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Abstract—The studies of k-truss based community search
demonstrated that it can find high-quality personalized com-
munities with good properties such as high connectivity and
bounded diameter. Motivated by natural restrictions from real
applications, in this paper, we investigate the search of triangle-
connected k-truss with size constraint (denoted by SCkT) in a
graph G: given a size constraint s, an integer k, and query
set Q, SCkT search aims to find a triangle-connected k-truss H
containing the vertices in Q and with size (i.e., total number
of vertices in H) not exceeding s. We prove that the SCkT
search problem is NP-hard. To tame the hardness, we fully
exploit the properties of triangle-connected k-truss subgraphs
s.t. a practically-efficient exact solution for SCkT search is
developed. A novel and effective lower bound is proposed to
early terminate unpromising search branches and narrow down
the search space. Two search strategies, expansion and shrinking,
are investigated to tailor for efficient support of SCkT search. A
hybrid search method is proposed combining the expansion and
shrinking strategies, where a score function is used to guide the
search order. Our extensive experiments on real-life and synthetic
graphs demonstrate the effectiveness of the SCkT model and the
efficiency of the proposed techniques.

I. INTRODUCTION

Graphs are widely used to model the relationships of entities
in a large spectrum of applications including social networks,
World Wide Web, collaboration networks and biological net-
works. Query processing and mining with communities is one
of the fundamental problems in graph analytics, which extracts
densely connected structures from large graphs. In many real-
life scenarios, users are more interested in the communities
they participate in. Thus, community search, which aims to
find communities containing given query vertices, is widely
studied [17]. It enables personalized community discovery
to fulfill the requirements from query users, and has thus
found a wide range of applications, e.g., team formation [49],
social contagion modeling [37], and identification of protein
functions [14].

In this paper, we follow the study of k-truss based com-
munity search [1], [20] for its effectiveness in finding high-
quality communities with promising properties. Given a graph
G, a k-truss of G is the maximal subgraph in which every
edge is contained in at least k − 2 triangles in the subgraph.
In the literature, different models are proposed to measure
community cohesiveness, such as k-core [46], [47], k-truss
[11], [20], and clique [31]. The k-truss is an elegant relaxation
of the over-restricted clique model, and also an enhanced
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version of the k-core model. The k-core is considered as
the seedbed for finding denser subgraphs [46], [47]. Note
that each vertex in the k-truss has at least k − 1 neighbors
inside, i.e., the k-truss is always a (dense) subgraph of (k-1)-
core. Instead of primitive nodes or edges, k-truss exploits the
higher-order graph motif, triangle, to capture the cohesiveness
in communities with strong theoretical guarantees [6], [42],
[43] (more details are given in Section II). The k-truss also
has its advantage in computation cost: finding all k-trusses
from a graph consumes polynomial time [38].

In a social network, the users in triangles usually have strong
and stable relationship since it implies these users having some
common friends [6], [42], [43]. On top of the k-truss model,
Huang et al. [20] impose a triangle connectivity constraint
that requires two edges in the same community either belong
to the same triangle, or are reachable through a series of
adjacent triangles. This triangle connectivity is more rigorous
than primitive connectivity which only requires two vertices
are reachable from each other through a simple path. Due
to the effectiveness of triangles in modeling the community
cohesiveness, [1], [20] adopt the k-truss model augmented
with triangle connectivity in community search.

While it has been shown that k-truss model and triangle-
connected k-truss model work well in finding communities
containing query vertices [1], [20], [38], existing studies
mainly focus on the maximal (triangle-connected) k-truss
computation (e.g., [1], [20], [21], [50]) which aims to find the
largest induced (triangle-connected) k-truss subgraph. How-
ever, in many real scenarios especially one or a set of query
vertices are involved, there tends to be a natural constraint over
the number of vertices in a community due to the limitation
of capability or budget [4], [36]. Based on this fact, the size
constraint is considered in some community search problems,
to find communities with size no larger than a given threshold,
e.g., [17], [36].

In this paper, we study the problem of searching triangle-
connected k-truss community with size constraint (SCkT).
Given a set of query vertices, SCkT search aims to find a
triangle-connected k-truss containing all the query vertices
with size no larger than a given threshold s. In Figure 1,
the whole graph is a triangle-connected k-truss with k = 4.
Suppose v1 is the query vertex, k = 4 and s = 6, the search
of SCkT will return the shaded subgraph in Figure 1 induced
by the vertices v1 to v6.

We illustrate the importance of SCkT with the following
representative applications:
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Fig. 1. Motivating Example with k = 4

(1) Team Formation. In online social platforms (e.g., Meetup,
Facebook), a host may wish to organize a group activity such
as hiking, sport, or party. Besides social connections, a size
constraint is often applied in assembling the group due to
various factors such as availability of tickets or capacity of the
venue [17], [36]. In this scenario, a certain number of friends
in the social platform will be recommended to the host by the
SCkT search.
(2) Biological Network Analysis. In biology, a fundamental
task is to detect and identify functional modules, which tech-
nically are cohesive subgraphs in protein-protein interaction
networks [3], [14], [35]. The proteins in a cohesive subgraph
tend to have similar functions. As shown in [23], triangle-
connected k-truss model can be used to identify proteins with
similar functions. A recent study shows such homogeneous
property mainly holds for small cohesive subgraphs [24].
(3) Suspicious Group Detection. In transaction networks (e.g.
Alipay) where users are connected by transfers, it is important
to identify suspicious groups which often correspond to cohe-
sive subgraphs. However, mining a subgraph with large size
would include many innocent users s.t. a large manual cost
for check is needed. Therefore, given a user in the black list,
it is more desirable to find a cohesive subgraph containing the
user with size constraint.

Challenges. To the best of our knowledge, this paper is the
first work to study the problem of SCkT search. We prove that
the SCkT search problem is NP-hard. [23] and [1] compute
all the maximal triangle-connected k-trusss offline and build
indexes based on the offline results to support online queries.
However, their indexes cannot be applied to SCkT as they
only record the maximal triangle-connected k-truss for each
vertex. If we enforce the use of their indexes for SCkT search,
we have to dynamically maintain the indexes as the size
constraint requires numerous edge insertion/deletion in the
search, which is prohibitively expensive. Nevertheless, we can
utilize their indexes in finding the initial triangle-connected k-
truss that contains query vertices. It is thus essential to develop
techniques which judiciously determine the search branch and
narrow down the search space.

Our Solution. To overcome above challenges, we first develop
a novel size lower bound of triangle-connected k-truss. In the
search of SCkT, if the lower bound of a partial solution is
lager than the size threshold, we can safely early terminate this
unpromising search branch. To quickly find a feasible solution,
we propose an expansion-based search strategy, in which we
start from the query vertex q and iteratively expand with the
most promising vertex to form a SCkT. To quantify whether

a vertex is promising or not, we propose a score function
based on the distribution of its neighbors in current partial
solution. Besides, we observe that removing one vertex in a
triangle-connected k-truss may lead to the removal of many
other vertices. Thus, we also propose the shrinking-based
search strategy, in which we start from the entire triangle-
connected k-truss and keep removing the most unpromising
vertex until the remaining graph forms a SCkT. Finally, we
design a hybrid search combining the expansion and shrinking
strategies, which automatically guides the search order. As
shown in our experiment, the hybrid search can fast return
almost all the queries.

Contributions. The principal contributions of the paper are
summarized as follows.
• Motivated by real-life requirements, we apply the size

constraint to the triangle-connected k-truss community
model. The paper is the first to study the problem
of size-constrained triangle-connected k-truss community
(SCkT) search. We prove that the SCkT search problem
is NP-hard.

• We develop a practically-efficient exact solution for SCkT
search. A novel and effective lower bound is proposed to
early terminate unpromising search branches to enhance
efficiency.

• Two search strategies, expansion and shrinking, are in-
vestigated to provide efficient support for SCkT search
regarding different situations of current partial solution.
Through a careful combination of the expansion and
shrinking, we propose a hybrid search method to return
triangle-connected k-truss communities with high quality.

• Extensive experiments on real graphs and synthetic
graphs are conducted to evaluate the proposed techniques.
The results demonstrate the efficiency and effectiveness
of our methods. In particular, over the largest graph with
over 41 million vertices and over 1.5 billion edges, our
algorithms can retrieve a SCkT within 10s for over 95%
of the queries.

II. RELATED WORK

Mining cohesive subgraphs is a fundamental problem in
graph analysis, which reveals potential community structures
of real-world graphs. In the literature, numerous models have
been proposed to quantify cohesive subgraphs including k-
clique [44], k-core [13], [32], [36], [39], k-truss [11], [20],
k-ECC [8], [19], and nucleus [33], [34]. There are also many
extensions to tradition models, such as (α, β)-core [25], [41],
(k, p)-core [45], CoreCube [27], etc. We review two research
areas closely related to the SCkT community search.
k-Truss. The k-truss model is defined on the higher-order
graph motif, triangle, and has numerous nice properties in
community modeling and computation [11]. For example, a
k-truss is a (k-1)-core and a (k-1)-ECC but not vice versa
[11], which means that each vertex in k-truss has at least
k − 1 neighbors and any deletion of fewer than k − 1 edges
cannot disconnect a k-truss. Moreover, k-truss is diameter-
bounded [22], i.e., a k-truss with n vertices has a diameter
within b 2n−2k c. Due to its nice properties, k-truss has been
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wildly used for community search [1], [20]–[23], [50]. The
studies in [1] and [20] further enhance the cohesiveness of
k-truss by triangle connectivity. They show that the k-truss
augmented with the triangle-connectivity constraint is closer
to practical case and more consistent with sociological studies.
The definition of triangle-connected k-truss used in this paper
follows [20] and [1], which requires the k-truss subgraph to
be triangle-connected. Recently, k-truss community search is
also studied on directed graphs [28]. There are other metrics
based on vertex pairwise similarity [9], [10], etc. [26], [40]
recently study the truss-based community search problem on
bipartite graphs.

Size-constrained community search. Community search is
studied on different graphs [17], including undirected graphs
[13], [36], directed graphs [18], attributed graphs [16], multi-
dimension graphs [27], and so on. Due to the limitation
of budget or capability in many real applications, an im-
portant type of community search is size-constrained (size-
bounded) community search [17]. In [36], a heuristic algorithm
is designed to repetitively removing vertices from a large
initial subgraph. A local search algorithm is proposed in [4]
by greedily expanding a subgraph starting from the query
vertices. Another local search algorithm finds a k-core with
size equal to h and the smallest closeness among all size-h
subgraphs [30]. It is infeasible to apply their algorithms to our
problem because a qualified result (SCkT) may be missed.

To further reduce the size of returned communities, [4]
and [13] also study the search of minimum communities.
An approximate solution for finding a minimum k-core is
developed in [24]. The above algorithms do not have a certain
threshold on limiting the size of each result, and the techniques
are not designed for community search with a size threshold.
To our best knowledge, this paper is the first work to study the
SCkT search. As shown in our experiments, the communities
retrieved by the size-constrained triangle-connected k-truss
model are more promising than that of other models.

III. PRELIMINARIES

In this section, we introduce the notations, formally define
the problem, and analyze the problem hardness.

A. Notations and Definitions

Let G = (V,E) be an undirected graph, where V is the set
of vertices and E ⊆ V × V is the set of edges. We use V (G)
and E(G) to denote the set of vertices and the set of edges of
graph G, respectively. For a vertex v ∈ V , we denote the set
of adjacent vertices (neighbors) of v in G by N(v,G) = {u |
(u, v) ∈ E(G)} and its degree in G by d(v,G) = |N(v,G)|.
A triangle 4(u, v, w) in G is a cycle of length 3 such that
{(u, v), (v, w), (w, u)} ∈ E(G). We say an edge e is incident
to vertex v if v is one of the two endpoints of e. We say G′

is a subgraph of G induced by vertex set M if V (G′) = M
and E(G′) = (M ×M) ∩ E(G).

Table I summarizes the notations used throughout the paper.
We may omit the input graph G in notations if the context is
clear, e.g., using N(v) instead of N(v,G).

TABLE I
SUMMARY OF NOTATIONS

Notation Definition
G(V,E) an unweighted and undirected graph
n, m the number of vertices and edges in G, respec-

tively (assume m > n)
u, v a vertex in the graph
N(v,G) the set of adjacent (neighboring) vertices of v in

G
d(v,G) the degree of v in G
e; (u, v) an edge in the graph; the edge with u and v as

endpoints
supG(u, v) number of triangles in G containing (u, v)
τ(e) the trussness of edge e
gapd(u) the degree gap of vertex u
gaps(u) the structure gap of vertex u
Gh,k h-hop truss neighborhood of query vertex q
f(u) score of u for selection in the search

Definition 1. Edge Support. The support of an edge (u, v)
in G, denoted by supG(u, v), is the number of the triangles
in G which contain (u, v), that is supG(u, v) = |{w | w ∈
V (G) ∧4(u, v, w) ∈ G}|.

The triangle-connected k-truss community in [1], [20] is
defined as follows.

Definition 2. Triangle Connectivity. We say that two edges e1,
e2 are triangle-connected in G if either e1 and e2 belong to the
same triangle or there exists a series of triangles 41, ...,4n

in G such that e1 ∈ 41, e2 ∈ 4n and for any 1 ≤ i < n, 4i

and 4i+1 share a common edge.

Definition 3. Triangle-connected k-Truss. Given a graph G
and an integer k, a triangle-connected k-truss is a subgraph
H ⊆ G, such that ∀e ∈ E(H), supH(e) ≥ k−2 and ∀e1, e2 ∈
E(H), e1 and e2 are triangle-connected.

Definition 4. Maximal Triangle-connected k-Truss. Given
a graph G and an integer k, a maximal triangle-connected
k-truss is a triangle-connected k-truss H , such that ∀I ⊆
E(G)/E(H), the subgraph induced by E(H) ∪ I is not a
triangle-connected k-truss.

The definition of triangle-connected k-truss implies that the
incident vertices of each edge share at least (k − 2) common
neighbors in the subgraph, which means a triangle-connected
k-truss is a subgraph of the (k-1)-core. Furthermore, the
vertex/edge removal in one maximal triangle-connected k-truss
does not affect the edge support of edges in other triangle-
connected k-truss as the edge support is defined on triangle
and there is no triangle (formed by edges with support no less
than k − 2) between two maximal triangle-connected k-truss.
Hence, we have the following observation.

Observation 1. Suppose there are more than one maximal
triangle-connected k-truss in graph G, the removal of any ver-
tex/edge in one maximal triangle-connected k-truss does not
lead to removal of vertices/edges in other maximal triangle-
connected k-trusses.

Definition 5. Trussness. The trussness of an edge e ∈ E(G),
denoted by τ(e), is the largest k such that a triangle-connected
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k-truss contains e.

Definition 6. Size-constrained triangle-connected k-truss
community (SCkT). Given a graph G, a set of query vertices
Q ⊂ V , a trussness constraint k, and a size constraint s,
H is a size-constrained triangle-connected k-truss community
(SCkT) if (1) H is a triangle-connected k-truss containing Q,
i.e., Q ⊆ V (H) ⊆ V (G); (2) the number of vertices in H is
no larger than s, i.e., |V (H)| ≤ s.

A direct observation of SCkT is that if a SCkT exists, s
must be no less than k since the degree of each vertex in a
triangle-connected k-truss is no less than k − 1.

Problem Statement. Given a graph G, a set of query vertices
Q ⊆ V (G), a trussness constraint k, and a size constraint s,
the SCkT search problem aims to find a SCkT from G, i.e.,
a triangle-connected k-truss subgraph H of G s.t. H contains
Q and the number of vertices in H does not exceed s.1

B. Problem Hardness
We prove the NP-hardness of SCkT search problem.

Theorem 1. The SCkT search problem is NP-hard.

Proof. We prove this by reducing the decision version of
maximum clique problem to the decision version of SCkT
search problem. Given a graph G and an integer k, the
maximum clique decision problem is to check whether G
contains a clique of size k. We construct an instance of
SCkT search problem consisting of Q = ∅, parameters k,
and s = k. Clearly, any clique with k vertices is a triangle-
connected k-truss with size k. On the other hand, any solution
to the instance of SCkT search problem is a clique of size k
because the number of vertices in the solution must equal to
k. Therefore, the instance of the maximum clique decision
problem is a YES-instance iff the corresponding instance of
SCkT search problem is a YES-instance.

For presentation simplicity and the ease of understanding,
in the reminder of the paper, we focus on the SCkT search
containing one query vertex q, and then discuss the search of
SCkT for multiple query vertices in Section IV-E.

IV. OUR SOLUTION

Despite the NP-hardness of the SCkT search problem, as the
first study of the SCkT search, we explore the possibility of
an efficient exact solution. In this section, we present an exact
solution through exploiting the nature of triangle-connected k-
truss on real-life data. The solution can be efficient in practice
for almost all the queries. The framework of our solution
is introduced in Section IV-A. To prune unpromising search
branches, a novel lower bound of triangle-connected k-truss
size is developed in Section IV-B. According to different
situations of current partial solution, two search strategies are
designed including the expansion-based search (Section IV-C)
and the shrinking-based search (Section IV-D). A hybrid

1Setting a suitable size constraint is indeed an important question. In some
cases when the size constraint is related to user budget, we may consider to set
the constraint by user-specified values. It is also interesting to determine the
threshold automatically, if there is a goodness metric in specific applications.

Algorithm 1: Framework
Input : a graph G, the trussness of each edge e ∈ E(G), the

trussness constraint k, the size constraint s, the query
vertex q

Output : SCkT R
h← 1;1
while Gh,k ) Gh−1,k AND h ≤

⌊
2s−2

k

⌋
do2

for each maximal triangle-connected k-truss G′ of Gh,k3
containing q do

M ← {q};4
R←Search(G′,M, k, s);5
if R 6= ∅ then6

return R7

h← h+ 1;8

return ∅9

search method combining the expansion and shrinking strate-
gies is proposed in Section IV-E.

A. The Framework
Starting from the query vertex q, we process the graph

progressively according to the number of hops from the query
vertex. Namely, we first search SCkT from the neighbors of q
(i.e., 1-hop), if no SCkT can be found we enlarge the search
space to the 2-hop neighbors of q. This is conducted until a
result is returned, or we can safely claim there does not exist
a qualified SCkT containing q.

The rationale for adopting this framework is twofold. Firstly,
triangle-connected k-truss is cohesive and the vertices in the
resulting SCkT are usually very close to the query vertex.
By restricting the distance between the vertices and the query
vertex q, the framework can largely reduce the search space.
Secondly, the radius of a triangle-connected k-truss subgraph
is bounded regarding trussness constraint k and size constraint
s, s.t., we can safely terminate the algorithm when h >

⌊
2s−2
k

⌋
because there is certainly no SCkT in such h-hop truss
neighbors of q. In the following, we formally introduce this
property of SCkT.

Definition 7. h-Hop Truss Neighborhood. Given a graph G, a
query vertex q and the k-truss S containing q, the h-hop truss
neighborhood of q, denoted as Gh,k, is the subgraph induced
by the vertices from S within distance h to q, i.e., V (Gh,k)
= {v ∈ V (S) | dist(v, q, S) ≤ h} where dist(v, q, S) is the
length of a shortest path from v to q in S.

Then, we have the following lemma for a SCkT in Gh,k.

Lemma 1. If there does not exist a SCkT in the h-hop truss
neighborhood Gh,k of query vertex q for any h ≤

⌊
2s−2
k

⌋
,

there does not exist a SCkT containing q in the whole graph
G and the search can be safely terminated.

Proof. The lemma is immediate because the diameter of a
SCkT S in G is at most

⌊
2s−2
k

⌋
[11], [22], and S is always

a subgraph of Gh,k for a query vertex q.

The pseudo-code of the framework is given in Algorithm 1.
The trussness of each edge in G is pre-computed by truss
decomposition [11], which is executed only once to support
different queries. Then, we can fast retrieve a h-hop truss
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neighborhood Gh,k by searching the neighbors of q through
edges with trussness of at least k. If the whole graph has
been searched or h becomes larger than the diameter bound,
the search terminates (line 2). In each of the Gh,k subgraph
starting from G1,k (i.e., subgraph formed by q and its 1-
hop neighbors in triangle-connected k-truss), we process each
maximal triangle-connected k-truss separately since they are
independent with each other as shown in Observation 1 (line
3). We use M to record all the vertices in the partial solution of
SCkT and M is initialized as {q} (Line 4). Then, we call the
Search algorithm (introduced in Section IV-C, IV-D and IV-E)
to explore a SCkT on G′ (Line 5). If a non-empry set R is
returned by the search on G′, R is a SCkT and the algorithm
is returned (line 6-7).

B. Lower Bound Computation

In this subsection, we introduce a novel and effective lower
bound for a partial solution M of SCkT, which aims to
calculate the smallest possible size of a SCkT containing all
vertices in M . This lower bound can thus be used to early
terminate unpromising search branches to improve efficiency.
Regarding each vertex v ∈ M , a key issue to develop a tight
bound is computing the number of extra vertices that we need
to include outside M such that v satisfies triangle-connected
k-truss constraint.

In [24], Li et al. propose a lower bound predication al-
gorithm based on degree constraint, which is called IELB.
Suppose that the degree constraint on the final solution is that
each vertex must have degree at least d (for triangle-connected
k-truss d = k− 1). The degree gap for each vertex v in M is
defined as follows:
Degree Gap. Let G denote the target graph to compute a
solution from it, M denote the vertices in the partial solution
and GM denote the subgraph induced by M on G. Suppose
that the degree constraint on the final solution is that each
vertex must have degree at least d. For each vertex v ∈ M ,
the degree gap of v, gapd(v), is defined as:

gapd(v) = max{d− deg(v,GM ), 0} (1)

Let X be the set of vertices outside of M but incident to v,
e.g., X = N(v,G)/M . IELB first computes gapd(v) for each
v ∈M , then it calculates the lower bound using an inclusion-
exclusion method. Specifically, the lower bound l is initialized
as |M |. IELB selects the vertex v from M with the largest
degree gap gapd(v), and updates l = l + gapd(v). For other
vertices u ∈ M , IELB updates gapd(u) = max{gapd(u) −
|N(u,G) ∩ X|, 0}. The main idea behind this is that IELB
assumes that any vertex from X is incident to other vertices
in M as many as possible. IELB keeps updating l until the
degree gap for each vertex in M equals to 0 and uses l as the
lower bound.
Discussion. As shown in [24], IELB is more efficient than
other algorithms in predicting lower bound on k-core model.
However, IELB suffers from two drawbacks when applied to
triangle-connected k-truss model. 1) the degree gap is not tight
enough since triangle-connected k-truss is defined based on
triangle rather than degree. 2) The connection between vertices

in triangle-connected k-truss is closer than that in k-core, and
the effectiveness of inclusion-exclusion method used in IELB
is reduced. This is because after selecting the vertex v with
the largest degree gap, vertices from X = N(v,G)/M are
incident to other vertices in M with high probability which
often makes max{gapd(u) − |N(u,G) ∩ X|, 0} equal to 0.
Therefore, under most cases, IELB degenerates to using |M |+
max{gapd(v)|v ∈M} as lower bound.

Considering the above drawbacks, we introduce the struc-
tural gap by exploring the structural properties of triangle-
connected k-truss to get a tighter bound. Recall that the
edge support of an edge (u, v) is the number of triangles
containing (u, v). To utilize the edge supports in lower bound
computation, we first introduce the locality property of the
triangle-connected k-truss [20].

Property 1. For any vertex u in a triangle-connected k-truss
S, there exist at least k−1 neighbors of u such that the support
of the edges between them and u is no less than k − 2, i.e.,
|{v ∈ N(u) | supS(u, v) ≥ k − 2}| ≥ k − 1.

Property 1 allows us to determine whether a vertex u
exists in a triangle-connected k-truss by locally looking at
the subgraph induced by u and N(u). The following lemma
introduces a lower bound based on the locality property.

Lemma 2. Given a graph G, if a vertex u is contained
in a triangle-connected k-truss, let Gu denote the subgraph
induced by {u}∪N(u) on G, after iteratively removing every
edge (u, v) incident to u satisfying supGu(u, v) < k − 2, u
must have at least k − 1 remaining neighbors.

Proof. If supGu
(u, v) < k − 2, (u, v) cannot be included in

any triangle-connected k-truss. So, we can iteratively remove
every edge (u, v) from Gu with supGu

(u, v) < k − 2. By
Property 1, u must have at least k − 1 remaining neighbors
after the removals.

We are now ready to introduce the structure gap for each
vertex u in the partial solution M . Let G′ denote the target
graph to compute a SCkT from it. For u ∈M , we use G′u to
denote the subgraph of G′ induced by {u} ∪N(u,G′) ∩M .

Structure Gap. The structure gap of a vertex u, denoted as
gaps(u), is the least number of vertices to be added into G′u
in order to make u contained in a triangle-connected k-truss
based on Lemma 2. For each vertex x to be added, we make
following two assumptions: (1) x is connected with all the
vertices in V (G′u), i.e., the vertices in {u} ∪N(u,G′) ∩M ;
(2) The edge support of (u, x) is always large enough, i.e.,
sup(u, x) =∞. We call such vertex x an ideal vertex and use
idv to denote the number of ideal vertices added into M .

Why ideal vertices. We apply the ideal vertices to compute
the lower bound due to following reasons: (1) the triangle-
connected k-truss is usually dense, thus we assume that x
is connected with all the vertices in G′u for computation
efficiency; (2) every vertex x added into M is included in
the final solution, hence we assume x is always a neighbor of
u in triangle-connected k-truss, i.e., sup(u, x) =∞.
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Fig. 2. Lower Bound Example of u with k = 5

Structure gap computation. To compute gaps(u) for a vertex
u ∈M , we increase idv one by one until u meets the condition
in Lemma 2 and set gaps(u) as idv. Specifically, for each
vertex u ∈M , we find the minimum value of idv such that u
still has at least k−1−idv neighbors after iteratively removing
every edge (u, v) in G′u subject to sup(u, v) + idv < k − 2.
We illustrate this with the following example:

Example 1. We give an example of G′u in Figure 2, which
consists of v1, v2, v3, v4, v5, v6, and u. Note that since the
degree of u is 6 larger than k−1 = 4, gapd(u) = 0. The sup-
ports of edges incident to u are sup(u, v1) = sup(u, v6) = 1
and sup(u, v2) = sup(u, v3) = sup(u, v4) = sup(u, v5) = 2.
Since k = 5 and the number of edges incident to u with
support no less than k − 2 = 3 is 0, we add one ideal vertex
idv1 to G′u. Now, the support of each edge is increased by
1, and we have sup(u, v2) = sup(u, v3) = sup(u, v4) =
sup(u, v5) = 3. As the newly added ideal vertex is also a
neighbor of u, there are 5 neighbors of u satisfying the support
of edges between them and u is no less than 3. At this point,
Property 1 is satisfied. However, according to Lemma 2, after
removing edges (u, v1) and (u, v6) whose support is less than
3, the supports of (u, v2) and (u, v5) also become less than
3. Finally, we only have one edge (u, idv1) left as we assume
sup(u, idv1) =∞. Hence, we add another ideal vertex idv2.
This time, all the edges (u, ·) have support no less than 3 and
Lemma 2 is satisfied. Therefore, gaps(u) is 2.

Lemma 3. ∀u ∈M, gaps(u) ≥ gapd(u).

Proof. When gapd(u) = k − 1 or 0, it is obvious that
gaps(u) = gapd(u). Suppose that 0 < gapd(u) = t < k − 1,
u has k − 1 − t neighbors in G′u. Therefore, the largest
support of each edge incident to u in G′u is k − 2 − t
when all the neighbors of u form a clique. According to
the computation process of structure gap, we need at least
k − 2 − (k − 2 − t) = t ideal vertices to make u satisfy
Lemma 2. Thus, gaps(u) ≥ t = gapd(u). In summary, we
have ∀u ∈M, gaps(u) ≥ gapd(u).

The details for lower bound computation regarding partial
solution M is shown in Algorithm 2. For each vertex u in the
partial solution M , its degree gap is calculated by visiting the
neighbor set of u to count deg(u,G′M ) where G′M is subgraph
of G′ induced by M . If |M |+max{gapd(u)|u ∈M} exceeds
the size constraint s, there is no SCkT in current search space
(G′). If so, the degree gap based lower bound is returned and
the computation is completed (Line 1-2).

Algorithm 2: LowerBound
Input : a graph G′, a partial solution of SCkT M , the

trussness constraint k, the size constraint s
Output : the lower bound of the size of every

triangle-connected k-truss containing M in G′
if |M |+max{gapd(u)|u ∈M} > s then1

return |M |+max{gapd(u)|u ∈M}2

for each u ∈M do3
G′u ← the subgraph of G′ induced by u ∪N(u,G′) ∩M ;4
idv ← min t s.t. |{supG′

u
(u, v)+ t ≥ k− 2}|+ t ≥ k− 1;5

while True do6
if |M |+ idv > s then7

return |M |+ idv8

H ← G′u; iteratively remove every edge e incident to9
u from H satisfying supH(e) + idv < k − 2;
if |N(u,H)|+ idv ≥ k − 1 then10

gaps(u)← idv;11
break;12

idv ← idv + 1;13

return |M |+max{gaps(u)|u ∈M}14

For each vertex u ∈ M , its structure gap is calculated
according to the locality property and Lemma 2 (Line 3-13).
For a vertex u, we first retrieve the subgraph G′u induced
by u and its neighbors in M (Line 4). The initial value of
ideal vertices (idv) is calculated following Property 1 (Line
5). Once the lower bound is larger than s, the computation is
immediately returned (Line 7-8).

Line 9-13 applies Lemma 2 to compute the structure gap
for u. It iteratively removes every edge e incident to u in
H satisfying supH(e) + idv < k − 2, because such edges
cannot exist in any triangle-connected k-truss of G′ containing
u (Line 9). If |N(u,H)| + idv ≥ k − 1, we know that idv
equals to u’s structure gap and the computation is finished
(Line 10-12). Otherwise, we lift idv by one (Line 13) and
repeat the process.

After the structure gap for every vertex u ∈M is computed,
the maximum structure gap plus the size of M is returned as
the lower bound of the size of every triangle-connected k-truss
containing M in G′ (Line 14).

We prove the correctness of Algorithm 2 in the following.

Theorem 2. The value returned by Algorithm 2 is a lower
bound of the size of every triangle-connected k-truss S with
M ⊂ S and S ⊆ G′.

Proof. (1) If Algorithm 2 returns at Line 2, let b =
max{gapd(u)|u ∈ M}, adding b vertices to M is possible
to make every vertex in M to stay in a triangle-connected k-
truss of G′. Thus, |M | + max{gapd(u)|u ∈ M} is a correct
lower bound. (2) If Algorithm 2 returns at Line 8, we need
at least idv vertices to be added in M s.t. u can exist in a
triangle-connected k-truss of G′. Thus, |M |+ idv is a correct
lower bound. (3) If Algorithm 2 returns at Line 14 and u is the
vertex with the largest structure gap, according to Lemma 2,
gaps(u) is the smallest number of ideal vertices to be added
in M s.t. u can stay in a triangle-connected k-truss of G′.
Hence, |M |+max{gaps(u)|u ∈M} is a lower bound.

Complexity. The dominating cost of Algorithm 2 is the
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Algorithm 3: Expand
Input : a graph G′, the set M of vertices that must be

included, k, s
Output : the triangle-connected k-truss R containing M with

size no larger than s if exists, otherwise ∅
lb← LowerBound(M,G′, k, s);1
if lb > s then2

return ∅3

else if ∀v ∈M, gaps(v) = 0 then4
H ← the subgraph of G′ induced by M ;5
R← remove edges e with supH(e) < k − 2 from H;6
if V (R) =M ∧ R is triangle-connected then7

return R8

while True do9
u← the vertex in V (G′) \M with the largest score10
(Definition 8);
R← Expand(G′,M ∪ {u}, k, s);11
if R 6= ∅ then12

return R13

G′ ← RemoveVertex(G′,M, u, k);14
if V (G′) ∩M 6=M then15

return ∅16

computation of gaps(u) in Line 6-13. At Line 10, the largest
possible value of idv is k − 1 since idv is lifted one by
one. Therefore, Line 6-13 can be executed at most k − 1
times. The time cost of a single iteration is O(s2) because
|V (H)| ≤ |M | ≤ s and all the edges incident to u can be
iteratively removed in O(|E(H)|), which is no larger than
|V (H)|2 ≤ s2. Considering that there are no more than s
vertices in M , Line 3 can be executed at most s times and the
time cost of Line 3-13 is O(ks3). In summary, the time cost
of Algorithm 2 is O(ks3) where k and s are constant values.

C. Expansion-based Search Algorithm

The intuition of the expansion-based search is that starting
from the query vertex q, we iteratively expand with the most
promising vertex to form a SCkT. A scoring function is
designed to measure the “goodness” that a vertex will bring
to the current partial solution. The search follows a back-
track manner to effectively explore the search space and avoid
duplicate computation.

In each iteration, we select the most promising vertex from
V (G′)\M and add it into M until M forms a triangle-
connected k-truss. If we find that the addition of a vertex
makes the lower bound of M larger than the size constraint
s, we remove this vertex from G′ and M . Note that during
the search process, we always keep G′ as a triangle-connected
k-truss. Thus, the removal of a single vertex may lead to the
removal of other vertices.
Vertex Selection. We consider two criteria when selecting the
vertex. The first criterion is how much contribution the vertex
will make to help M form a triangle-connected k-truss. For
the first criterion, we count the number of edges between
the selected vertex and the vertices whose structure gap is
larger than 0. The second criterion is how many additional
vertices needed to make the selected vertex included in a
triangle-connected k-truss. For the second criterion, we count

Algorithm 4: RemoveVertex
Input : a graph G′, the vertex u to be removed
Output : updated G′ and {supG′(·)}
S ← ∅;1
for each v ∈ N(u,G′) do2

S.push((u, v));3

while S 6= ∅ do4
(x, y)← S.pop();5
remove (x, y) from G′;6
for w ∈ N(x,G′) ∩N(y,G′) do7

supG′(x,w)← supG′(x,w)− 1;8
if supG′(x,w) < k − 2 ∧ (x,w) /∈ S then9

S.push(x,w);10

Line 8-10 by exchanging x with y;11

remove isolated vertices from G′;12
return G′13

the number of edges between the selected vertex and the
vertices in M . Intuitively, vertex with more edges requires less
additional vertices to make it exist in a triangle-connected k-
truss. Consequently, we define the following score function to
determine which vertex will be selected into M .

Definition 8. Score Function. For every vertex u ∈ V (G′) \
M , let Nu denote N(u,G′)∩M , the goodness of selecting u
into M is defined as:

f(u) = |{v|v ∈ Nu ∧ gaps(v) > 0}|+ |Nu| (2)

Algorithm 3 shows the pseudo-code of expansion-based
search. It first computes the lower bound lb for current partial
solution M by invoking LowerBound (Line 1). If the lower
bound is larger than s, it returns an empty set as there is
no feasible SCkT containing M with size not larger than
s (line 2-3). Otherwise, if the structure gap for each vertex
in M is 0, it checks whether the vertices in M can form
a triangle-connected k-truss (Line 4-8). If not, Algorithm 3
selects the vertex u with the largest score (Line 10) and
recursively invokes Expand to compute a SCkT containing
M ∪ {u} with size no larger than s (Line 11). If a SCkT is
found, Algorithm 3 simply returns it as the result (Line 12-13).
Otherwise, u is removed from G′ because u cannot be included
in any feasible result. Other vertices may be removed together
with u to make sure G′ is a triangle-connected k-truss (Line
14). If the removal of u leads to the removal of any vertex in
M , Algorithm 3 returns an empty set (Line 15-16).

The pseudo-code of RemoveVertex invoked at Line 14 is
shown in Algorithm 4. It first pushes all the edges incident
to u into a stack S (Line 1-3). Then for each edge (x, y)
in S, Algorithm 4 removes it from G′ and decreases the edge
support by 1 for those edges which form a triangle with (x, y)
(Line 4-8). If the edge support of an edge is less than k −
2, Algorithm 4 pushes it into S (Line 9-10). After removing
all the edges which are no longer contained in the triangle-
connected k-truss, it removes isolated vertices from G′ (Line
12). Finally, Algorithm 4 returns the updated G′ (Line 13).
Note that the support of each edge in G′ can be dynamically
maintained during the search process and we do not need to
recount it in Algorithm 4.
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Remark. The while loop in Algorithm 3 always terminates as
either a SCkT will be found or a vertex in M will be deleted. If
a SCkT R is found by Line 11, the algorithm returns at Line
13. If there is no SCkT in G′, every vertex in V (G′) \ M
will be deleted at Line 14. Since M alone cannot form a
triangle-connected k-truss which has been verified in Line 4-8,
after all the vertices in V (G′)\M are removed, some vertices
in M must be removed due to the triangle-connected k-truss
constraint. At this point, the algorithm returns at Line 16.
Correctness. Suppose that there is a SCkT R containing M .
If V (R) =M , Algorithm 3 will return R at Line 8. Otherwise,
unless there exists other solutions, whenever a vertex not in
V (R) \M is added to M , Algorithm 3 will remove it at Line
14. Thus, it always holds that R ⊆ G′ because only those
vertices and edges not contained in R are removed at Line
14. Finally, either all the vertices V (R) \M are added to M
at Line 11 or all the vertices outside V (R) are removed at Line
14. So, Algorithm 3 always finds the solution R containing M .
Complexity. The number of triangles in H can be expressed
as ρ × |E(H)| where ρ is the arboricity [20] of H . We
can test whether M is a solution or not at Line 4-8 in
O(ρ × |E(H)|). Since there are at most s2 edges in H and
the arboricity ρ ≤

√
|E(H)| ≤ s, the time complexity of Line

4-8 is bounded by O(s3). As there are at most ρ × |E(G′)|
triangles, the time cost of Line 14 is O(|E(G′)|1.5). Let Ti
denote the time complexity of Algorithm 3 when |M | = i.
Considering that LowerBound runs in O(ks3) and Line 9-
16 can be executed at most |V (G′)| times, we have Ti =
|V (G′)|×Ti+1+O(|E(G′)|1.5+ks3). Since i cannot be larger
than s, we have T|M | = O(|V (G′)|s−|M |×(|E(G′)|1.5+ks3)).
At Line 5 in Algorithm 1, we have |M | = 1, |V (G′)| = O(n),
and |E(G′)| = O(m), thus the time cost for querying one
single vertex with Algorithm 3 is O(ns−1 × (m1.5 + ks3)).

D. Shrinking-based Search Algorithm

When the size constraint s and trussness constraint k
become relatively large, the expansion-based search algorithm
may incur higher cost, because it keeps adding vertices until
a SCkT is found. In such cases, a shrinking-based search
algorithm may be preferred due to the small search space.
The shrinking algorithm iteratively removes a single vertex
which leads to the cascading removal of other vertices due to
the triangle-connected k-truss constraint.

To adopt the shrinking-based search strategy, we replace
Line 5 of Algorithm 1 with Shrink. The pseudo-code of Shrink
is given in Algorithm 5. It first selects the vertex u with
the smallest score as defined in Definition 8 as smaller score
means looser connection to current partial solution (line 2). If
u can be removed from G′ (Line 3-4), it checks whether the
size of remaining non-empty graph is no larger than s. If the
answer is yes, it returns current G′ as the solution (Line 5-
7). Otherwise, Algorithm 5 recursively invokes itself to find a
solution based on the remaining graph (Line 8-10). If u cannot
be removed from G′ at Line 3 or no solution can be found at
Line 8, i.e., R = ∅, Algorithm 5 inserts u and all the vertices
removed together with it back into G and adds u to M (Line
11-12). Then it computes the lower bound of current M (line

Algorithm 5: Shrink
Input : a graph G′, the set M of vertices that must be

included, k, s
Output : the triangle-connected k-truss R containing M with

size no larger than s if exists, otherwise ∅
while True do1

u← the vertex with the smallest score in Definition 8;2
G′ ← RemoveVertex(G′,M, u, k);3
if M ⊆ V (G′) then4

if V (G′) ≤ s ∧ G′ is triangle-connected then5
R← G′;6
return R7

R← Shrink(G′,M, k, s);8
if R 6= ∅ then9

return R10

insert u and vertices removed with u back into G′;11
M ←M ∪ {u};12
lb← Lowerbound(M,G′, k, s);13
if lb > s then14

return ∅15

Algorithm 6: Hybrid
Input : a graph G′, the set M of vertices that must be

included, k, s
Output : the triangle-connected k-truss R containing M with

size no larger than s if exists, otherwise ∅
if |{u | u ∈ V (G′)\M ∧ f(u) ≥ |M |}| > 1

2
|V (G′)\M | then1

Alg. 3 where Expand at line 11 is replaced with Hybrid;2

else3
Alg. 5 where Shrink at line 8 is replaced with Hybrid;4

13). If the lower bound of M on G′ is larger than s, current
search branch is terminated and returned (Line 14-15).
Correctness. Suppose that there is a solution R containing M .
Removing vertices in V (G′) \ V (R) will not lead to removal
of any vertex in M by triangle-connected k-truss constraint.
Hence, before Algorithm 3 selects any vertex in R at Line 2, it
continues invoking itself at Line 8 to compute a solution based
on G′ which contains R. Once a vertex u in V (R) is selected
at Line 2, unless there exist other solutions, the returned result
at Line 8 must be empty and u will be added to M at Line
12. Therefore, Algorithm 3 can always find a solution.
Complexity. There are at most s iterations for Algorithm 3
as |M | cannot be larger than s and |M | is increased by
1 by the end of each iteration. Thus, the time cost except
Line 8 is O(ks4 + |E(G′)|1.5). Let Ti be the time cost of
Algorithm 3 when |V (G′)| = i, we have Ti = s × Ti−1 +
O(ks4 + |E(G′)|1.5). Since i is no smaller than s, the time
complexity of querying a single vertex with Algorithm 3 is
O(sn−s(m1.5+ks4)). Although the time cost of Algorithm 5
is higher than Algorithm 3, we found that the performance of
Algorithm 5 is better in many settings because removing the
vertices inside a triangle-connected k-truss may quickly lead
to its collapse, and thus the search space is reduced.

E. The Hybrid Approach
Although Shrink is efficient in the sense that removing some

vertices can lead to the removal of other unpromising vertices,

104

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on June 24,2021 at 02:30:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
STATISTICS OF DATASETS

Dataset Type |V | E davg dmax kmax

Epinion Social 76K 405K 10.6 3.0K 22
Gowalla Social 99K 817K 9.2 10.0K 23
DBLP Authorship 64K 457K 25.6 1.1K 36

YouTube Social 1.1M 3.0M 5.3 28.8K 19
Flickr Social 1.7M 15.6M 18.2 27.2K 200
Orkut Social 3.1M 117M 76.3 33.3K 78
Wiki Hyperlink 12.1M 378M 62.2 963K 1112

Twitter Social 41M 1.5B 70.5 3.1M 1998
ERGraph Synthetic 1M 100M 200 312 43
RMGraph Synthetic 40M 1.0B 50 2.2M 2437

which largely reduces the search space. Expand can quickly
find a SCkT if the SCkT is closely connected to current
partial solution. Therefore, it is desirable to switch between
Shrink and Expand based on specific situations. To this end,
we propose a hybrid search strategy which automatically
determines the search order of Shrink or Expand based on
current partial solution M and subgraph G′. According to
Definition 8, the score of vertices in V (G′)\M ranges from
0 to 2|M |. If a vertex has score no less than |M |, it either
connects to all the vertices in M or makes contribution to help
M form a triangle-connected k-truss. Hence, we recognize that
vertices with score no less than |M | are closely connected
to partial solution M . We choose Expand if the number of
such vertices exceeds half of the total number (12 |V (G′)\M |)
and choose Shrink vice versa. The pseudo-code is given in
Algorithm 6. Note that in line 2 and line 4, we replace the
“Expand” in Algorithm 3 and “Shrink” in Algorithm 5 with
“Hybrid”. Therefore Hybrid algorithm is recursively called
during the computation to determine the next search branch.

Multi-vertex Query. Algorithm 3, Algorithm 5, Algorithm 6
and can be easily extended to support multi-vertex queries.
We assume that all the query vertices are triangle-connected
with each other, otherwise the query result is empty. At line
4 in Algorithm 1, we put all the query vertices into M and
invoke Expand, Shrink, or Hybrid at line 5. The only difference
is that instead of using h-hop truss neighborhood for single
vertex query, we can simply use the union of h-hop truss
neighborhood of every query vertex or the entire maximal
triangle-connected k-truss containing query vertices, as the
input graph G′ for Expand, Shrink, and Hybrid.

Discussion. Our proposed algorithms can be easily extended
to find any number of SCkTs. In algorithm 3 (Extend) and
algorithm 5 (Shrink), we can use a set to store the SCkTs
and continue computing other solutions. Specifically, we use
a set to collect the SCkT at line 8 of algorithm 3 and line
7 of algorithm 5, and change the “if” condition at line 12
of algorithm 3 and line 9 of algorithm 5 to test whether the
number of current SCkTs exceeds the threshold. Besides, our
computing framework can be used for future study to find
diversified SCkTs (with small overlaps), if candidate SCkTs
are updated to be more diverse during the search procedure.

V. EXPERIMENTAL EVALUATION

In this section, we conduct extensive performance studies
to evaluate the effectiveness and efficiency of our algorithms.

A. Experimental Setting
Datasets. We use 8 real-life graphs and 2 synthetic graphs
in our experiments. DBLP is downloaded from http://
snap.stanford.edu/. Other real-life datasets are from http://
konect.uni-koblenz.de/. The synthetic graph ERGraph and
RMGraph are generated by the open-sourced graph generator
GTgraph [2], based on the Erdős-Rényi model [15] and
Recursive Matrix model [7], respectively. Table II shows the
statistics of the datasets which are ordered by the number
of edges. davg and dmax denote the average and maximum
degree, respectively. The last column kmax is the largest
trussness value in the corresponding graph.
Algorithms. To the best of our knowledge, no existing work
investigates the SCkT search problem and corresponding al-
gorithms. We mainly evaluate three SCkT search algorithms:
Expand, Shrink, and Hybrid. In terms of community size,
we compare our algorithms with four heuristic algorithms,
e.g., RD, DG, VL, and SF. Each heuristic algorithm uses a
different vertex selection method. That is, starting from the
query vertex, each heuristic algorithm keeps adding vertices
based on its vertex selection criterion until it finds a triangle-
connected k-truss containing the query vertex.

In the experiments, we also test the effectiveness of two
lower bounds which are computed based on the IELB [24] and
structure gap. Note that if an algorithm uses the lower bound
based on the IELB, it simply replaces Algorithm 2 with IELB
during the search process.
• Expand: our proposed expansion-based algorithm, e.g.,

Algorithm 1 + Algorithm 3.
• Shrink: our proposed shrinking-based algorithm, e.g.,

Algorithm 1 + Algorithm 5.
• Hybrid: our proposed hybrid algorithm, e.g., Algorithm 1

+ Algorithm 6.
• Expand-D, Shrink-D, and Hybrid-D: our proposed

expansion-based, shrinking-based, and hybrid algorithms
which compute lower bound with IELB.

• RD: the heuristic algorithm which randomly selects the
vertex to be added.

• DG: the heuristic algorithm which sorts all the vertices
according to their degree and selects the vertex with the
highest rank.

• VL: the heuristic algorithm which sorts all the vertices by
their rank in the vertex layers and selects the vertex with
the highest rank. The vertex layers is the removing order
of vertices during the k-truss decomposition process [48].
A vertex removed from the graph later will have higher
rank in the vertex layers. Intuitively, vertices with higher
rank form a triangle-connected k-truss more easily.

• SF: the heuristic algorithm which selects the vertex with
the highest score as defined in Definition 8.

Parameters. We conducted experiments under different set-
tings by varying the size constraint s and the trussness
constraint k. The default values are s = 30 and k = 10. All
the query vertices are from 10-truss in corresponding graphs.

All algorithms are implemented in C++ and compiled by
GNU GCC 4.8.2 with -O2 optimization. For each test, we ran-
domly generate 1000 queries and report the average processing
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Fig. 3. Result Size with Different Vertex Selection Strategies

time. The time limit for the queries is 100s unless otherwise
mentioned. All experiments are conducted on a machine with
an Intel Xeon 2.2GHz CPU and 512GB main memory.

B. Evaluation of Effectiveness

In this section, we firstly report the average size of triangle-
connected k-truss computed by our algorithms and other four
heuristic algorithms. Then we compare our algorithm with
other representative community search algorithms. Case stud-
ies are shown on DBLP to further validate the effectiveness.
Note that we only report the results returned by Hybrid since
Hybrid has the highest success ratio.

Exp-1: Result Size. In this experiment, we compare the
average result size of our proposed algorithm, Hybrid, with
other heuristic algorithms. The results are reported in Figure 3.
The size constraint for SCkT is 30. As shown in our experi-
ment, among the heuristic algorithms, the heuristic algorithm
SF using our score function has the best performance. This
is because SF dynamically selects the promising vertices to
be added based on current partial solution. In general, our
proposed algorithm (SCkT) has the smallest result size as the
size of SCkT is no larger than 30.
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Fig. 4. Result Size with Different Community Search Methods
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Fig. 5. Runtime with Different Community Search Methods

Exp-2: Comparison with Other Methods. In this exper-
iment, we compare SCkT with five representative commu-
nity search methods introduced in the survey of community
search [17], i.e., k-core [5], k-ECC [8], k-truss [20], maximal
triangle-connected k-truss (MTCkT) [1], and k-clique [44].
k is set as 10 in all these algorithms. The above methods
are index-based algorithms and the index construction time is
excluded from runtime. For instance, we retrieve the resulting
k-core from its index of core decomposition [5]. The compared
methods will be much slower without the indexes. The SCkT
is computed by Hybrid using default settings s = 30 and
k = 10. For each graph, we evaluate the community size and
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Fig. 6. Clustering Coefficient (The score of any method is counted
as 0 if a query returns empty.)
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Fig. 7. Graph Density (The score of any method is counted as 0 if a
query returns empty.)

two important scores: the clustering coefficient ( 3×|4|
|triplet| ) [29]

and graph density ( 2m
n×(n−1) ) [12].

As shown in Figure 4, compared with k-core, k-ECC, k-
truss, and MTCkT which may return communities with tens
of thousands vertices, our SCkT search algorithm returns
much smaller communities within the size threshold. Due to
the size constraint, SCkT has well-connected inner structures
and achieves higher scores in terms of clustering coefficient
(Figure 6) and graph density (Figure 7). Though the size of k-
clique is only k, it often returns empty results due to the strict
restriction. Furthermore, despite the NP-hardness of SCkT
search problem, the runtime of SCkT is comparable with the
methods without size constraint (Figure 5). Therefore, SCkT
is an efficient model in finding communities with high quality.
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Fig. 8. Case Study on DBLP

Exp-3: Case Study on DBLP. Figure 8 (a) depicts the entire
5-truss of the author “Maurizio Lenzerini” in DBLP. Figure 8
(b) is the SCkT of “Maurizio Lenzerini” computed by Hybrid
with k = 5 and s = 10. In DBLP, there is an edge between two
authors iff they have co-authored at least 3 papers. The entire
connected 5-truss has 160 vertices, 534 edges, and density of
0.042 while the SCkT has 9 vertices, 26 edges, and density of
0.72. Compared with the entire connected 5-truss, our SCkT
is denser as the SCkT does not include authors far away
from “Maurizio Lenzerini”. Moreover, we find that the average
number of co-authored papers between each author in Figure 8
(a) is 0.6 while that value in Figure 8 (b) is 4.5, which shows
that the relationship between each author in SCkT is closer.
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TABLE III
SUCCESS RATIO OF QUERIES (s = 30 AND k = 10)

Dataset Success ratio (%)
Expand-D Expand Shrink-D Shrink Hybrid-D Hybrid

Epinion 54.2 77.8 68.2 99.1 67.4 99.3
Gowalla 81.3 95.5 76.3 98.2 83.4 99.0
DBLP 91.3 99.0 91.4 99.0 92.3 99.2

YouTube 65.3 74.7 87.3 97.0 85.9 98.3
Flickr 82.3 93.8 85.6 96.8 85.2 98.8
Orkut 66.2 98.2 72.1 98.0 75.3 98.7
Wiki 78.1 95.6 82.3 96.3 87.9 98.3

Twitter 81.4 87.6 80.2 93.2 85.7 96.3
ERGraph 56.3 88.0 62.1 86.5 74.1 92.4
RMGraph 87.2 97.3 86.7 96.9 90.8 99.2
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Fig. 9. Runtime on All Datasets

C. Evaluation of Efficiency

In this section, we test the runtime and success ratio of our
proposed SCkT search algorithms on all the datasets. We also
investigate the query time with different k and s values. At
the end of this section, we report the runtime for multi-vertex
queries. To avoid bias, the runtime is the average time of the
queries returned within time limit.
Exp-4: Runtime and Success Ratio on All Datasets. In this
experiment, we report the success ratio and average runtime of
Expand, Shrink, Hybrid, Expand-D, Shrink-D, and Hybrid-D
on all datasets. We lift the time limit to 1000s in this test, as the
methods with IELB (D) cost much more time. Success ratio
is the number of queries successfully returned before timeout
over the total number of queries. The results are shown in
Figure 9 and Table III. Note that a slight portion of hard cases
cannot be computed within the time limit due to the huge
search space from the NP-hardness.

In general, Hybrid outperforms Expand and Shrink in terms
of success ratio. The reason is that Hybrid can switch between
Expand and Shrink, and choose a suitable search strategy
based on current partial solution. Compared with others, the
runtime for Hybrid is not as good as success ratio. This is
because some hard cases (timeout queries in Expand and
Shrink) are returned in Hybrid which lifts the average time.
Nevertheless, the runtime for Hybrid is still comparable with
other algorithms, i.e., it is efficient in practice.
Exp-5: Evaluation of Varying k. In this experiment, we
report the average runtime and success ratio of Expand,
Shrink, and Hybrid with k varying from 5 to 25 and s = 30.
We only report the results on Youtube since the trends are
similar in other datasets. The results are shown in Figure 10 (a)
and the left part of Table IV. As k increases, we find that the
runtime of all three algorithms firstly rises up then drops down.
The reason is that the runtime with varying k is affected by two
factors. First, as k increases, we need to explore more vertices
as it becomes more difficult to form a triangle-connected k-
truss when s is fixed. Second, at the same time, the search
space is reduced due to less candidate vertices. As observed
on Youtube, when k is relatively small, the first factor makes

TABLE IV
SUCCESS RATIO WHEN VARYING k AND s.

vary k Youtube vary s Youtube
(s = 30) Expand Shrink Hybrid (k = 10) Expand Shrink Hybrid

5 95.9 98.1 98.4 20 82.2 97.0 98.5
10 74.7 97.0 98.3 30 74.7 97.0 98.3
15 70.5 93.2 95.0 40 88.3 98.4 99.1
20 89.0 94.2 95.1 50 96.9 99.0 99.2
25 97.7 98.9 98.9 60 99.2 99.2 99.2
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Fig. 10. Query Time when Varying k and s

it harder to find a SCkT. Therefore, the runtime rises up and
success ratio drops down. Then, the second factor gains more
influence and the runtime drops down while success ratio rises
up. Hybrid has the highest success ratio and small time cost.
Exp-6: Evaluation of Varying s. In this experiment, we report
the average runtime and success ratio of Expand, Shrink, and
Hybrid on Youtube with s varying from 20 to 60 and k = 10.
The results are shown in Figure 10 (b) and the right part of
Table IV. The runtime of Shrink decreases and the success
ratio rises up with the increasing of s. This is because as
s increases, it becomes easier to find a SCkT. On the other
hand, as analyzed in Section IV-D, the time complexity of
Shrink reduces with the increasing of s when k is fixed. The
runtime and success ratio of Expand are similar to the results
in Exp-5. The reason is that as s increases, the search space
of Expand increases. At the same time, it becomes easier to
find a solution. When s is large enough, Expand can quickly
expand a SCkT in most cases. For Hybrid, its success ratio
outperforms other algorithms and its time cost is efficient.
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Fig. 11. Multiple-vertex Queries on All Datasets

Exp-7: Multi-vertex Queries on All Datasets. In this ex-
periment, we report the average time cost for multi-vertex
query of Expand, Shrink, and Hybrid on all datasets. For
each query, we randomly select five vertices. The results are
reported in Figure 11. As shown in our experiment, all the
three algorithms have comparable performance on runtime.
The success ratio, which is omitted due to the space limitation,
is similar to that of single vertex query and Hybrid achieves
the highest success ratio on all the datasets.

VI. CONCLUSION

In this paper, we study the SCkT search problem which
aims to find a triangle-connected k-truss containing the query
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vertices with size not exceeding a threshold. We prove the
problem is NP-hard. A practically-efficient exact solution is
developed which employs a novel lower bound and effective
search strategies. Extensive experiments verify the effective-
ness of SCkT and the superiority of the techniques. As a future
study, we may explore approximate solutions to address the
extreme cases caused by the hardness of the problem.
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[31] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. nature,
435(7043):814, 2005.

[32] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin. Efficient proba-
bilistic k-core computation on uncertain graphs. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages 1192–
1203. IEEE, 2018.
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