohesion containing q in a top-down manner. Let S be the connected
component containing the query vertex q , which is a p-cohesion, we iteratively remove a
vertex from S without violating the p-cohesion constraint until no such vertex exists.

Algorithm 4 shows the details of the global search algorithm. Let S be a copy of the
connected component in G which contains q (Line 1). At Line 2, T ensures each vertex in S
is visited once only. Let S′ be a copy of S (Line 5). We select an unvisited vertex u with the
largest degree in S (Line 4) and compute the p-cohesion on S after deleting u by invoking
Algorithm 3 (Line 6). If the returned subgraph is empty or q is deleted from S, we recover S
(Line 7). When every vertex in current S is visited, S is a minimal p-cohesion. In this paper,
the vertex with the largest degree in current S will be chosen first at Line 4, because a large
degree vertex may fast reduce the size of current p-cohesion (S).
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Algorithm 4: GlobalSearch(G, p, q)
Input : G : a graph, p : a real number in (0,1), q : a vertex
Output : Cmin : a p-cohesion containing q
S ← the connected component containing q in G;1
T ← ∅; T ← T ∪ {q};2
while ∃u ∈ V (S) \ T //u is the vertex with the largest degree in current S;3
do4

S′ ← S; T ← T ∪ {u};5
S ← Collapse(S, p, u);6

if S = ∅ or q /∈ S then S ← S′;7

return S8

Algorithm 5: LocalSearch(G, p, q)
Input : G : a graph, p : a real number in (0,1), q : a vertex
Output : Cmin : a p-cohesion containing q
D ← {q}; T ← ∅;1
f (u) ← compute score for every vertex in G;2
while ∃v ∈ D \ T do3

T ← T ∪ {v}; b ← |N (v,G) ∩ D|;4
P ← {max(�p × deg(v,G)� − b, 0) vertices in N (v,G) \ D with the largest f (u)};5
Update score f (u); D ← D ∪ P;6

S ← GlobalSearch(G(D), p, q);7
return S8

Time complexity. The visit of every vertex in V (S) takesO(n) (Line 4). Algorithm 3 (Line 6)
and the recover of S (Line 7) take O(m + n) for one iteration, respectively. Thus, the time
complexity of Algorithm 4 is O(n(m + n)).
Space complexity.The subgraph S, S′ and the neighbor set takeO(m+n) space, respectively.
The set T and deg(·) take O(n) space, respectively. The space complexity of Algorithm 4 is
O(m + n).

Example 3 Figure 1 shows a graphwith the label of the smallest number of neighbors required
for every vertex in a p-cohesion, when p = 0.6. If q = u1, Algorithm 4 may firstly choose
u10 at Line 4, and then, delete u11, u12 and u13 by the collapse procedure (Algorithm 3). At
the next loop, it deletes u4 which leads to the deletion of all the vertices according to the
constraint of p-cohesion, i.e., S = ∅. Thus, we recover S and try another unvisited vertex in
S until no more vertices can be deleted. Finally, the vertices in ∪1≤i≤5ui induce a minimal
p-cohesion containing q .

Local search algorithm.Due to the giant component phenomenon [12], the connected com-
ponent containing the query may occupy a large part of the graph. In such cases, Algorithm 4
is inefficient on large graphs. To improve algorithm efficiency, we can compute the minimal
p-cohesion on a reduced S. In a bottom-up manner, we repeatedly expand the vertices start-
ing from the query vertex to form a p-cohesion subgraph which may be much smaller than
the initial connected component S. Algorithm 5 shows the local search procedure from q
on a graph G. The set D records the to-expand vertices, and set T ensures that each chosen
vertex is expanded only once (Lines 1-4). When we expand a vertex v, b is the number of v’s
neighbors in D (Line 4). We add max(�p × deg(v,G)� − b, 0) neighbors of v to D, such
that v can stay in the resulting p-cohesion (Line 5).
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In Algorithm 5, at Line 3, the chosen vertex v is the vertex with the largest degree in D
at that time. At Line 2, we compute a score f (u) for every vertex. At Line 5, we choose
the vertices in N (v,G) with the largest score f (u) in G-G(D) since the existence of such
vertices can get a good trade-off between the gain and penalty effect of adding one vertex
to D. All these chosen vertices are added to D for further expansion (Line 6). After the
expansion of every vertex in D, the vertices in D can induce a p-cohesion subgraph. By
invoking Algorithm 4 (Line 7), we can get the minimal p-cohesion containing the query
vertex q .

Score function. A straightforward score definition for a vertex u /∈ D is the gain effect of
adding u to D, denoted by f +(u), specifically, f +(u) records the number of u’s neighbor v

in D with deg(v,G(D)) < �p × deg(v,G)�:
f +(u) = |{v|deg(v,G(D)) < �p × deg(v,G)�, v ∈ N (u,G(D))}| (5)

Intuitively, f +(u) denotes the inclusion of u into D could contribute to increasing the degrees
of some vertices in D s.t. they are closer to satisfy the p-cohesion constraint.

Besides, there is also a penalty effect of adding u to D, since u may need extra neighbors
outside of D to make it have at least �p×deg(u,G)� neighbors in D. We denote the penalty
by f −(u):

f −(u) = max{0, �p × deg(u,G)� − |N (u,G(D))|} (6)

By considering both the gain and penalty effect, we define a score for a vertex u to determine
which neighbor should be selected in Line 5 with the trade-off between its gain and penalty.
The ultimate score of a vertex u is defined as:

f (u) = f +(u) − f −(u) (7)

As for Algorithm 5, in Line 5, for an expanding vertex v, we choose its neighbors u /∈ D
with the largest scores f (u).

Example 4 Figure 1 shows a graph with the label of the minimum number of neighbors
required for every vertex in a p-cohesion, when p = 0.6. If u = u1, Algorithm 5 may firstly
add u2, u3 and u4 to D, s.t., u1 satisfies the threshold for existing in a p-cohesion. Then, u2
and u3 are expanded with no vertex pushed into D. Then, u4 is expanded, which adds u5 to
D, because f (u5) = f +(u5) − f −(u5) = 1 − 0 = 1 is larger than f (u6) = 1 − 2 = −1
and f (u7) = 1 − 2 = −1. When all the vertices in D have been expanded, the algorithm
returns the induced subgraph by ∪1≤i≤5ui .

Time complexity. Let n̂ and m̂ denote the number of vertices and edges ofG(D), respectively.
In Line 3 of Algorithm 5, the total number of visited vertices in D is n̂. For each vertex in D,
the value b can be retrieved by visiting its neighbors, which takesO(m+n) for one iteration.
The update of f (·) for the neighbors of a vertex v takes O(deg(v,G) ∗ log(deg(v,G))).
The retrieval of P takes O(m + n) for one iteration. The score computation at each iteration
takesO(m + n) because deg(·,G(D)) and N (·,G(D)) can be maintained when each vertex
is added to D by visiting the neighbors of the vertex, and each vertex is added to D at most
once. At Line 7, Algorithm 4 takesO(n̂(m̂ + n̂)). As n̂ ≤ n and m̂ ≤ m, the time complexity
of Algorithm 5 is O(n̂(m + n)).
Space complexity. The sets D, T , P , f (·) and deg(·) take O(n) space, respectively. G and
N (·) take O(m + n) space, respectively. The space complexity of Algorithm 5 is O(m + n).

Algorithm correctness. In Algorithm 5, every vertex v in D is expanded once at Line 3,
which ensures v has sufficient neighbors in the partial set D by adding enough neighbors of

123



Discovering fortress-like cohesive subgraphs 3229

v into D (Lines 5-6). When every vertex v in D has been expanded, every v in D satisfies
deg(v,G(D)) >= �p × deg(v,G)�, i.e., the returned G(D) is a p-cohesion containing u.
Then, we invoke Algorithm 4 in Line 7. As the correctness of Algorithm 4 is immediate (it
follows the definition of p-cohesion), Algorithm 5 is correct.

4.4 Progressive search algorithm

In this section, we devise a progressive search algorithm to get a p-cohesion containing a
query vertex, namely PSA-PC. Given a vertex set Vt as a partial solution, we can compute
the upper/lower bounds of the minimum size of a p-cohesion containing Vt . When the size
upper/lower bounds of the partial solution is converged, we would get a size guaranteed
p-cohesion regarding the size of optimally minimum p-cohesion.

Motivated by [24], we would conduct a Best-First Search (BFS). A BFS tree would be
constructed, where the root is the query vertex and every tree node contains one vertex. For
each tree node t , its partial solution Vt for this node contains the vertex in the node and all
vertices in its ancestor nodes. In PSA-PC, when a tree node t is visited and t contains the
vertex u, we add the child nodes of t to the search treewhere each child node contains a unique
neighbor of a vertex in Vt with vertex id larger than u, in case of duplicate computation.
Then, for each partial solution Vt , we compute the upper/lower bounds based on the following
algorithms.
(i)Upper boundWe conduct the LocalSearch algorithm (Algorithm 5) equippedwith Eq. (7)
to get a minimal p-cohesion containing Vt . The returned p-cohesion will be used to update
the global size upper bound s+ of the optimally minimum p-cohesion. Also, the returned
p-cohesion will be the current best solution containing Vt ;
(ii) Lower bound For each vertex in u ∈ Vt , we compute the number of neighbors that u
need to stay in a p-cohesion: Du = max{0, �p × deg(u,G)� − |N (u,G(Vt ))|}. We use
NDmax = maxu∈Vt {Du} to denote the largest number of new vertices required to stay in the
p-cohesion containing Vt . So, |Vt | + NDmax is the size lower bound s−(t) of the optimally
minimum p-cohesion containing Vt .

The algorithm PSA-PC will return once s+
s− ≤ c is satisfied, where c is a user-specified

approximation ratio on the size of p-cohesion.
The pseudo-code is given in Algorithm 6. We use t to denote a tree node in the BFS tree

T . The vertex set Vt of a node t consists of the vertex t .v in t and all vertices in the ancestor
nodes of t . We use s+ to denote the upper bound of optimal minimum p-cohesion and use
s−(t) to denote the size lower bound of the minimum p-cohesion containing Vt . A priority
queueQ is used to denote the leaf nodes in T to be visited, where the key of a node t is s−(t)
in ascending order.

In each iteration (Lines 5-17), the node t with the smallest lower bound value s−(t) is
popped at Line 5. For current processing t .v, we expand it by each neighbor u of a vertex in
Vt with id(u) > id(t .v) (Line 6), where id(u) is the identifier of u. At Lines 7-8, for each
child node t ′ of t , we compute the size lower bound of the minimum p-cohesion containing
V ′
t , where V

′
t contains t

′.v and all vertices in Vt . For the size upper bound s+(t ′), at Line 10,
we conduct Algorithm 5 equipped with Eq. (7) to get the p-cohesion containing V ′

t , denoted
by R′, with s+(t ′) = |R′|. The global upper bound s+ and current best solution R will be
updated by s+(t ′) and R′ if s+(t ′) < s+ (Lines 11-12). At Line 15, a search branch following
t ′ can be stopped if s−(t ′) ≥ s+ because the size of the p-cohesion containing current V ′

t
cannot be smaller than current solution |R|.

123



3230 C. Li et al.

Algorithm 6: PSA-PC(G, p, q , c)
Input : G : a graph, p : a real number in (0, 1),

c : approximation ratio, q : query vertex
Output : R : the approximate minimum p-cohesion
t ← the (root) node of search tree T , where t .v = q;1
Q.push(t); R := LocalSearch(G,p,Vt );2

s+ := |R|; s−(t) := 1;3
while Q �= ∅ do4

t ← Q.pop(); //Q is a priority queue with key on s−(t);5
for every u ∈ N (t .v) with id(u) > id(t .v) do6

t ′ ← the child node of t , where t ′.v := u;7

s−(t ′) := maxu∈Vt ′ {max{0, �p × deg(u,G)� − |N (u,G(Vt ′ ))|};8

if s−(t ′) < s+ then9
R′ := LocalSearch(G,p,Vt ′ ); s+(t ′) := |R′|;10

if s+(t ′) < s+ then11
R := R′; s+ := s+(t ′);12

Q.push(t ′); attach child node t ′ to t in T ;13

else14
s−(t ′) ← +∞ ;15

s− ← smallest key value among nodes in Q ;16

if s+
s− ≤ c then return R;17

return R18

At Line 16, the global lower bound s− is updated as the smallest s−(·) among all nodes
in Q. The algorithm will return when s+

s− ≤ c is satisfied at Line 17 or the queue is empty.

Algorithm Correctness. Every subgraph R′ retrieved at Line 1 is a p-cohesion containing q ,
and hence, the upper bound s+ is correctly maintained in Algorithm 6. Given the correctness
of the lower bound s−, we have s− ≤ |R∗| ≤ s+, where R∗ is the optimal solution. When
Algorithm 6 terminates, we will return current best solution R with s+

s− ≤ c.

5 Diversified enumeration

In this section,we study the diversified p-cohesion enumeration problem (DPCE): Enumerate
a set of disjoint minimal p-cohesions.

5.1 Problem analysis

Firstly, we show the number of minimal p-cohesion for a graph can be exponential by the
following theorem.

Theorem 4 There exists a graph G that contains an exponential number of minimal p-
cohesions, for every fixed p ∈ (0, 1).

Proof We prove the theorem based on the exponential number of maximal cliques in a graph
G. Suppose G is empty initially, we add a vertex set O = ∪1≤i≤nvi to G where n = 2x and
x ∈ N+. For every vertex vi ∈ O , we connect vi to every other vertex inO except the opposite
vertex v j where | j − i | = n

2 , i.e., the degree of every vertex v ∈ O is deg(v,G) = n − 2.
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For every vertex v ∈ O , we add y extra vertices and connect each of them to v:

y =
⎧

⎨

⎩

�(n − 2) ·
(

1
2p − 1

)

�, 0 < p < 1
2

�(n − 2) ·
(

1
2(1−p) − 1

)

�, 1
2 ≤ p < 1

(8)

The construction is completed. We have |V (G)| = n + n · y. For every vertex v ∈ O , we
have deg(v,G) = (n − 2) +y:

deg(v,G) =
{

� (n−2)
2p �, 0 < p < 1

2

� (n−2)
2(1−p)�, 1

2 ≤ p < 1
(9)

For both cases of p, we have p ·deg(v,G) ≥ n−2
2 . So for each vertex in O to be in a minimal

p-cohesion S, at least n−2
2 of its neighbors are also in S. Note that, for a maximal clique of

G(O), the degree of every vertex in the clique is n−2
2 . If we count each minimal p-cohesion

in which each vertex contained in O has exactly n−2
2 neighbors in O , the number of the

minimal p-cohesions is at least the number of maximal cliques in G(O)which is 2n/2. Thus,
the number of minimal p-cohesions in G is exponential. �

According to Theorem 4, the number of minimal p-cohesions may be overwhelming to
users. Moreover, the p-cohesions discovered may heavily overlap with each other. Thus, we
are interested in tackling the diversified minimal p-cohesion enumeration problem (DPCE)
for graph G: We prefer to find a set of disjoint minimal p-cohesions for G.

5.2 Pivot-based local search (PLS)

In this section, we efficiently find a set of disjoint minimal p-cohesions based on the algo-
rithms for MPCS.

Baseline algorithm.A straightforwardmethod tofind a set of disjoint p-cohesions for a graph
is to repeatedly find a minimal p-cohesion and remove it. Thus, we propose an algorithm
in a top-down manner: For a graph G, starting with a connected component S, we can find
a minimal p-cohesion by Algorithm 4: “Cp = GlobalSearch(S, p, ∅).” We remove Cp and
the vertices violating the p-cohesion constraint after the removal of Cp . Repeatedly when
all vertices are removed from graph G, we can get a set of disjoint minimal p-cohesions.
A pivot-based local search algorithmFinding oneminimal p-cohesion in a top-downmanner
without a pivot is time-costly. Motivated by the MPCS, we can improve the efficiency of the
BaseLine Algorithm by adding a pivot u and finding a minimal p-cohesion containing
u by Algorithm 5. The details are shown in Algorithm 7.

At Line 1, we record the degree of every vertex in G. The set T is used to ensure every
vertex is checked exactly once. Then, we compute a minimal p-cohesion on each connected
component S of current graph G from Line 2. A minimal p-cohesion Cp can be computed
by Algorithm 5 with subgraph S, threshold p and a vertex u ∈ S. We delete Cp from S and
recordCp inC (Line 6). We delete the vertices violating the fraction threshold of p-cohesion
in S to further reduce S (Lines 7-8). Algorithm 7 returns the set of minimal p-cohesions in
C .

At Line 3, we select the vertex with the smallest degree in S because a small degree pivot
can fast expand to a p-cohesion and keep the advantage of the pivot that prunes more vertices
at the early stage. Besides, the chosen pivot allows us to compute the minimal p-cohesion on
a reduced initial S at Line 5 of Algorithm 7, which can improve the efficiency significantly.
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Algorithm 7: PLS(G, p)
Input : G : a graph, p : a real number in (0,1)
Output : C : a set of disjoint minimal p-cohesions
deg(v) ← deg(v,G) for every v ∈ V (G); T ← ∅;1
while ∃ a non-empty connected component S ∈ G do2

while ∃u ∈ S \ T do3
T ← T ∪ {u};4
Cp ← LocalSearch(S, p, u);5
S ← S-Cp ; C ← C ∪ {Cp};6
while ∃v ∈ V (S) with deg(v,G) < �p × deg(v)� do7

S ← S \ {v ∪ E(v)};8

return C9

Time complexity. The visit of the connected components in the graph takes O(n) at most
(Line 2). Algorithm 5 takes O(n(m + n)) for one iteration (Line 5). The update of S and C
takesO(m+n) atmost (Lines 6-8). Thus, the time complexity ofAlgorithm7 isO(n2(m+n))

in the worst case.

Space complexity. Algorithm 5 takes O(m + n) space. The G, Cp and C take O(m + n)

space. The deg(·) and T takeO(n) space. The space complexity of Algorithm 7 isO(m+n).

5.3 An application onMinSeed

In this section, we study an application of theminimal p-cohesion subgraphs on the contagion
model introduced by [12,29] along with the p-cohesion. To promote the sale of a product B,
the company may give incentives to some seed users, such as a discount or free product trial.
These seed users are regarded as activated (i.e., influenced) for using B, which may influence
(i.e., activate) their friends to use B. The influence will further cascade to the friends of the
activated users. In the following, we formally introduce the cascading rule.

Definition 4 Cascading Rule. Given a graphG, the set of activated vertices A ∈ V (G) and a
cascading threshold r ∈ (0, 1), we have: (1) a vertex u ∈ (V (G)\A) is immediately activated
iff there are at least �r × deg(u,G)� activated neighbors of u in G, i.e., deg(u,G(A)) ≥
�r × deg(u,G)�, and (2) a seed vertex u is always activated.

Given a target user group (which induces a graph) to cascade, a company may wish to
find the fewest seed users (initial adopters) such that all the target users are activated while
the promotion expense is minimized. Thus, the MinSeed problem is defined.
MinSeed problemGiven a target graphG with no activated vertices, and a cascading thresh-
old r ∈ (0, 1), the MinSeed problem is to find a set of seed vertices D in V (G), such that
(1) all the vertices in V (G) are activated by applying the Cascading Rule repeatedly, and (2)
|D| is minimized.

We prove that MinSeed is NP-hard by a reduction from Vertex Cover problem. Given a
graph G, when r is large enough, e.g., r = |V (G) − 1|/|V (G)|, the activation of a vertex
needs all its neighbors to be activated first. To activate all the vertices in G, each edge in G
should be incident to at least one seed vertex. Thus, MinSeed with such a r is exactly Vertex
Cover which is NP-hard.
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Algorithm 8: SeedSelection(G, r )
Input : G : a target graph, r : a real number in (0,1)
Output : D : the seed set
c(v) ← 0 for every v ∈ V (G);1
D ← ∅; A ← ∅;2
while ∃u ∈ V (G) \ {D ∪ A} do3

D ← D ∪ {u}; L ← {u};4
for each u ∈ L do5

for each v ∈ N (u,G) \ {D ∪ A} do6
c(v) ← c(v) + 1;7
if c(v) ≥ �r × deg(v,G)� then8

L ← L ∪ {v}; A ← A ∪ {v};9

return D10

Heuristic seed selection. Algorithm 8 shows the basic framework to find an approximate
solution for MinSeed. For every vertex v in G, we use c(v) to record the number of activated
neighbors (Line 1). Set D records the selected seeds, and set A records the activated vertices
except the seeds (Line 2). We select an inactivated vertex u as a seed and use L to record
the activated vertices by seed u (Lines 3-4). We update the c(·) value for the inactivated
neighbors of each vertex in L (Lines 6-7). An inactivated neighbor v is activated if c(v) ≥
�r × deg(v,G)� (Lines 8-9). The algorithm returns D as the seed set.

Time complexity. Algorithm 8 activates each vertex in G by exactly one time and updates the
c(·) value of its neighbors. So the time complexity of Algorithm 8 is O(m + n) if the seed
selection at Line 3 takes up to O(m + n).

Space complexity. Sets c(·), D, A, L and deg(·) take O(n) space, respectively. G and N (·)
take O(m + n) space, respectively. The space complexity of Algorithm 8 is O(m + n).
Algorithm correctness. Every vertex in G is either pushed into D as a seed, or pushed into A
as an activated vertex by the seeds. Since the seeds are regarded as activated, the D returned
by Algorithm 8 is a feasible solution of MinSeed.

Selection order. The vertex selection order in Line 3 decides the number of resulting seeds.
Because the minimal p-cohesions prevent outside influence spread according to the Fortress
property, the vertices in the p-cohesions are relatively isolated from the non-p-cohesion
vertices. By giving certain priorities to fortress vertices, we may break through the barrier
of influence spread from the non-p-cohesion vertices to the p-cohesion vertices. Thus, the
number of seeds required may be reduced. For MinSeed, we explore the following seed
selection orders.

IC-Deg selection. We select a vertex u with the largest degree in G at Line 3, because such
a u can increase the c(·) values by a great extent and such a u can relax the fortress property
when it is in a minimal p-cohesion.

IC-Core selection. The coreness of a vertex u is the largest value of kmax such that u is in the
kmax-core, i.e., u ∈ km-core and u /∈ (kmax + 1)-core. We select a vertex u with the largest
coreness inG at Line 3, because the coreness of a vertex reflects its importance/influence [24].

IC-Truss selection. The trussness of a vertex u is defined as the largest value of trussness of
an edge incident to u. The trussness of an edge e is the largest value of km such that e is in
the km-truss, i.e., e ∈ km-truss and e /∈ (km + 1)-truss. Similar to the IC-Core Selection, we
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select a vertex u with the largest trussness in G at Line 3, because the trussness of a vertex
also reflects the importance/influence of the vertex [38].

IC-BF selection. We select a vertex u at Line 3 such that the size increase of A is the largest
with the selection of u. Such a u is “best” in a greedy view. When there are ties, we choose
the one with the largest degree in G, as in the degree-based selection. We hope these “best”
vertices can effectively break the boundaries of the fortresses.

IC-PC selection. We find that the vertices with extremely large degrees have great influence
power. So firstly we select α × |V (G)| vertices as seeds which have the largest degrees in
G. Then, we retrieve a set C of minimal p-cohesions on G-G(D ∪ A) by the PLS algorithm
where p = 1 − r + ε and ε is an infinitesimal positive number. We compute a weight
β × deg(u,G) for each vertex u in C . For a vertex v not in C , its weight is just deg(v,G).
Then, we continue to select a vertex u as a seed which has the largest weight in G at Line 3.
In this way, the fortress property may be relaxed by giving priorities to the vertices in the
minimal p-cohesions.

Example 5 Figure 1 shows a graph where r = 0.5 and all the users are inactivated. By IC-
Deg, Algorithm 8 may select u10 and u4 sequentially. By IC-BF, Algorithm 8may select u10,
u7 and u5 sequentially. By IC-PC, when α = 0.01 and β = 2, Algorithm 8 may select u4
and u5.

6 Experimental evaluation

This section evaluates the effectiveness and efficiency of all techniques through comprehen-
sive experiments.
Algorithms. To the best of our knowledge, there is no existing work investigating the p-
cohesion computation.We implement and evaluate 6 algorithms for p-cohesion computation
and 3 algorithms for MinSeed as shown in Table 2.

Datasets. 8 real-life graphs are deployed in our experiments. The original data of Yelp are
from [40], DBLP is from [23], and the others are from [22]. In DBLP, each vertex represents
an author and each edge between two authors represents the two authors have at least 5
co-authored papers. The other datasets have existing vertices and edges. For Gowalla and
Brightkite, we remove the vertices without check-ins and their incident edges. We transfer
directed edges to undirected edges. Table 3 shows the statistics of the datasets.

Settings.All programs are implemented in standardC++and are compiledwithG++ inLinux.
All experiments are performed on a machine with Intel Xeon 2.3GHz CPU and Redhat Linux
system. The runtime of an algorithm is set to INF if it cannot finish in 1 hour.

6.1 Statistical results

Exact number of p-cohesions. We can enumerate the minimal p-cohesions in a graph by
ExactPC (Algorithm 1). Due to the huge time and space cost, we only compute the mini-
mal/minimum p-cohesions on a small graph G with p = 0.6. We extract the small graph G
with 70 vertices from the Yelp dataset. Note that the minimal p-cohesion computation on a
graph with 80 vertices cannot finish in one week. For the search of the minimum p-cohesion
containing a query vertex, we report the results from SubPCExact (Algorithm 2) over 100
independent tests. In each test, we randomly select a vertex from G as the query vertex q and
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Table 2 Summary of Algorithms

Algorithm Description

ExactPC Finding the minimum p-cohesion containing a query vertex q by Algorithm 2

SubPCExact Enumerating all minimal p-cohesions by Algorithm 1

GlobalS Finding a minimal p-cohesion containing a query vertex q by Algorithm 4

LocalS Local search algorithm (Algorithm 5) equipped with Equation (5)

LocalS* * Local search algorithm (Algorithm 5) equipped with Equation (7)

PSA-PC Progressive search algorithm (Algorithm 6)

BaseTD The top-down heuristic algorithm to find disjoint minimal p-cohesions (Sect. 5.2)

BaseTD+ BaseTD equipped with the pivot vertices

PLS The pivot-based local search algorithm (Algorithm 7)

IC-Deg Algorithm 8 equipped with the degree-based vertex selection

IC-Core Algorithm 8 equipped with the coreness-based vertex selection

IC-Truss Algorithm 8 equipped with the trussness-based vertex selection

IC-BF Algorithm 8 equipped with the best first vertex selection

IC-PC Algorithm 8 equipped with the minimal p-cohesion-based vertex selection

Table 3 Statistics of Datasets Dataset Vertices Edges davg dmax

Email 36,692 183,831 10 1383

Brightkite 50,111 194,090 7.7 1098

DBLP 210,840 363,299 3.4 159

Epinion 75,879 405,740 10.7 3044

Gowalla 99,563 456,830 9.2 9967

Deezer 54,573 498,202 18.3 420

Amazon 334,863 925,872 5.5 549

Yelp 249,440 1,781,908 14.3 3812

compute all the minimal p-cohesions containing q by Algorithm 2. The results show that
the average number of minimal p-cohesions containing a query q is 16, 549.27, and the size
of a minimal p-cohesion is in average 1.194 times the size of (exact) minimum p-cohesion.
We also compute the number of all the minimal p-cohesions in G with 70 vertices by Algo-
rithm 1, i.e., “SubPCExact(∅, V (G), ∅, p, |V (G)|).” The number of minimal p-cohesions of
G is 87, 429, which is over-whelming.

Score function evaluation forMPCS. Figure 4 reports the average minimal p-cohesion sub-
graph size returned by GlobalS, LocalS and LocalS* over 100 runs. One query
vertex is selected randomly from all the vertices. Figure 4a shows the result on 8 datasets
with p = 0.6. The score function-based algorithm LocalS* can significantly outperform
GlobalS regarding average size, because the search space of GlobalS is larger. Some
large degree vertices may be chosen in the execution of GlobalS, and they usually need
more neighbors to stay in a p-cohesion. On most of the datasets, LocalS* can significantly
outperform LocalS. For example, onDBLP, the number of vertices returned by LocalS is
almost 5 times greater than the number of vertices returned by LocalS*. This implies that
considering only the gain effect (Eq. (5)) during the expansion procedure cannot guarantee
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Fig. 5 Average Size of Minimal p-Cohesions, p = 0.6, c = 1.8

a good performance. Figure 4b, c reports the results of three algorithms by varying the con-
straint p from 0.1 to 0.9 on DBLP (4b) and Amazon (4c), respectively. In both figures, the
sizes of the minimal p-cohesion subgraphs returned by GlobalS, LocalS and LocalS*

increase as p grows, since a large p inherently requires more vertices in a p-cohesion sub-
graph. When p is very large, the results of the three algorithms are similar, because nearly
the whole graph is returned.

Size guaranteed p-cohesion. We can get a minimal p-cohesions with certain size guarantee
by PSA-PC (Algorithm 6). Figure 5 shows the average size of p-cohesion subgraphs on
8 datasets, where p = 0.6 and approximation ratio c = 1.8. As depicted in Fig. 4, the
LocalS* outperforms the other two algorithms. Thus, in Fig. 5, we compare the results
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returned by PSA-PC and LocalS* over 100 independent tests. In each test, we randomly
select a vertex from a graph G as the query vertex q and compute the minimal p-cohesions
containing q by PSA-PC and LocalS*, respectively.

AsPSA-PC is costly, it cannot finish in one hour for about 87%queries in the experiments.
Thus, we terminatePSA-PC when the runtime reaches one hour and get the latest p-cohesion
from it. Given such time limit, the returned results from PSA-PC can outperform LocalS*

regarding the average size from all the queries, due to the theoretical guarantee of PSA-PC.

6.2 Effectiveness on cohesive subgraphmodeling

Comparing different cohesive subgraphs. For each query vertex v, we compute the minimal
p-cohesion byLocalS*, the �p×deg(v,G)�-core by [6], the (�p×deg(v,G)�+1)-truss by
[9], the maximal clique by [36] and the edge densest subgraph by [14] where every computed
subgraph contains v. The query vertex is randomly selected from all the vertices in the graph.
In Fig. 6, we report the modularity scores [30] on the evaluated subgraph and the subgraph of
the outside, for each of the above models, when p = 0.6. The scores are the average values
from 100 independent tests. Consistent with the definition, the minimal p-cohesion shows
better modularity scores because it holds both inner-cohesiveness and outer-sparseness. In
Fig. 7, we report the clustering coefficient of the induced subgraphs computed by eachmodel.
Figure 7 shows the p-cohesions have higher clustering coefficients on all the datasets than
other models except the clique.
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Fig. 8 A Minimal p-cohesion on Email

Fig. 9 An s-Clique on Email

Fig. 10 A Minimal p-cohesion
on DBLP

Cases of MPCS. In Fig. 8, we depict a minimal p-cohesion S containing the query vertex
“20317” found by LocalS* with p = 0.6 on Email. The p-cohesion contains all the grey
vertices. In Fig. 9, we find a s-clique containing the query vertex “20317” where s = |V (S)|.
The s-clique contains all the gray vertices. We also depict all the 1-hop neighbors of one
vertex in the p-cohesion or the s-clique, to show the outer connections to the subgraph. In
Fig. 8, we can see the vertices in S are sparsely connected to their outside neighbors. However,
in Fig. 9, vertex “24944” has a dense connection with its neighbors outside of the s-clique.
The outside influence cascades may enter the s-clique through “24944.”We also compute the
�p × deg(v,G)�-core and the (�p × deg(v,G)�+1)-truss containing vertex “20317.” The
numbers of vertices in two subgraphs are 11,538 and 10,097, respectively. The sizes are too
large for community-oriented applications. For each subgraph, there are some vertices with
many neighbors outside the subgraph. In Figs. 10 and 11, we depict theminimal p-cohesion S
found by LocalS* with p = 0.6 and a |V (S)|-clique containing the query vertex “251583”
on DBLP. We also compute the �p × deg(v,G)�-core and the (�p × deg(v,G)�+1)-truss
containing vertex “251583,” and the sizes of these two subgraphs are 35,281 and 22,499,
respectively. The results on DBLP are similar to that on Email.
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Fig. 11 An s-Clique on DBLP

Fig. 12 PLS on DBLP, p = 0.8

Cases of DPCE . Figure 12 depicts a part of DBLPwith theminimal p-cohesions discovered
by PLS when p = 0.8. The p-cohesions are marked by the black edges and their incident
vertices.We also show all the vertices which are within the 5-hop neighborhood of one vertex
in the p-cohesions. We can see the minimal p-cohesions have a loose connection to their
outside neighbors.

6.3 Effectiveness on fortress property

Fortress property on different influence models. We examine the fortress property of p-
cohesions under different cascade models: the contagion model, the independent cascade
(IC) model and the linear threshold (LT) model [18]. The target minimal p-cohesions are
computed by PLS. For each influence test, we randomly choose b = 0.1×|V (G)| seeds. We
follow the settings in [18] to compute the influence spread. During the cascade procedures of
the LT and IC models, each edge (u, v) is split to two directed edges (u, v) and (v, u). The
existing probability of each directed edge, i.e., (u, v), is set as 1/deg(v). For the LT model,
we randomly distribute a threshold from 0 to 1 for each vertex v as the influence threshold.
We generate 10 possible worlds on both the IC and LT models, to compute the influenced
vertices and generate the average influence ratios.

In Fig. 13,Contagion,IC andLT represent the average influence ratio of “the number of
influenced p-cohesion vertices” divided by “the number of all the influenced vertices” for con-
tagion, ICmodel andLTmodel, respectively.WeuseBaseValue, i.e., |V (Cp(G))|/|V (G)|,
to represent “the number of p-cohesion vertices” divided by “the number of all the vertices,”
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Fig. 13 Fortress Property of Different Cascade Models

as a base value for influence comparison. The setting is p = 0.6 and r = 1 − p + 0.001.
BaseValue is basically larger than Contagion, IC and LT, among different settings,
which implies that the vertices in a p-cohesion have a relatively smaller possibility to be
influenced than the other vertices, under every evaluated influence model. The p-cohesion
holds the fortress property on all the evaluated influence models, because a p-cohesion main-
tains a sparse connection to the outside s.t. the influence spread from outside is hard to enter
the p-cohesion on these influence spread models.

Figure 13 also shows that the percentages of p-cohesion vertices over different graphs are
different, which would affect the influence power of contagion model. For example, about
17.4% of the vertices from Epinion are in p-cohesions, and only about 14.1% of them can
be influenced under the contagion model, while about 67.4% of the vertices of DBLP are
in p-cohesions, and almost 65.1% of them can be influenced under the contagion model.
It indicates that the higher occupation of the p-cohesion vertices would result in the higher
influence power of the contagion model.
Fortress property on different cohesive subgraphs. In Fig. 14, we evaluate the fortress prop-
erty of the minimal p-cohesion, which is compared with different cohesive subgraphmodels:
k-core [33] and s-clique [20], k-truss [9] and the edge densest subgraph [14]. The query ver-
tex is randomly selected on the graph. The minimal p-cohesion is computed by LocalS*.
For the s-clique containing the query vertex, we choose the size of the minimal p-cohesion
as the parameter s. For k-core (resp. k-truss), the input of k is the largest value of k such that
the k-core (resp. k-truss) containing the query vertex is not empty.

We report the average ratio of influenced (i.e., activated) vertices over all the vertices
under the contagion model [12,29] over 100 independent tests with p = 0.5 and influence
ratio r = 1.0 − p + 0.001. For each influence test, we randomly choose b = x × |V (S)|
seeds where S is the connected component containing the query vertex in the graph. In
Fig. 14, Minimal p-Cohesion represents the average ratio of “the number of influenced
vertices in the p-cohesion (denoted by S)” divided by “the number of all the vertices in S.”
It is similar for s-Clique, k-Truss, k-Core and Edge Densest. The figure shows
that all other cohesive subgraphs have more difficulty in hindering the influence spread from
outside, compared with p-cohesion, because they do not guarantee the outer-sparseness. The
minimal p-cohesion shows a stronger fortress property than the others on all the settings.

Evaluation of minimal and non-minimal p-cohesions. Figure 15 evaluates the effectiveness
of “minimal” constraint on p-cohesion, by comparing the fortress property of minimal p-
cohesions and non-minimal p-cohesions. Each time for a random query vertex in G, we
compute a minimal p-cohesion by LocalS* and a corresponding non-minimal p-cohesion
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Fig. 14 Fortress Property of Different Cohesive Subgraphs

by the expansion procedure of LocalS*.We conduct 100 influence tests under the contagion
model. In each test, we randomly choose b = 0.1× |V (S)| seeds to compute the influenced
vertices, for 10 times, where S is the connected component containing the query vertex.

In Fig. 15, Minimal p-Cohesion represents the average ratio of “the number of
influenced vertices in the minimal p-cohesion (denoted by S)” divided by “the number of
all the vertices in S.” Non-Minimal p-Cohesion represents the average ratio of “the
number of influenced vertices in the non-minimal p-cohesion (denoted by S′)” divided by “the
number of all the vertices in S′.” The minimal p-cohesion shows stronger fortress property
than the non-minimal p-cohesion, because the smaller diameter and size may benefit the
defend of information cascades coming from the outside.
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6.4 Effectiveness on influencemaximization andMinSeed problems

Evaluation on influence maximization. To further verify the effectiveness of the fortress prop-
erty, we utilize the p-cohesions in the problem of influence maximization, compared with
existingworks [8,28]. Theminimal p-cohesions used in the experiment are computed byPLS
with p = 0.6. We follow the settings in [28] to compute the influence spread. The IC model
is used as the influence cascade model, and the influence spread probability r = 1− p = 0.4.
We report the result on R = 100 rounds where we select b = 50 inactive vertices as the
seeds in each round.

Specifically, during the seed selection of our IM-PC on each round, we compute the
influence spread with the following steps: (1) Choose an inactive vertex from all minimal
p-cohesions with the largest degree as the seed; (2) compute the spread of the influence of
this seed; (3) repeat step (1) and step (2) for b times; and (4) report the average number of
active vertices for all rounds. For the method IMUG [28], we probe m = �0.001 ∗ |V (G)|�
vertices and select b seeds for each round s.t the expected number of active vertices in the
R-th round is maximized [28]. Since the IMUG is for unknown graph, we probe the vertex
with the largest degree as a seed, because such a vertex has a larger influence spread than
other heuristics [18]. The DegreeDiscountIC [8] is based on degree discount method,
which select the vertices with the largest number of inactivated neighbors as the seeds.

In Fig. 16, we report the average number of active vertices for different seed selection
methods. The results show that the number of activated vertices by IM-PC is larger than
DegreeDiscountIC and IMUG. It is because that the vertices in a minimal p-cohesion

123



Discovering fortress-like cohesive subgraphs 3243

Table 4 Seed Numbers of Email and Brightkite with Different Methods

r Email Brightkite

IC-Deg IC-Core IC-Truss IC-BF IC-PC IC-Deg IC-Core IC-Truss IC-BF IC-PC

0.2 1129 1130 1130 1140 1129 457 459 461 459 457

0.4 2410 2397 2377 2343 2083 1262 1291 1338 1310 1253

0.6 4925 5107 5153 4909 2156 7699 8280 8442 7382 1312

0.8 11,145 11,426 11,498 10,535 2292 17,501 18,032 18,513 15,960 1264

Table 5 Seed Numbers of Gowalla and Amazon with Different Methods

r Gowalla Amazon

IC-Deg IC-Core IC-Truss IC-BF IC-PC IC-Deg IC-Core IC-Truss IC-BF IC-PC

0.2 1088 1088 1091 1102 1088 1126 1119 1112 1125 1126

0.4 2722 2714 2700 2902 2692 21,122 21,445 21,487 – 4549

0.6 16,131 17,123 17,082 15,487 3023 76,215 77,633 78,845 – 4013

0.8 39,264 40,663 41,358 – 3043 149,177 150,616 155,377 – 4115

are hard to be influenced than other vertices, and the seed from p-cohesions (IM-PC) can
break the entry barriers of the p-cohesions, while DegreeDiscountIC and IMUG do not
consider this fortress property.
Evaluation ofMinSeed algorithms. In Table 4 and Table 5, we report the seed numbers
returned by IC-Deg, IC-BF, IC-Core, IC-Truss, and IC-PC when r varies from 0.2
to 0.8. We report the seed numbers on four datasets, i.e., Email, Brightkite, Gowalla and
Amazon. According to Property 1, it is difficult for the p-cohesions to be influenced from the
outside vertices. Our IC-PC gives selection priority to the vertices in minimal p-cohesions
such that the resulting seed numbers can be reduced. We set ε as 0.001 and p = 1 − r + ε.
According to statistical observation, we set α = 0.01 and β = 2.

Tables 4 and 5 show that the IC-PC significantly selects less seeds than the other algo-
rithms, which helps to reduce the cost of cascading the network. Some results of IC-BF are
not reported because the computation cannot finish within 1 week. All methods of IC-Deg,
IC-Core, IC-Truss and IC-PC are efficient, because IC-PC just additionally conducts
PLS on a reduced graph and the PLS is efficient. We observe that the seed number is much
smaller than the size of a dataset, e.g., the seed number of IC-PC on Brightkite (resp.
Gowalla) is only 2.5% (resp. 2.7%) of its vertex number when r = 0.4.

6.5 Efficiency report

In this section, we report the runtime of finding a minimal p-cohesion and finding the disjoint
minimal p-cohesions.
Score function evaluation on MPCS. Here, we report the average runtime of GlobalS,
LocalS and LocalS* to compute a minimal p-cohesion containing a query vertex q over
100 runs. One query vertex is randomly selected among all the vertices. Figure 17a reports
the runtime on all the datasets when p = 0.6. We observe that the runtime on a dataset
is strongly affected by its vertex number, since every vertex belongs to at least 1 minimal
p-cohesion in the result. Figure 17b, c reports the runtime on DBLP and Amazon with p
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Fig. 17 Finding a Minimal p-Cohesion

varying from 0.1 to 0.9. The runtime of GlobalS drops slightly with the increase of p,
because a larger p makes vertex deletion more efficient. LocalS and LocalS* perform
faster when p is small, because the computation space is reduced for a small p. Note that
LocalS and LocalS* expand the query vertex to a p-cohesion and then delete the vertices
from the p-cohesion to produce a minimal p-cohesion containing q . LocalS runs slower
than LocalS*, because the former does not consider the penalty effect during the expansion
procedure and usually finds a larger p-cohesion than LocalS*. When p = 0.9, the runtime
of LocalS* is not larger than that of p = 0.8 on Amazon, because the p-cohesions have a
similar size for both p values, while the deletion procedure is faster for p = 0.9. In general,
LocalS* significantly outperforms GlobalS on runtime.
Evaluating algorithms forDPCE .Here,weevaluate the performanceof BaseTD,BaseTD+
and PLS to find disjoint minimal p-cohesions. Figure 18a reports the performance on all the
datasets when p = 0.6. Figure. 18b and 18c shows that BaseTD and BaseTD+ cannot
finish the computation in 1 hour when p is small. Although the computation of one minimal
p-cohesion is fast when p is small, the size of produced p-cohesion is quite small such
that we have to compute much more minimal p-cohesions than that of large p values. This
issue is relaxed when p is large enough such as p = 0.6. There are 4 factors which influ-
ence the trends of runtime: (a) the size of every expanded p-cohesion, (b) the size of every
resulting minimal p-cohesion, (c) the number of resulting minimal p-cohesions and (d) the
deletion procedure from an expanded p-cohesion to aminimal p-cohesion.When the p value
increases, usually (a) increases, (b) increases, (c) decreases and (d) speeds up, which, in total,
constitutes the trends of runtime for different p. In general, PLS is significantly faster than
the other algorithms.
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Fig. 18 Finding Disjoint Minimal p-Cohesions

7 Conclusion

In this paper, we study two representative problems on the fortress-like p-cohesion sub-
graphs: minimum p-cohesion search and diversified p-cohesion enumeration. We analyze
the complexity of the problems and prove that finding a minimum p-cohesion is NP-hard to
approximate for any constant factor and the minimal p-cohesion enumeration is intractable.
From theory to practice, we propose efficient algorithms to find a minimal p-cohesion for a
query vertex and a set of disjoint minimal p-cohesions. For a feasible solution of MinSeed,
we employ the discovered minimal p-cohesions to reduce the seed number required for
cascading the whole network. Comprehensive experiments show that our algorithms are effi-
cient, the minimal p-cohesions hold the fortress property, and the algorithms help solve the
MinSeed problem. In the future, it is interesting to study whether there are more applications
of p-cohesion, e.g., community deception, graph decomposition and network stability.
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