
Finding Critical Users in Social Communities:
The Collapsed Core and Truss Problems

Fan Zhang , Conggai Li , Ying Zhang , Lu Qin , and Wenjie Zhang

Abstract—In social networks, the leave of critical users may significantly break network engagement, i.e., lead a large number of other

users to drop out. A popular model to measure social network engagement is k-core, the maximal subgraph in which every vertex has

at least k neighbors. To identify critical users, we propose the collapsed k-core problem: given a graphG, a positive integer k and a

budget b, we aim to find b vertices in G such that the deletion of the b vertices leads to the smallest k-core. We prove the problem is

NP-hard and inapproximate. An efficient algorithm is proposed, which significantly reduces the number of candidate vertices. We also

study the user leave towards the model of k-truss which further considers tie strength by conducting additional computation w.r.t.

k-core. We prove the corresponding collapsed k-truss problem is also NP-hard and inapproximate. An efficient algorithm is proposed to

solve the problem. The advantages and disadvantages of the two proposed models are experimentally compared. Comprehensive

experiments on nine real-life social networks demonstrate the effectiveness and efficiency of our proposed methods.

Index Terms—Cohesive subgraph, user engagement, tie strength, k-core, k-truss

Ç

1 INTRODUCTION

USER engagement on social network has attracted signifi-
cant interests over recent years [1], [2], [3]. k-core is a

simple and popular model based on degree constraint,
which has been widely used to measure the network
engagement [4], [5], [6]. Assuming all users in a commu-
nity/group are initially engaged, each individual has two
strategies, to remain engaged or drop out. Particularly, a
user will remain engaged if and only if at least k of his/her
friends are engaged (i.e., degree constraint). A user with
less than k friends engaged will drop out, and his/her leave
may be contagious and forms a cascade of the departure
(i.e., collapse) in the network. When the collapse stops,
the remaining engaged users corresponds to the well-
known concept k-core, the maximal induced subgraph in
which every vertex has at least k neighbors. The large num-
ber of engaged friends for a user can ensure active engage-
ment of the user [3]. The size of k-core can be used to
measure the overall engagement of the social network [1].

A natural question is that, given a limited budget b,
how to find b vertices (i.e., users) in a network so that
we can get the smallest k-core by removing these b verti-
ces. This problem is named the collapsed k-core problem
(CCP) in this paper, which aims to break user engage-
ment with the greatest extent for a given budget b. By
developing an efficient and scalable solution for this
problem, we can quickly identify critical users whose

leave will destroy the k-core communities and collapse
the network most severely. These users are critical for
the overall engagement of k-core communities and the
network. For instance, we can find most valuable users,
to sustain or destroy the engagement. We can also evalu-
ate the robustness of network engagement or k-core com-
munities against the vertex attack.

Example 1. Suppose there is a study group, and the num-
ber of friends in the group reflects the willingness of
engagement for each member (i.e., user). If one drops out,
he/she will weaken the willingness of his/her friends to
remain engaged, which may incur the collapse of the
group. As illustrated in Fig. 1, we model 17 members in a
study group and their relationship as a network. Accord-
ing to the above engagement model with k=3, i.e., a per-
son will drop out if there are less than 3 friends, 15
members will remain engaged; that is, 3-core of the net-
work is the whole network excluding u1 and u12. Clearly,
if users in 3-core drop out regardless the number of
friends, e.g., attracted by another group, the network will
further collapse. The extent of the collapse varies among
different users. For instance, although u9 has 6 friends in
3-core, the departure of u9 will not further lead to the
leave of other users because each of his/her neighbors
still has 3 friends engaged. On the contrary, the leave of
u11 will lead to the leave of 7 members in the group
including u2, u5, u6, u7, u13, u16, and u17. In this sense, it is
more cost-effective to give u11 the incentive (e.g., bonus)
to ensure his/her engagement or persuade him/her to
leave the group.

The leave of users not only brings down user engage-
ment level, but also weakens the strength of user ties inside
the communities. Tie strength is often considered in social
network study, as a fundamental and important network
characteristic [7], [8], [9]. The model of k-truss is proposed
as essentially an enhanced version of k-core by further

� F. Zhang and W. Zhang are with the School of Computer Science and
Engineering, University of New South Wales, Sydney, NSW 2052,
Australia. E-mail: fan.zhang3@unsw.edu.au, zhangw@cse.unsw.edu.au.

� C. Li, Y. Zhang, and L. Qin are with the Centre for Artificial Intelligence,
University of Technology Sydney, Sydney, NSW 2007, Australia.
E-mail: conggai.li@student.uts.edu.au, {ying.zhang, lu.qin}@uts.edu.au.

Manuscript received 25 Apr. 2018; revised 3 Oct. 2018; accepted 1 Nov. 2018.
Date of publication 12 Nov. 2018; date of current version 5 Dec. 2019.
(Corresponding author: Fan Zhang.)
Recommended for acceptance by J. Xu.
Digital Object Identifier no. 10.1109/TKDE.2018.2880976

78 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

computing and requiring the strength of each tie (i.e.,
edge) [10], [11]. Many recent studies show that k-truss cap-
tures users with high engagement and strong interac-
tions [12], [13]. The k-truss requires each edge inside to be
contained in at least k� 2 triangles in the k-truss. Thus each
k-truss edge is a relatively strong tie. The requirement also
deduces that each k-truss vertex has at least k� 1 neighbors
in the k-truss. It is interesting and promising to study the
user leave in k-truss, which examines whether the computa-
tion cost regarding k-truss is worthwhile and affordable
compared with k-core. Consequently, we also study the col-
lapsed k-truss problem (CTP), which is to find b vertices
whose deletion can lead to the smallest k-truss in the net-
work. This problem helps to discover critical k-truss users
whose leave can extremely break the k-truss communities.

In addition to social networks, cohesive subgraph models
can discover some tight-knit elements in many other com-
plex networks including the Internet, the World Wide Web,
cellular networks and brain networks [14], [15], [16], [17].
For instance, in protein interaction networks, k-core sub-
graphs are shown to represent cohesive groups of proteins
with same functionalities [18], [19]. Thus, the proposed
problems may also help us find some important elements in
these networks.

Challenges.To the best of our knowledge, we are the first
to propose and investigate the CCP and CTP. We prove
both of the problems are NP-hard for any k value. We also
prove the CCP and CTP are inapproximate within a factor
of 1� 1=e for k � 3 and k � 4, respectively.

A basic exact solution requires to enumerate all possible
answer sets with size b. Towards a possible answer set A,
we have to conduct the complete k-core computation with
the deletion of A to find the size of collapsed k-core. Due
to the cascade nature in k-core computation, it is unprom-
ising to estimate the size of collapsed k-core without the
complete k-core computation. The above observations also
hold for k-truss in the CTP. Although the k-core and
k-truss computations can be done in polynomial time with
efficient algorithms, the large number of candidate answer
sets makes the exact solutions unaffordable. Then we aim
to optimize the heuristical solutions for both of the prob-
lems, where reducing the candidate number is critical and
challenging. Although the two proposed problems share
the idea of vertex remove, the computations of k-core and
k-truss are inherently different where the former is based
on vertex deletions and the latter is based on edge dele-
tions with update of triangles. The capture of triangles in
k-truss leads to a larger computation cost while also a
more cohesive structure in k-truss than k-core.

Contributions. Our principal contributions are as follows.

� We propose and investigate the CCP and CTP to find
critical users according to the well-studied models
k-core and k-truss, respectively.

� We prove both of the problems are NP-hard for any
k value. We also prove the problems are inapproxi-
mate within a factor of 1� 1=e.

� Wedevelop efficient heuristic algorithms, namedCKC
and CKT, to solve the problems. The proposed prun-
ing techniques significantly eliminate the unpromis-
ing candidate vertices.

� We experimentally compare the CKC and CKT mod-
els. Our comprehensive experiments on 9 real-life
networks demonstrate the efficiency of our algo-
rithms and effectiveness of our models.

Outline. Section 2 reviews the related work. Section 3
presents the preliminaries for CCP. Section 4 analyzes the
complexity of CCP. Section 5 proposes the CKC algorithm.
Section 6 presents the preliminaries for CTP. Section 7 ana-
lyzes the complexity of CTP. Section 8 proposes the CKT
algorithm. Section 9 evaluates the models and the algo-
rithms. Section 10 concludes the paper.

2 RELATED WORK

There are various cohesive subgraph models to accommo-
date specific scenarios in the literature, such as clique [20],
k-plex [21], k-core [22] and k-truss [23], to name a few.
Among these subgraph models, k-core and k-truss are the
widely studied models with polynomial computation time.

Seidman [22] introduces the k-core model which benefits
many important problems in recent years with a wide
spectrum of applications such as social contagion [24], net-
work analysis [25], network visualization [26], event detec-
tion [27], protein function prediction [18] and so on. There
are multiple studies for core number computation under
different settings including a linear-time in-memory algo-
rithm [28], I/O efficient algorithms [29], [30], locally com-
puting and estimating [31] and core number maintenance
on dynamic graphs [32], [33].

The engagement dynamic in social networks has attracted
significant studies, e.g., [1], [3], [34]. The k-core becomes pop-
ular in social studies, because its degeneration property can
be used to quantify engagement dynamics in real social net-
works [1]. Luo et al. [35] investigate the parameterized com-
plexity of collapsed k-core problem. Bhawalkar et al. [3]
propose the problem of anchored k-core to prevent unravel-
ing of social networks. This problem is to find b vertices out-
side k-core such that the existence (anchor) of the b vertices
leads to the largest k-core. Zhang et al. [36] propose an effi-
cient heuristic algorithm to solve this problem on general
graphs. In the anchored k-core problem, we need to consider
the vertices not in k-core because it is useless to anchor verti-
ces already in k-core. This is different from the collapsed
k-core problem, where the deletion of a vertex not in k-core
will not affect the resulting k-core.

Tie strength, introduced by [7], is a fundamental and
important social network characteristic. However, the k-core
treats each tie equally, which cannot guarantee the strength
of ties inside to be strong. Besides, the k-core is considered as
“seedbeds, within which cohesive subsets can precipitate
out” [22]. Further considering the tie strength and its

Fig. 1. Motivating example.

ZHANG ET AL.: FINDING CRITICAL USERS IN SOCIAL COMMUNITIES: THE COLLAPSED CORE AND TRUSS PROBLEMS 79

dynamic in communities, Cohen [23] introduces the model
of k-truss where each edge is contained in at least k� 2 trian-
gles in the k-truss. Rotabi et al. [8] shows the existing meth-
ods for strong tie detection are usually based on structural
information, especially on triangles. The definition of
k-truss also deduces that each k-truss vertex has at least
k� 1 neighbors in the k-truss. For the fact that the k-truss
model not only ensures the strong tie strength among users
but also captures users with high engagement inside the
community, the k-truss is considered as an enhanced ver-
sion of k-core.

There are many studies on the model of k-truss
while none of them utilizes k-truss to find critical users.
Wang and Cheng [37] show the time complexity of truss
decomposition is Oðm1:5Þ and propose an I/O efficient
algorithm. Some works study the truss-based community
search on large and dynamic graphs [12], [38]. Huang and
Lakshmanan [13] search the attributed k-truss community
with the largest attribute relevance score.

3 PRELIMINARIES OF CCP

Weconsider anunweighted andundirected graphG ¼ ðV;EÞ,
where V (resp. E) represents the set of vertices (resp. edges)
in G. We use n (resp. m) to denote the number of vertices
(resp. edges) in the graph G and we assume m > n. Given a
subgraph S ofG, we denote the adjacent vertex set (i.e., neigh-
bor set) ofu inS byNðu;SÞ.WeuseG n S to represent the sub-
graph which removes S fromG. When the context is clear, we
may eliminate the second parameter in notations, such as
using degðuÞ instead of degðu;GÞ. The notations are summa-
rized in Table 1.

Definition 1. k-core. Given a graph G and a positive integer k,
a subgraph S is the k-core of G, denoted by CkðGÞ, if (i) S
satisfies degree constraint, i.e., degðu; SÞ � k for every
u 2 S; and (ii) S is maximal, i.e., any subgraph S0 � S cannot
be a k-core.1

Algorithm 1. ComputeCore(G; k)

Input: G : a social network, k : degree constraint
Output: CkðGÞ: the k-core of G

1 while exists u 2 G with degðu;GÞ < k do
2 G G n fu [Eðu;GÞg;
3 return G

As shown in Algorithm 1, the k-core of a graph G can be
obtained by recursively removing the verticeswhose degrees
are less than k, with the time complexity ofOðmÞ [28].

In this paper, once a vertex u in G is collapsed, u and its
incident edges are always removed from k-core regardless
of the degree constraint. We may use collapsers to represent
the collapsed vertices.

Definition 2. collapsed k-core. Given a graph G and a set
A � G of vertices, the collapsed k-core, denoted by Ck(GA), is
the corresponding k-core of G with vertices in A removed.

In addition to the deletion of the collapsed vertices in A,
more vertices in Ck(G) might be deleted as well due to the

contagious nature of the k-core computation. These vertices
are called followers of the collapsed vertices A, denoted by
FðA;GÞ, because they will remain in k-core if the vertices in
A are not deleted. Formally, FðA;GÞ = the vertices in
CkðGÞ n fCkðGAÞ [Ag. The size of the followers reflects the
effectiveness of the collapsed vertices.

Problem Statement.Given a graph G, a degree constraint k
and a budget b, the collapsed k-core problem (CCP) aims to
find a set A of b collapsed vertices in G so that the number
of followers, F (A;G), is maximized.

Example 2. In Fig. 1, if we set k ¼ 3 and b ¼ 1, the result of
the collapsed k-core problem can be A ¼ fu11g with
CkðGAÞ ¼ fu3; u4; u8; u9; u10; u14; u15g and FðA;GÞ ¼ fu2;
u5; u6; u7; u13; u16; u17g.

4 COMPLEXITY OF CCP

In this section, we present the complexity results of CCP.

Theorem 1. The collapsed k-core problem is NP-hard for any k.

Proof. (1) When k ¼ 1, we reduce the collapsed k-core prob-
lem from the maximum independent set problem [39].
To delete a vertex from 1-core during the collapsed 1-core
computation, we have to remove all its adjacent vertices,
i.e., make the vertex independent. Consequently, the prob-
lem of finding the maximum independent set S in a graph
G is equivalent to finding the set of verticesG n S such that
G n S is minimum and collapsing them can lead to an
empty 1-core. Note that we need to try at most n� 1 times
(1 � b < n) to find the minimumG n S. Thus, we have the
collapsed k-core problem is NP-hardwhen k ¼ 1.

(2) When k ¼ 2, we reduce the collapsed 2-core prob-
lem from the case of k ¼ 1, which has been proved to be
NP-hard. Given any graph G1 with n vertices and m
edges, we construct another graph G2 with nþ 2m verti-
ces and 4m edges as follows. For each edge eðv1; v2Þ inG1,
we add two virtual verticesw andw0 and construct the fol-
lowing four edges in G2: eðv1; wÞ, eðw; v2Þ, eðv1; w0Þ and
eðw0; v2Þ, as shown in Fig. 2a. An example of graph

TABLE 1
Summary of Notations

Notation Definition

G an unweighted and undirected graph
S a subgraph of G
u, v, x; e a vertex in G; an edge in G
ðu; vÞ, eðu; vÞ the edge between u and v
n,m the number of vertices and edges in G
deg(u; S) the number of adjacent vertices of u in S
N(u; S) the adjacent vertices of u in S
V ðSÞ the vertex set of S
Eðu;GÞ the edge set where each edge is incident to u

and each edge is in G
EðS;GÞ the union set of Eðu;GÞ for each u 2 S
k a positive integer
b the budget for the number of collapsers
A a set of collapsers vertices
GA the graph Gwith A removed
Ck(G) the k-core of G
jCkj the number of vertices in CkðGÞ
Ck(GA) the k-core of the graph GA

F (A) the followers of A in the collapsed k-core, i.e.,
the vertices in CkðGÞ n fCkðGAÞ [Ag

1. In real-life applications, the value of k is determined by users
based on their requirement for cohesiveness, or learned according to
ground-truth communities in the network.

80 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

construction is also illustrated in Fig. 2a. We do not need
to include any virtual vertices in the optimal solution of
collapsed 2-core because the influence of deleting a virtual
vertex can always be covered by deleting one of its two
neighbor vertices (non-virtual vertices). Therefore, the
deletion of each edge in G1 during the computation is
always mapped to the deletion of four corresponding
edges inG2. Then the optimal solution of collapsed 2-core
onG2 is also that of collapsed 1-core onG1. As a result, the
collapsed k-core problem is NP-hardwhen k ¼ 2.

(3) When k � 3, we reduce the collapsed k-core prob-
lem from the maximum coverage problem [40]; that is
finding at most b sets to cover the largest number of ele-
ments, where b is a given budget. First, we consider an
arbitrary instance of maximum coverage problem with s
sets T1; ::; Ts and t elements fe1; ::; etg ¼ [1�i�sTi. Then
we construct a corresponding instance of the collapsed
k-core problem in a graph G as follows.

The set of vertices inG consists of three parts:M, V , and
P .M consists of ðtþ sÞ4 vertices inwhich every pair of ver-
tices inM are adjacent. V consists of s vertices, v1, v2, . . ., vs,
where vertex vi corresponds to the set Ti for any 1 � i � s.
For each vertex vi (1 � i � s), we add kþ t� jTij edges
from vi to kþ t� jTij unique vertices in M. Here, by
unique, wemean that each vertex inM can be used atmost
once when adding edges to vertices outsideM. P consists
of t partsP1,P2, . . .,Pt, where each partPi (1 � i � t) corre-
sponds to the element ei and Pi consists of s vertices pi;1,
pi;2, . . ., pi;s. For each Pi (1 � i � t) we first add s� 1 edges,
that is, for each 1 � j < s, we add an edge from pi;j to
pi;jþ1. For each set Ti (1 � i � s) and each element ej
(1 � j � t), if ej 2 Ti, we add an edge eðvi; pj;iÞ inG. At this
stage, the degree of each vertex in P is at most 3. Next, we
add edges from vertices in P to unique vertices in M to

guarantee that the degree of each vertex in P is exactly k.
This can be done since k � 3. Then the construction ofG is
completed. Clearly,G is a k-core. Fig. 2b shows an example
of the graph G with k ¼ 3 constructed from 3 sets and 4
elements.

The key idea is that we ensure that: (i) only vertices in
V need to be considered as collapsed vertices, since any
vertex in M or P cannot have more followers than a ver-
tex in V ; (ii) none of the vertices inM will be deleted dur-
ing the computation; (iii) all Pi have the same size for
1 � i � t; and (iv) when a vertex vi (1 � i � s) is
removed, for each part Pj (1 � j � t) connected with vi
(i.e., ej 2 Ti), all vertices in Pj will be deleted due to
degree constraint. By doing this, the optimal solution of
the collapsed k-core problem corresponds to optimal
solution of the maximum coverage problem. Since the
maximum coverage problem is NP-hard, we prove that
the collapsed k-core problem is NP-hard for any k � 3. tu
We also prove the inapproximability of the collapsed

k-core problem.

Theorem 2. For k � 3 and any � > 0, the collapsed k-core prob-
lem cannot be approximated in polynomial time within a ratio
of ð1� 1=eþ �Þ, unless P ¼ NP .

Proof. We have reduced the collapsed k-core problem
from the maximum coverage (MC) problem in the
proof of Theorem 1. Here we show this reduction can
also prove the inapproximability of CCP. For any
� > 0, the MC problem cannot be approximated in
polynomial time within a ratio of ð1� 1=eþ �Þ, unless
P ¼ NP [41]. According to the previous reduction,
every solution of the collapsed k-core problem in the
instance graph G corresponds to a solution of the MC
problem, where the follower number for CCP is s times
the element number for the MC Problem, where s is the
number of sets. Let g > 1� 1=e, if there is a solution
with g-approximation on optimal follower number for
CCP, there will be a g-approximate solution on element
number for the MC problem. So it is NP-hard to app-
roximate collapsed k-core problem within a ratio of
ð1� 1=eþ �Þwhen k � 3. tu
If the follower function in CCP is submodular, a greedy

algorithm can still have (1� 1=e)-approximation on follower
number. Unfortunately, Theorem 3 gives a negative result.

Theorem 3. Let fðAÞ ¼ jFðAÞ [fAgj. We have f is monotone
but not submodular for any k.

Proof. Suppose there is a set A0 � A. For every vertex u in
FðAÞ, uwill still be deleted in the collapsed k-core with the
collapsers set A0, because removing vertices in A0 nA can-
not increase the degree of u. Thus fðA0Þ � fðAÞ and f is
monotone. For two arbitrary collapsers sets A and B, if f is
submodular, it must hold that fðAÞ þ fðBÞ � fðA [BÞþ
fðA \BÞ. We show that the inequality does not hold using
counterexamples. When k ¼ 1, we use the example shown
in Fig. 3a. Suppose k ¼ 1, A ¼ fv1g and B ¼ fv2g, we have
FðAÞ ¼ fv1g, FðBÞ ¼ fv2g, FðA [BÞ ¼ fv1; v2; v3; v4g and
FðA \BÞ ¼ ;. So the inequation does not hold. When
k ¼ 2, we use the example shown in Fig. 3b. Here, M is
a complete graph with 4	 k vertices. When k ¼ 2, if
A ¼ fv1g and B ¼ fv2g, we have FðAÞ ¼ fv1g, FðBÞ ¼
fv2g, FðA [BÞ ¼ fv1; v2; v3; v4g and FðA \BÞ ¼ ;. So the

Fig. 2. Examples for proving NP-hardness and inapproximability.

ZHANG ET AL.: FINDING CRITICAL USERS IN SOCIAL COMMUNITIES: THE COLLAPSED CORE AND TRUSS PROBLEMS 81

inequation does not hold.When k > 2, we add k� 2 edges
between vi andM, for each 1 � i � 4. We can prove that for
A ¼ fv1g andB ¼ fv2g, the inequation is still violated. tu

5 SOLUTION OF CCP

A straightforward solution of the collapsed k-core problem
is to exhaustively enumerate all possible set A with size b,
and compute the resulting collapsed k-core for each possible
A. The time complexity of Oð n

b

� �
mÞ is cost-prohibitive.

Considering the NP-hardness and inapproximability of the
problem, we resort to the greedy heuristic which iteratively
finds the best collapser, i.e., the vertex with the largest num-
ber of followers. Clearly, we only need to consider the
vertices in CkðGAÞ since all other vertices will be deleted
by degree constraint during k-core computation. Thus, a
greedy algorithm is shown in Algorithm 2. In each iteration
from Line 2, it finds a best collapser with most followers
(Line 5) by computing the collapsed k-core of every candi-
date vertex at Line 3-4. The time complexity of Algorithm 2
is OðbnmÞ, where n and m correspond to the number of
candidate collapsers in each iteration (Line 3) and the cost
of follower computation (Line 4), i.e., k-core computation.

The number of vertices in CkðGAÞ at Line 3 is still consid-
erably large, which motivates us to develop two effective
pruning rules to further reduce the candidate vertices in
each iteration of the greedy algorithm.

5.1 Reducing Candidate Collapsers
For presentation simplicity, in this subsection, we introduce
two pruning rules to find the vertex with the largest number
of followers in the first iteration of the greedy algorithm
(i.e., A ¼ ;). They can be immediately extended to the
following iterations of the greedy algorithm by using the
updated CkðGAÞ to replace CkðGÞ.

Theorem 4 indicates that only the in-k-core neighbors of
the vertices with degree k in k-core can have followers. Par-
ticularly, P represents the vertices with degree k in k-core,
and T represents the neighbors of P in k-core.

Theorem 4. Given a graph G and P ¼ fu j degðu;CkðGÞÞ ¼ kg,
if a collapsed vertex x has at least one follower, x is from T
where T ¼ fu j u 2 CkðGÞ and Nðu;GÞ \ P 6¼ ;g; that is
jFðx;GÞj > 0 implies x 2 T .

Proof.We prove that a vertex x 2 G n T cannot have any fol-
lower. (1) If x 2 Gn CkðGÞ, xwill be deleted in k-core com-
putation and hence jFðxÞj ¼ 0. (2) If x 2 CkðGÞ n T , x
survived in k-core computation and for each x’s neighbor
u within CkðGÞ, we have degðu;CkðGÞÞ > k since x =2 T .
Consequently, if x is deleted, we have degðu;CkðGÞÞ � k;
that is, the removal of x cannot be propagated to any of its
neighbors regarding degree constraint and hence other

vertices. It means x does not have any follower. Since
ðG n CkðGÞÞ [ðCkðGÞ n T Þ [T ¼ G, we have jFðx;GÞj > 0
implies x 2 T . tu

Algorithm 2. GreedyCKC(G, k, b)

Input: G : a social network, k : degree constraint,
b : number of collapsers

Output: A : the set of collapsers
1 A ;; i 0;
2 while i < b do
3 for each u 2 CkðGAÞ do
4 Compute F (A [u, G);
5 u
 the best collapser in this iteration;
6 A A [u
; i iþ 1; update CkðGAÞ;
7 return A

Example 3. Fig. 1 shows a graph G. When k ¼ 3, the k-core
CkðGÞ is induced by the vertices in V ðGÞ n fu1; u12g.
According to Theorem 4, the set P ¼ fu2; u6; u7; u13; u17g
and the set T ¼ V ðCkðGÞÞ n fu4; u9; u10; u15g. For a vertex
x 2 V ðGÞ n T , there is no follower of x in the collapsed
k-core by x because it is always held that CkðGxÞ ¼
CkðGÞ n fx [Eðx;GÞg. To find a best collapser, we only
have to compute the collapsed k-core for each vertex in T
and choose the one with most followers.

In the following theorem, we further reduce the candi-
date vertices by excluding vertices which have been identi-
fied as followers of other vertices.

Theorem 5. Given two vertices x and u in graph G, we have
fFðuÞ [ug � fFðxÞ [xg if u 2 FðxÞ.

Proof. u 2 FðxÞ implies that uwill be deleted if x is collapsed.
For every vertex in FðuÞ, if x is collapsed, it will also be
deleted since u will be deleted and collapsing x cannot
increase degrees for vertices. Thus FðuÞ � fFðxÞ [xg.
Since u 2 FðxÞ and u =2 FðuÞ, we have fFðuÞ [ug �
fFðxÞ [xg. tu

Example 4. Fig. 1 shows a graph G. When k ¼ 3, to find a
best collapser in k-core, we compute the collapsed k-core
for each vertex in T ¼ V ðCkðGÞÞ n fu4; u9; u10; u15g.
Suppose we compute the collapsed k-core of u11 first and
get the follower set Fðu11;GÞ ¼ fu2; u5; u6; u7; u13; u16; u17g,
we do not need to compute the collapsed k-core of any ver-
tex v 2 Fðu11;GÞ to find its followers, because the follower
number of v cannot be larger than jFðu11; GÞj, according to
Theorem 5.

By Theorem 5, in the procedure of finding a best col-
lapser, every vertex which is a follower of a vertex can be
excluded from candidate collapsers. Consequently, check-
ing promising collapsers first, which may have large num-
ber of followers, can skip more vertices in the computation.
Naturally, a vertex with more neighbors in the set P is more
promising because all of its neighbors in P will follow the
vertex to be deleted. Thus, to further reduce the number of
candidate collapsers, we try collapsing vertices in decreas-
ing order of their degrees in P .

5.2 CKC Algorithm
By taking advantage of two pruning rules in Theorems 4 and
5, Algorithm 3 illustrates the details of CKC algorithm which

Fig. 3. Examples for non-submodularity.

82 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

finds the best collapser for a given graphG (i.e., b ¼ 1). Partic-
ularly, we first compute the k-core of graph G (Line 1) and
find the set P of vertices with degree k in CkðGÞ (Line 2).
According to Theorem 4, we find the set T by the vertices
which are inside of CkðGÞ and are neighbors of at least one
vertex in P (Line 3). To computeFðu;GÞ, we can continue the
k-core computation in Line 1 with vertex u deleted (Line 5).
We have the best collapserwhen the algorithm terminates.

In Algorithm 3, the k-core computation takes OðmÞ time
(Line 1), finding the set P takes OðnÞ by scanning the
degrees of k-core vertices once (Line 2) and finding the set
T takes OðmÞ by visiting the neighbors of the vertices in P
once (Line 3). The collapsed k-core computation takes OðmÞ
for each vertex in T . Thus, the time complexity of Algo-
rithm 3 is OðnmÞ.

Algorithm 3. CKC(G; k)

Input: G : a social network, k : degree constraint,
Output: x : the best collapser

1 CkðGÞ computeCoreðG; kÞ;
2 P fu j degðu;CkðGÞÞ ¼ kg;
3 T fu j u 2 CkðGÞ andNðu;GÞ \ P 6¼ ;g;
4 for each u 2 T (Theorem 4) do
5 Compute F (u, G);
6 T T n Fðu;GÞ (Theorem 5);
7 return the best collapser

To handle the general case with b > 1, our CKC algo-
rithm can be easily fit to Algorithm 2 (replacing Line 3
and 4) to find the best collapser in each iteration. If we find
a vertex u 2 FðxÞ in one iteration of the greedy algorithm, x
is always an equal or better candidate collapser than u in
following iterations, because deleting other vertices cannot
change the fact that x has equal or more followers than u
(Theorem 5). Actually, we do not need to consider u as a
candidate in following iterations because u will be excluded
from k-core whenever x is removed. In our implementation,
we order the candidates by their number of neighbors in P
in each iteration to prune more candidate collapsers.

The above optimizations do not affect the time complexity
of Algorithm 3. Thus, our final CKC algorithm (Algorithm 2
equippedwith Algorithm 3) has a time complexity ofOðbnmÞ
where b is the number of resulting collapsers.

6 PRELIMINARIES OF CTP

To study the collapsed k-truss problem, we first define addi-
tional notations. A triangle is a cycle of length 3 in the
graph. A e-containing triangle is a triangle which contains
the edge e. We use supðe; SÞ, the support of e in S, to repre-
sent the number of e-containing triangles in S. The new
notations are summarized in Table 2.

Definition 3. k-truss. Given a graph G, a subgraph S is the
k-truss of G, denoted by TkðGÞ, if (i) S satisfies support con-
straint, i.e., supðe; SÞ � k� 2 for every edge e 2 S; (ii) S is
maximal, i.e., any subgraph S0 � S is not a k-truss; and (iii) S
is non-trivial, i.e., no isolated vertex in S.2

This definition also deduces that each k-truss vertex has
at least k� 1 neighbors in the k-truss, because a vertex

involves in at least k� 2 triangles in the k-truss. As shown
in Algorithm 4, to find the k-truss, we first compute the
ðk� 1Þ-core as current graph. Then we recursively remove
every edge whose support is less than k� 2 in current
graph. We get the k-truss after removing isolated vertices.
The time complexity is Oðm1:5Þ [37].

In the collapsed k-truss model, once a vertex u in G is col-
lapsed, u and its incident edges are removed from k-truss
even if u is not isolated. We use collapsers to represent the
collapsed vertices.

Definition 4. collapsed k-truss. Given a graph G and a set
A � G of vertices, the collapsed k-truss, denoted by TkðGAÞ, is
the k-truss of the subgraph G n fA [EðA;GÞg.
Besides the deletion of the collapsers in A, there may

be some other vertices in Tk(G) which follow the collaps-
ers to leave the k-truss due to the cascade of edge dele-
tions. These vertices are called followers of the collapsers
in A, denoted by F tðA;GÞ. Formally, F tðA;GÞ = the ver-
tices in TkðGÞ n fTkðGAÞ [Ag. The size of the followers
reflects the importance of the collapsed vertices.

Problem Statement. Given a graph G, a support constraint
k and a budget b, the collapsed k-truss problem is to find a set
A of b vertices in G such that the number of followers,
F t(A;G), is maximized.

Algorithm 4. ComputeTruss(G, k)

Input: G : a social network, k : support constraint
Output: TkðGÞ : the k-truss of G

1 G computeCoreðG; k� 1Þ;
2 while exists an edge e 2 G with supðe;GÞ < k� 2 do
3 G G n feg;
4 Delete isolated vertices in G;
5 return G

7 COMPLEXITY OF CTP

Theorem 6. The collapsed k-truss problem is NP-hard for any k.

Proof. We reduce the collapsed k-truss problem from the
minimum vertex cover (MVC) problem [42]. Given a graph
G, the MVC problem is to find a minimum vertex set such
that each edge in G is incident to at least one vertex of the
set. When k � 2, we construct a graph G0 by (1) adding a
vertex set U of k� 2 vertices for every edge ðu; vÞ in G; and
(2) adding edges to make every U [fu; vg a clique where

TABLE 2
Summary of Additional Notations

Notation Definition

ðu; v; wÞ a triangle contains vertices u, v and w
supðe;GÞ the number of e-containing triangles in G
TkðGÞ the k-truss of G
TkðGAÞ the k-truss of G n fA [EðA;GÞg
F tðA;GÞ the followers of A in collapsed k-truss, i.e., the

vertices in TkðGÞ n fTkðGAÞ [Ag
V~ðe;GÞ the set of vertices where each vertex is from a

e-containing triangle in G, and each vertex is
not incident to e

V~ðS;GÞ the union set of V~ðe;GÞ for every e 2 S
E~ðu;GÞ the set of edges where each edge ðv; wÞ belongs

to a triangle ðu; v; wÞ in G

2. The value of k is determined by user requirement for cohesive-
ness, or learned according to ground-truth communities.

ZHANG ET AL.: FINDING CRITICAL USERS IN SOCIAL COMMUNITIES: THE COLLAPSED CORE AND TRUSS PROBLEMS 83

every two vertices are adjacent. Since every edge in the
induced graph of a k-clique (a clique of k vertices) is con-
tained in k� 2 triangles, a k-clique forms a k-truss.

Then we prove the MVC problem onG is equivalent to
finding a minimum vertex set W in G0 such that the
k-truss of G0 n ðW [EðW ÞÞ is empty. Let C denote a
k-clique in G0 which corresponds to an edge in G. To
make the k-truss empty, we have to delete at least one ver-
tex in every C. Then we have that the minimum set W
comes from G, because deleting a vertex in G0 nG cannot
destroy more C than deleting a vertex in C \G. Then
every edge in G will be covered by an incident vertex in
W . So the above two problems are equivalent. To find the
minimum vertex set W , we can try solving the collapsed
k-truss problem by at most n� 1 times (1 � b < n). So
the collapsed k-truss problem is NP-hard when k � 2.
Note that when k � 1, the problem is same to the col-
lapsed 2-truss problem according to the definitions. Then
the collapsed k-truss problem is NP-hard for any k. tu

Theorem 7. For k � 4 and any � > 0, the collapsed k-truss
problem cannot be approximated in polynomial time within a
ratio of ð1� 1=eþ �Þ, unless P ¼ NP .

Proof. We reduce the collapsed k-truss problem from the
maximum coverage (MC) problem [41] to prove the inap-
proximability. The MC problem is to find at most b sets to
cover the largest number of elements, where b is a given
budget. For any � > 0, the MC problem cannot be approx-
imated in polynomial time within a ratio of ð1� 1=eþ �Þ,
unless P ¼ NP [41]. Let g > 1� 1=e, we prove that
if there is a solution with g-approximation on optimal fol-
lower number for our problem, there will be a g-approxi-
mate solution on optimal element number for MC.

We consider an arbitrary instance of MC with c sets
T1; ::; Tc and d elements fe1; ::; edg ¼ [1�i�cTi. Thenwe con-
struct a corresponding instance of the collapsed k-truss
problem on a graphG. Fig. 4a shows a construction exam-
ple from 3 sets and 4 elements when k ¼ 4. The set of verti-
ces in G consists of two parts: M and N . M contains c
vertices, i.e., M ¼ [1�i�cvi. N contains d sets of vertices,
i.e.,N ¼ [1�j�dNj. For every j 2 ½1; d�,Nj contains 3kþ c�
6 vertices, i.e., Nj ¼ [0�p�3kþc�7uj;p. To show the construc-
tion clearly, as the example in Fig. 4c, we divide Nj into 5
sets: Vj;1 (k� 3 vertices), Vj;2 (c vertices), Vj;3 (k� 1 verti-
ces), Vj;4 (k� 1 vertices) and fuj;0g. Specifically, Vj;1 ¼ uj;1[
fuj;p j 2kþ c� 2 � p � 3kþ c� 7g, Vj;2 ¼ fuj;p j 2 � p �
cþ 1g, Vj;3 ¼ fuj;p j cþ 1 � p � kþ c� 1g and Vj;4 ¼
fuj;p j kþ c � p � 2kþ c� 2g (Note that uj;1 ¼ uj;2kþc�2
when k ¼ 4).

The edge construction is as follows: (1) we define the
super edge as a (k+b)-clique, denoted by C, where only
two vertices in C have neighbors in G n C, as the example
in Figs. 4a and 4b; (2) for every set Ti (i 2 ½1; c�) and every
element ej (j 2 ½1; d�), if ej 2 Ti, we add two super edges
(vi; uj;i), (vi; uj;iþ1) and an edge (non-super) (uj;i; uj;iþ1); if
ej =2 Ti, we add a super edge (uj;i; uj;iþ1). (3) there is a
super edge between every vertex pair in Vj;1; (4) for every
p 2 ½3; c�, there is an edge between uj;p and each vertex in
Vj;1; (5) we add a super edge between uj;2 and each vertex
in Vj;1 n fuj;1g; (6) we add an edge ðuj;cþ1; uj;2kþc�2Þ, and
add a super edge between uj;cþ1 and each vertex in
Vj;1 n fuj;2kþc�2g; (7) we add a super edge between every
vertex pair in Vj;3 except the pair (uj;cþ1, uj;kþc�1); (8) we

add a super edge between every vertex pair in Vj;4 except
the pair (uj;kþc, uj;2kþc�2); and (9) we add an edge between
uj;0 and each vertex in Vj;3 [Vj;4, and add a super edge
between uj;kþc�1 and uj;kþc. The construction of G is com-
pleted. Figs. 4c and 4d show the construction of N1

(c ¼ 3) when k ¼ 5 and k ¼ 6, respectively.
Here we show the support of each non-super edge in

G is exactly k� 2: (1) for a non-super edge ðuj;1; uj;2Þ, it
can only form a triangle with each vertex in Vj;1 n fuj;1g
(k� 4 vertices), the vertex uj;3 and one vertex in M; (2)
for a non-super edge ðuj;p; uj;pþ1Þ ð2 � p � cÞ, it can only
form a triangle with each vertex in Vj;1 (k� 3 vertices)
and one vertex in M; (3) for a non-super edge ðuj;cþ1;
uj;2kþc�2Þ, it can only form a triangle with each vertex in
Vj;1 n fuj;2kþc�2g (k� 4 vertices), the vertex uj;c and the
vertex uj;0; (4) for a non-super edge ðuj;p; uj;qÞ between
Vj;1 and Vj;2, it can form a triangle with each vertex in
Vj;1 n fuj;pg (k� 4 vertices), the vertex uj;q�1 and the ver-
tex uj;qþ1; (5) for a non-super edge ðuj;0; uj;cþ1Þ, it can only
form a triangle with each vertex in Vj;3 n fuj;cþ1; uj;kþc�1g
(k� 3 vertices) and the vertex uj;2kþc�2. Note that it is
similar for edges ðuj;0; uj;kþc�1Þ; ðuj;0; uj;kþcÞ, and ðuj;0;
uj;2kþc�2Þ; and (6) for a non-super edge ðuj;0; uj;pÞðcþ 2 �
p � kþ c� 2Þ, it can only form a triangle with each ver-
tex in Vj;3 n fuj;pg (k� 2 vertices). Note than it is similar
for a non-super edge in ðuj;0; uj;pÞðkþ cþ 1 � p � 2kþ
c� 3Þ. Now the support of each non-super edge has been
verified to be k� 2. Obviously G is a k-truss.

The key idea is we ensure that: (1) only the vertices uj;0

can become a follower of a vertex, since we need to delete
at least bþ 1 vertices in a (k+b)-clique to produce fol-
lowers; (2) only vertices in M need to be considered as
collapsed vertices, since any vertex in N cannot have
more followers than a vertex in M; (3) reducing the sup-
port for any non-super edge in Nj (1 � j � d) will lead to
the deletion of uj;0 due to the support constraint; and (4)

Fig. 4. Examples for proving inapproximability.

84 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

every Nj (1 � j � d) can only produce one follower uj;0.
Then, every solution of the collapsed k-truss problem
in G corresponds to a solution of the MC problem, where
the follower number for our problem equals the element
number for the MC Problem. So it is NP-hard to appro-
ximate collapsed k-truss problem within a ratio of
ð1� 1=eþ �Þwhen k � 4. tu

If the follower function in CTP is submodular, a greedy algo-
rithm can still have (1� 1=e)-approximation on follower
number. Unfortunately, Theorem 8 gives a negative result.

Theorem 8. Let fðAÞ ¼ jF tðAÞ [fAgj. We have f is monotone
but not submodular for any k.

Proof. Suppose there is a set A0 � A. For every vertex u in
F tðAÞ, u will still be deleted in the collapsed k-truss with
the collapser set A0, because removing vertices in A0 nA
cannot increase the supports of edges. Thus fðA0Þ � fðAÞ
and f is monotone. For two arbitrary collapsers sets A and
B, if f is submodular, it must hold that fðAÞþ fðBÞ �
fðA [BÞ þ fðA \BÞ. We show that the inequality does not
hold using counterexamples. When k ¼ 1, we consider a
graph which consists of v1, v2, v3, eðv1; v2Þ and eðv2; v3Þ.
Suppose k ¼ 1, A ¼ fv1g and B ¼ fv3g, we have F tðAÞ ¼
fv1g, F tðBÞ ¼ fv3g, F tðA [BÞ ¼ fv1; v2; v3g and F tðA\
BÞ ¼ ;. So the inequation does not hold. When k � 2, we
consider a graph which consists of 2k vertices, i.e., fvi j
1 � i � 2kg. There is an edge between every vertex pair in
fvi j 1 � i � kþ 1g, i.e., it forms a ðkþ 1Þ-clique. The
vertex set fvi j k � i � 2kg also forms a ðkþ 1Þ-clique. Let
V1 ¼ fvi j 1 � i � k� 1g and V2 ¼ fvi j kþ 2 � i � 2kg.
When k ¼ 2, if A ¼ V1 and B ¼ V2, we have F tðAÞ ¼ V1,
F tðBÞ ¼ V2, F tðA [BÞ ¼ V1 [V2 [fvk; vkþ1g and F tðA\
BÞ ¼ ;. So the inequation is still violated. tu

8 SOLUTION OF CTP

Due to the NP-hardness and inapproximability of the prob-
lem, we adopt a greedy heuristic which iteratively finds the
best collapser, i.e., the vertex with the largest number of
followers. We only need to consider the vertices in TkðGAÞ
as candidate collapsers, because all other vertices will be
deleted during k-truss computation. A greedy algorithm is
shown in Algorithm 5. In each iteration from Line 2, it finds
a best collapser with most followers (Line 5) by computing
the collapsed k-truss of every candidate vertex at Line 3-4.
Because the k-truss computation at Line 4 takes Oðm1:5Þ
time, the time complexity of Algorithm 5 is Oðbnm1:5Þ,
where n is the number of candidate collapsers in each itera-
tion (Line 3) and m is the number of edges in follower com-
putation (Line 4), i.e., k-truss computation.

Algorithm 5. GreedyCKT(G, k, b)

Input: G : a social network, k : support constraint,
b : the budget for collapser number

Output: A : the set of collapsers
1 A ;; i 0;
2 while i < b do
3 for each u 2 TkðGAÞ do
4 Compute F t(A [u, G);
5 u
 the best collapser in this iteration;
6 A A [u
; i iþ 1; update TkðGAÞ;
7 return A

The follower computation at Line 4 is efficient by con-
ducting k-truss computation. However, the number of can-
didate vertices in TkðGAÞ at Line 3 is still too large to afford,
which motivates us to reduce the candidate vertices in the
heuristic algorithm by developing effective pruning rules.

8.1 Reducing Candidates
In this section, we introduce the pruning rules on the first
iteration in the greedy algorithm (i.e., A ¼ ; and i ¼ 0). The
pruning rules can be immediately applied to the following
iterations by using TkðGAÞ to replace TkðGÞ. The following
theorem finds the candidate set of collapsers.

Theorem 9. Given a graph G, let D denote the support k� 2
edge set in TkðGÞ, i.e., D ¼ fe j supðe; TkðGÞÞ ¼ k� 2g, if a
collapsed vertex x has at least one follower, x is from V~

ðD;TkðGÞÞ; that is jF tðx;GÞj > 0 implies x 2 V~ðD; TkðGÞÞ.
Proof. We prove that a vertex x 2 G n V~ðD;TkðGÞÞ cannot

have any followers. (1) If x 2 G n TkðGÞ, x will be deleted
in k-truss computation and hence jF tðxÞj ¼ 0. (2) If
x 2 TkðGÞ n V~ðD;TkðGÞÞ, x survived in k-truss computa-
tion. Let E~ denote the edge set where each edge is from
a triangle containing x in TkðGÞ, and let Ex denote
the edge set where each edge is incident to x in TkðGÞ.
We have that each edge in E~ n Ex has a support of at
least k� 1, otherwise x will be in V~ðD;TkðGÞÞ. If we
delete x in TkðGÞ, the support of every edge in E~ n Ex

can only decrease by one, i.e., every edge in E~ n Ex still
has a support of at least k� 2. Consequently, all the edges
in E~ n Ex will exist in TkðGxÞ, i.e., no cascade of deletion
will incur for removing x. So only edges in Ex will be
deleted by removing x, and x does not have any fol-
lowers. Consequently, if x has at least one follower, x 2
V~ðD;TkðGÞÞ. tu

Example 5. In Fig. 5, when k ¼ 4, the graph is already a
k-truss. On each edge, we label its support, i.e., the num-
ber of triangles containing the edge. According to Theo-
rem 9, the set D ¼ fðv1; v2Þ; ðv2; v6Þ; ðv1; v4Þ; ðv4; v6Þg. Thus
the set V~ðD; TkðGÞÞ ¼ fv3; v5; v7g and every other vertex
cannot have any followers. The best collapser is v3 since
F tðv3Þ ¼ fv1; v2; v4g, F tðv5Þ ¼ fv2g and F tðv7Þ ¼ fv4g.
The following theorem further reduces the candidate col-

lapsers by excluding the vertices which have been identified
as followers of other vertices.

Theorem 10. Given a graph G, if a vertex u is a follower of x,
i.e., u 2 F tðxÞ, we have fF tðuÞ [ug � fF tðxÞ [xg.

Proof. Since u 2 F tðxÞ, uwill be deleted if x is collapsed. For
every vertex v in F tðuÞ, v will be deleted if x is collapsed,
because u will be deleted and collapsing x cannot increase

Fig. 5. Candidate reduction, k ¼ 4.

ZHANG ET AL.: FINDING CRITICAL USERS IN SOCIAL COMMUNITIES: THE COLLAPSED CORE AND TRUSS PROBLEMS 85

the supports for edges. So F tðuÞ � fF tðxÞ [xg. Since
u 2 F tðxÞ n F tðuÞ, we have fF tðuÞ [ug � fF tðxÞ [xg. tu

Example 6. In Fig. 5, when k ¼ 4, the graph is a k-truss with
each edge labeled by its support. To find a best collapser,
we compute the collapsed k-truss of each candidate ver-
tex and choose the one with most followers. Suppose we
compute for v3 first and find F tðv3Þ ¼ fv1; v2; v4g, we do
not need to compute the collapsed k-truss of each vertex
u 2 F tðv3Þ because the follower number of u cannot be
larger than jF tðv3Þj, according to Theorem 10.

Based on Theorem 10, every vertex which is a follower of
another vertex should be excluded from candidate collapser
set in the computation of a best collapser. Thus we can
reduce even more vertices in the computation by checking
promising collapsers first, which may have large number of
followers. We say a vertex u corresponds to an edge e if
e 2 E~ðu; TkðGÞÞ. A vertex corresponding to more edges in
the setD is more promising, because all these edges will fol-
low the vertex to be deleted. The numbers of these edges in
D can be accumulatively computed by visiting the triangles
of each edge in D. Thus, to further prune unpromising can-
didate, we try collapsing vertices in decreasing order of
E~ðu; TkðGÞÞ \D for each candidate u.

8.2 CKT Algorithm
Algorithm 6 shows the details of CKT algorithm which
finds the best collapser for a given graph G (i.e., b ¼ 1). Spe-
cifically, we first compute the k-truss of graph G (Line 1)
and find the set D of edges with support k� 2 in TkðGÞ
(Line 2). According to Theorem 9, we find the candidate set
V~ðD;TkðGÞÞ where each vertex corresponds to at least one
edge in D (Line 3-4). To compute F tðu;GÞ, we continue the
k-truss computation in Line 1 with vertex u deleted (Line 5).
The best collapser is produced by trying every candidate.

In Algorithm 6, the k-truss computation takes Oðm1:5Þ
time (Line 1), finding the set D takes OðmÞ by scanning the
supports of k-truss edges once (Line 2) and finding the set V
takes Oðm1:5Þ by visiting the triangles containing the edges
in D once (Line 3). The collapsed k-truss computation takes
Oðm1:5Þ for each vertex in V . Thus, the time complexity of
Algorithm 6 is Oðnm1:5Þ.

Algorithm 6. CKT(G; k)

Input: G : a social network, k : support constraint,
Output: x : the best collapser

1 T ComputeTruss(G, k);
2 D fe j supðu; T Þ ¼ k� 2g;
3 V V~ðD;T Þ;
4 for each u 2 V (Theorem 9) do
5 Compute F t(u, G);
6 V V n F tðu;GÞ (Theorem 10);
7 return the best collapser

For a general case with b > 1, our CKT algorithm can be
simply embedded in the greedy algorithm (replacing Line 3
and 4) to find the best collapser in each iteration. If we find
a vertex u 2 F tðxÞ in one iteration of the greedy algorithm,
we do not need to consider u as a candidate in all following
iterations because the followers of x is always not less than
the followers of u, and u will be excluded from k-truss
whenever x is removed (Theorem 10). Furthermore, in one

iteration, if there is a connected k-truss subgraph which
does not contain the produced best collapser, the result on
this subgraph can be reused. The reason is that the col-
lapsed k-truss of each vertex in the subgraph will keep
same. We can share the computation by only recording the
largest number of followers for a vertex in this subgraph.

The above optimizations do not affect the time complex-
ity of Algorithm 6. Thus, our final CKT algorithm (Algo-
rithm 5 equipped with Algorithm 6) has a time complexity
of Oðbnm1:5Þwhere b is the number of resulting collapsers.

9 EVALUATION

This section evaluates the effectiveness and efficiency of the
proposed techniques through comprehensive experiments.

9.1 Experimental Setting

9.1.1 Algorithms

To the best of our knowledge, there is no existing work
investigating the CCP and CTP. In this paper, we imple-
ment and evaluate the following algorithms.

� BaselineC. The baseline algorithm (Algorithm 2).
In each iteration, it finds a best collapser by comput-
ing the collapsed k-core for every candidate vertex in
current k-core.

� CKC. The advanced algorithm equipped with Algo-
rithm 3 in each iteration, where Theorem 4 and Theo-
rem 5 are applied.

� BaselineT. The baseline algorithm (Algorithm 5).
In each iteration, it finds a best collapser by comput-
ing the collapsed k-truss for every candidate vertex
in current k-truss.

� CKT. The advanced algorithm equipped with Algo-
rithm 6 in each iteration, where Theorem 9 and
Theorem 10 are applied.

The other algorithms will be introduced and marked in
bold when appear in the experiments for the first time.

9.1.2 Datasets

We deploy 9 real-life social networks in our experiments
and we assume all vertices in each network are initially
engaged. The original data of Yelp is from [43], DBLP is
from [44] and the others are from [45]. In DBLP, each vertex
represents an author and each edge between two authors
represents there is at least one co-authored paper of the two
authors. The other datasets have existing vertices represent-
ing users and edges representing relationships. Table 3
shows the statistics of the datasets in the experiments, in
increasing order of their edge numbers.

TABLE 3
Statistics of Datasets

Dataset Nodes Edges davg kcoremax ktrussmax

Facebook 4,039 88,234 43.7 115 97
Brightkite 58,228 194,090 6.7 52 42
Gowalla 196,591 456,830 4.7 43 23
Yelp 552,339 1,781,908 6.5 105 73
YouTube 1,134,890 2,987,624 5.3 51 19
DBLP 1,566,919 6,461,300 8.3 118 119
Pokec 1,632,803 8,320,605 10.2 27 20
LiveJournal 3,997,962 34,681,189 17.4 360 352
Orkut 3,072,441 117,185,083 76.3 253 78

86 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

9.1.3 Parameters

We conduct experiments under different settings by varying
degree (support) constraint k and the budget of collapsers b.
The default value of k for collapsed k-core algorithms is 20.
The default value of k for collapsed k-truss algorithms is 15.
The default value of b is 20. In the experiments, the value of k
varies from 5 to 50 and the value of b varies from 1 to 100.

All programs are implemented in standard C++ and
compiled with G++ in Linux. All experiments are per-
formed on a machine with Intel Xeon 2.8GHz CPU and Red-
hat Linux system.

9.2 Effectiveness
We first report the numbers of followers produced by CKC

and CKT, compared with the results of other approaches.
Then we show some statistical results and case studies of
the two models.

9.2.1 Effectiveness of CKC

Fig. 6 compares the number of followers w.r.t b collapsers
identified by CKC algorithm with that of 3 other approaches.
RandomC randomly chooses b collapsers from vertices in
k-core. DegreeC chooses b collapsers in the candidate set T
(Theorem 4) with the largest degrees in k-core. In each itera-
tion of the b iterations, EDC greedily chooses a collapser in T
(Theorem 4) with the largest number of neighbors which
have degree k in k-core, where the k-core and T are updated
in each iteration. For RandomC, we report the average num-
ber of the followers for 100 independent testings. Figs. 6a
and 6b show that DegreeC and EDC significantly improve
the performance, but it is outperformed by CKC with a large
margin. This implies that it is not effective to find collapsers
simply based on degree information. EDC and DegreeC

often have the similar follower numbers, because they usu-
ally find the similar vertices (high degrees in some extent)
as the collapsers. Figs. 6c and 6d report the impact of b and
k on the number of followers. The number of the followers
clearly grows with the increase of budget b. The number
becomes relatively small when k is small or large, which is
affected by the size and the structure of k-core. For conve-
nience, we also report the time cost of the evaluated
approaches. The 3 baseline approaches are more efficient
than CKC because they only need to compute the collapsed

k-core at most b times. The margins are not very large,
because the collapsed k-core computation costs more time
for a collapser with more followers.

To further justify the effectiveness of CKC, we compare its
performance with that of optimal algorithm (OptimalC),
which exhaustively computes the follower number for
every combination of b collapsers on small networks. To
compare the results with a largest possible b, we extract a
small subgraph from each dataset by randomly selecting a
vertex and choose its neighbors within x-hop until the ver-
tex number reaches 100. For each dataset, we extract 50
such subgraphs. Then we compute the average follower
number per subgraph on the same 50 subgraphs for Opti-
malC and CKC, respectively. Figs. 7a and 7b show that CKC
achieves similar performance with that of the OptimalC.
We can see OptimalC is very time-consuming and cannot
return the result within 1 month for a large b. In Fig. 7c, CKC
has almost the same number of followers with OptimalC

on Brightkite when b ¼ 3 and k is a reported value. We
observe that the optimal follower number does not certainly
increase or decrease for an increasing k. Thus the potential
of collapsing power changes for different k on a dataset.

9.2.2 Effectiveness of CKT

Fig. 8 compares the number of followers w.r.t b collapsers
identified by CKT algorithm with that of 4 other approaches.
Specifically, RandomT randomly chooses b collapsers in
k-truss. SupportT chooses b collapsers from the vertices
with the largest numbers of triangles containing a vertex in
k-truss. DegreeT chooses b collapsers from the vertices
with the largest degrees in k-truss. We define the effective
degree of a vertex u in k-truss (Tk) by the number of edges
in E~ðu; TkÞ with support k� 2 in Tk, where E~ðu;GÞ
denotes the set of edges where each edge ðv; wÞ belongs to a
triangle ðu; v; wÞ in G. In each iteration of the b iterations,
EDT greedily chooses a collapser in the candidate set
(Theorem 9) with the largest effective degree in k-truss,
where the k-truss and effective degrees are updated in each
iteration. For RandomT, we show the average number of the
followers for 100 independent testings. Note that the input
value of k for YouTube is 10 because its collapsed 15-truss
is always empty when b ¼ 20. Fig. 8 shows that CKT produ-
ces significantly more followers than the others, except one

Fig. 6. Number of the followers in collapsed k-core. Fig. 7. Greedy versus optimal in collapsed k-core.

ZHANG ET AL.: FINDING CRITICAL USERS IN SOCIAL COMMUNITIES: THE COLLAPSED CORE AND TRUSS PROBLEMS 87

setting where our greedy strategy is outperformed by EDT.
The margins change on different k because the support
distribution and the structure of k-truss become different. In
Fig. 8, the CKT can always find the effective vertices for
collapsing while the other approaches fail in some settings.
The 4 baseline approaches are more efficient than CKT

because they only need to compute the collapsed k-truss at
most b times. The margins are not very large, because the
collapsed k-truss computation costs more time for a col-
lapser with more followers.

We also compare the performance of CKT with that of
the optimal algorithm (OptimalT), which exhaustively
computes the followers for every combination of b col-
lapsers. In Figs. 9a and 9b, for each dataset, we compute
the average follower number per subgraph on 50 sub-
graphs where each is extracted by selecting a vertex ran-
domly and choosing its neighbors within x-hop until the
vertex number reaches 100. We can see that OptimalT is
very time-consuming. Fig. 9 shows that CKT achieves sim-
ilar results with that of the OptimalT. The optimal fol-
lower number does not certainly increase or decrease for
an increasing k. Thus the collapsing potential changes for
different k on a dataset.

9.2.3 Comparison between Core and Truss

For a fair comparison on a dataset, we find a representative set
of verticeswhich are the 30 percent vertices in the datasetwith
the largest core numbers for k-core model (resp. truss num-
bers for k-truss model). In Fig. 10, for each dataset, we report
the global clustering coefficient and modularity values on the
induced subgraphs of the representative set of vertices for
k-core and k-truss, respectively. Note that the representative
set of vertices is the user groupwith highest user engagement
according to k-core and k-truss, respectively. Fig. 10a shows
the k-truss vertices possess significantly higher clustering
coefficients on all datasets than the k-core vertices. Fig. 10b
shows the k-truss vertices also have better modularity values
than the k-core vertices. The experiments indicate that utiliz-
ing k-truss may be more promising than k-core when the
additional computation cost is affordable.

9.2.4 Comparison of Engagement Loss

In Fig. 11, we report the engagement loss in the result of CKC
and the result of CKT. For a given budget b, we consider the
reduction percentage of the original non-collapsed sub-
graph as the engagement loss, i.e., the number of reduced
vertices (i.e., followers and collapsers) divided by the num-
ber of vertices in the k-core or k-truss. Because the (k-1)-core
is always a supergraph of k-truss, the values of k in Fig. 11
are 14 for CKC and 15 for CKT, respectively. The input value
of b is 20 for both algorithms. In the figure, the collapsers
of CKT reduce the original subgraph by a larger extent
than CKC under the same collapsing budget. Particularly,
the collapsed 15-truss by CKT on Orkut has 4598 followers
while the collapsed 14-core only has 2907 followers for a

Fig. 9. Greedy versus optimal in collapsed k-truss.

Fig. 8. Number of the followers in collapsed k-truss.

Fig. 10. Comparing core and truss.

Fig. 11. Engagement loss of collapsing.

88 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

same budget b of 20. It shows utilizing collapsed k-truss
model may be more effective on destroying the engagement
of social communities.

9.2.5 Case Studies of CKC and CKT

Fig. 12 depicts the best collapser and the corresponding fol-
lowers on DBLP identified by CKC and CKT, respectively,
where k ¼ 20 for CKC and k ¼ 21 for CKT. For a clear presenta-
tion, the edges between each author and authors in k-core
(resp. k-truss) are integrated as one edge. In Fig. 12a, it is inter-
esting that the author “Ying Li” (the collapser) alone has 74
followers, and only 12 of themare co-authors of Li. This shows
the user engagement can be severely damaged by the leave of
a few individuals and the effect of leave cascade. In Fig. 12b,
the author “Reinhold Haux” (the collapser) has 57 followers
and 56 of themare co-authors ofHaux.We can see the connec-
tion among followers and the collapser is significantly stron-
ger in the collapsed k-truss than that of the collapsed k-core.
The power of collapse byHaux is stronger in the sense that his
leave breaks a tighter group than the leave of Li. This shows
the CKT may better model the collapse of tight-knit user
groups. The user leave caused by “Ying Li” may be affected
deeper by the butterfly effect in leave cascade.

9.3 Efficiency
In this section, we evaluate the efficiency on individual tech-
niques, the baselines, CKC and CKT.

9.3.1 Evaluation of Individual Techniques in CKC

Fig. 13 reports the number of visited vertices, i.e., the size of
candidate collapsers, in three algorithms. Algorithm Baseli-
neC+ represents BaselineC algorithm equipped with can-
didate collapser reduction technique (Theorem 4). We can
see the number of visited vertices significantly drops on
DBLP with the use of Theorem 4 for different k and b. It is
reported that Theorem 5 further reduces the number of can-
didate collapsers, which is applied in CKC.

9.3.2 Performance Evaluation of CKC

Figs. 14a and 14b study the impact of k and b on two algo-
rithms against Orkut, with b varying from 1 to 100 and k
ranging from 5 to 50. We can see CKC is scalable with the
growth of b. It is also efficient for different k, especially for a
small or large value of k. With the increasing of k, the candi-
date number decreases while the k-core computation costs
more time. These two factors together affect the trends of
BaselineC and CKC on different k. Figs. 14c and 14d report
the performance of two algorithms on 9 networks with k ¼ 20
and b ¼ 20. We can see CKC runs several times faster than
BaselineC on all datasets. It is shown that CKC is also scal-
able to the growth of the network size, which identifies a set of
20 collapsers in 110 seconds on Orkut. The figures show that
CKC significantly outperforms BaselineC under all settings.

9.3.3 Evaluation of Individual Techniques in CKT

Fig. 15 shows the number of the visited vertices, i.e., the size of
candidate collapsers, in three algorithms, where BaselineT
+ is BaselineT equipped with Theorem 9. Note that CKT is
further equipped with Theorem 10 on Baseline+. We can
see the number of visited vertices significantly decreases by
both of the theorems on DBLP for different k and b.

Fig. 12. Case studies on DBLP.

Fig. 13. Effectiveness of reducing candidate collapsers.

Fig. 14. Performance of the CKC algorithms.

Fig. 15. Effectiveness of reducing candidate collapsers.

ZHANG ET AL.: FINDING CRITICAL USERS IN SOCIAL COMMUNITIES: THE COLLAPSED CORE AND TRUSS PROBLEMS 89

9.3.4 Performance Evaluation of CKT

Fig. 16 shows performance of three algorithms on all data-
sets. In Fig. 16a, the runtime of CKT increases when we vary
b from 1 to 100. In Fig. 16b, the runtime for CKT is relatively
large for extremely small k and does not change much for
other values of k. With the increasing of k, the candidate
number usually decreases and the k-truss computation
becomes slightly faster because we compute k-truss based
on (k-1)-core. Note that k-core computation is faster than
k-truss computation. From Figs. 16c and 16d, we can see
that CKT outperforms BaselineT on all datasets by several
times, where k ¼ 15 and b ¼ 20. We can see CKT outper-
forms BaselineT under all settings. The speedup on You-
Tube is not as significant as on the other datasets, because
we uniformly set k as 15 such that the number of candidates
on YouTube relatively is small (where kmax ¼ 19) and the
computation of collapsed k-truss on some effective collaps-
ers dominates the runtime. The collapsed k-truss computa-
tion costs more time for a collapser with more followers.
Although CKT costs more time than CKC (k ¼ 14, b ¼ 20) by
computing the tie strength (i.e., edge support and triangle
update), CKT shows better potential on effectiveness evalua-
tion. It is consistent with the nature that k-truss is an
enhanced version of k-core.

10 CONCLUSION

In this paper, we propose and study the problem of col-
lapsed k-core (resp. k-truss), which intends to find a set of
vertices whose deletion can lead to the smallest k-core (resp.
k-truss) of the network. We prove both of the problems are
NP-hard and inapproximate within a factor of 1� 1=e. Effi-
cient algorithms are proposed, which significantly reduces
the candidate number to speed up the computation. Exten-
sive experiments on 9 real-life networks demonstrate our
model is effective and our algorithm is efficient.

ACKNOWLEDGMENTS

Fan Zhang is supported by Huawei YBN2017100007. Ying
Zhang is supported by ARC DE140100679 and DP170103710.
Lu Qin is supported by ARC DE140100999 and DP160101513.
Wenjie Zhang is supported by ARC DP150103071 and
DP150102728.

REFERENCES

[1] F. D. Malliaros and M. Vazirgiannis, “To stay or not to stay:
Modeling engagement dynamics in social graphs,” in Proc. 22nd
ACM Int. Conf. Inf. Knowl. Manage., 2013, pp. 469–478.

[2] S. Wu, A. D. Sarma, A. Fabrikant, S. Lattanzi, and A. Tomkins,
“Arrival and departure dynamics in social networks,” in Proc. 6th
ACM Int. Conf. Web Search Data Mining, 2013, pp. 233–242.

[3] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and
A. Sharma, “Preventing unraveling in social networks: The
anchored k-core problem,” SIAM J. Discrete Math., vol. 29, no. 3,
pp. 1452–1475, 2015.

[4] R. Chitnis, F. V. Fomin, and P. A. Golovach, “Parameterized com-
plexity of the anchored k-core problem for directed graphs,” Inf.
Comput., vol. 247, pp. 11–22, 2016.

[5] J. Abello and F. Queyroi, “Fixed points of graph peeling,” in Proc.
IEEE/ACM Int. Conf. Advances Social Netw. Anal. Mining, 2013,
pp. 256–263.

[6] D. Garcia, P. Mavrodiev, and F. Schweitzer, “Social resilience in
online communities: The autopsy of friendster,” in Proc. 1st ACM
Conf. Online Social Netw., 2013, pp. 39–50.

[7] M. S. Granovetter, “The strength of weak ties,” Amer. J. Sociology,
vol. 78, no. 6, pp. 1360–1380, 1973.

[8] R. Rotabi, K. Kamath, J. M. Kleinberg, and A. Sharma, “Detecting
strong ties using network motifs,” in Proc. 26th Int. Conf. World
Wide Web Companion, 2017, pp. 983–992.

[9] S. Aral and D. Walker, “Tie strength, embeddedness, and social
influence: A large-scale networked experiment,” Manag. Sci.,
vol. 60, no. 6, pp. 1352–1370, 2014.

[10] F. Zhao and A. K. H. Tung, “Large scale cohesive subgraphs dis-
covery for social network visual analysis,” Proc. VLDB Endowment,
vol. 6, no. 2, pp. 85–96, 2012.

[11] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition
of probabilistic graphs: Semantics and algorithms,” in Proc. Int.
Conf. Manage. Data, 2016, pp. 77–90.

[12] E. Akbas and P. Zhao, “Truss-based community search: A truss-
equivalence based indexing approach,” Proc. VLDB Endowment,
vol. 10, no. 11, pp. 1298–1309, 2017.

[13] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
search,” Proc. VLDB Endowment, vol. 10, no. 9, pp. 949–960, 2017.

[14] S. Wuchty and E. Almaas, “Evolutionary cores of domain co-
occurrence networks,” BMC Evol. Biol., vol. 5, no. 1, 2005,
Art. no. 24.

[15] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “K-core
organization of complex networks,” Phys. Rev. Lett., vol. 96, no. 4,
2006, Art. no. 040601.

[16] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey,
V. J. Wedeen, and O. Sporns, “Mapping the structural core of
human cerebral cortex,” PLoS Biol., vol. 6, no. 7, 2008, Art. no.
e159.

[17] M. Daianu, N. Jahanshad, T. M. Nir, A. W. Toga, C. R. J. Jr,
M. W.Weiner, and P. M. Thompson, “Breakdown of brain connec-
tivity between normal aging and alzheimer’s disease: A structural
k-core network analysis,” Brain Connectivity, vol. 3, no. 4, pp. 407–
422, 2013.

[18] M. Altaf-Ul-Amine, K. Nishikata, T. Korna, T. Miyasato,
Y. Shinbo, M. Arifuzzaman, C. Wada, M. Maeda, T. Oshima,
H. Mori, et al., “Prediction of protein functions based on k-cores
of protein-protein interaction networks and amino acid
sequences,” Genome Inform., vol. 14, pp. 498–499, 2003.

[19] G. D. Bader and C. W. V. Hogue, “An automated method for find-
ing molecular complexes in large protein interaction networks,”
BMC Bioinf., vol. 4, 2003, Art. no. 2.

[20] R. D. Luce and A. D. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[21] S. B. Seidman and B. L. Foster, “A graph-theoretic generalization
of the clique concept,” J. Math. Sociology, vol. 6, no. 1, pp. 139–154,
1978.

[22] S. B. Seidman, “Network structure and minimum degree,” Social
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[23] J. Cohen, “Trusses: Cohesive subgraphs for social network analy-
sis,”Nat. Security Agency Tech. Rep., Citeseer, vol. 16, 2008.

[24] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, “Structural
diversity in social contagion,” Proc. Nat. Academy Sci. United States
America, vol. 109, no. 16, pp. 5962–5966, 2012.

Fig. 16. Performance of the CKT algorithms.

90 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

