
Global Reinforcement of Social Networks: The

Anchored Coreness Problem

Qingyuan Linghu
Guangzhou University

University of New South Wales
q.linghu@unsw.edu.au

Fan Zhang∗

Guangzhou University
fanzhang.cs@gmail.com

Xuemin Lin
University of New South Wales

lxue@cse.unsw.edu.au

Wenjie Zhang
University of New South Wales

zhangw@cse.unsw.edu.au

Ying Zhang
University of Technology Sydney

ying.zhang@uts.edu.au

ABSTRACT

The stability of a social network has been widely studied as
an important indicator for both the network holders and the
participants. Existing works on reinforcing networks focus
on a local view, e.g., the anchored 𝑘-core problem aims to en-
large the size of the 𝑘-core with a fixed input 𝑘 . Nevertheless,
it is more promising to reinforce a social network in a global
manner: considering the engagement of every user (vertex)
in the network. Since the coreness of a user has been vali-
dated as the “best practice” for capturing user engagement,
we propose and study the anchored coreness problem in this
paper: anchoring a small number of vertices to maximize
the coreness gain (the total increment of coreness) of all the
vertices in the network. We prove the problem is NP-hard
and show it is more challenging than the existing local-view
problems. An efficient heuristic algorithm is proposed with
novel techniques on pruning search space and reusing the
intermediate results. Extensive experiments on real-life data
demonstrate that our model is effective for reinforcing social
networks and our algorithm is efficient.

KEYWORDS

Social network, User engagement, Core decomposition

∗Qingyuan Linghu and Fan Zhang are the joint first authors. Fan Zhang is

the corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389744

ACM Reference Format:

Qingyuan Linghu, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Ying
Zhang. 2020. Global Reinforcement of Social Networks: The An-
chored Coreness Problem. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data (SIGMOD’20), June

14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3318464.3389744

1 INTRODUCTION

The leave of users in a social network may cause nega-
tive influence to the engagement level of their neighbors
(e.g., friends) in this network, and thus these neighbors may
choose to leave [31]. The continuous departure of users may
lead to the leave of users with many neighbors and signifi-
cantly bring down overall user engagement (stability) of a
network. For instance, Friendster was a popular social net-
work which had over 115 million users, while it is suspended
due to contagious leave of users [21, 38].

Assume that each vertex 𝑣 incurs an (integer) cost of 𝑘 > 0
to remain engaged and obtains a benefit of 1 from each
neighbor of 𝑣 who is engaged, the natural equilibrium of this
model corresponds to the 𝑘-core of the social network [5].
The𝑘-core is defined as themaximal subgraph inwhich every
vertex has at least𝑘 neighbors in the subgraph [32, 36]. Given
a graph, the 𝑘-core can be computed by iteratively removing
every vertex with degree less than 𝑘 . Every vertex in the
graph has a unique coreness value, that is, the largest 𝑘 s.t.
the 𝑘-core contains the vertex. The model of 𝑘-core is often
used in the study of network stability (engagement) as it well
captures the dynamic of user engagement, e.g., [31, 37, 41].

As the size of 𝑘-core is a feasible indicator of network sta-
bility, Bhawalkar and Kleinburg et al. proposed the anchored
k-core (AK) problem [5, 6]: given a graph𝐺 , an integer 𝑘 and
a budget 𝑏, anchoring a set of 𝑏 vertices in the graph s.t. the
number of vertices in the 𝑘-core is maximized. The degree
(the number of neighbors) of an anchored vertex is consid-
ered as positive infinity, namely, an anchored vertex will stay
in the 𝑘-core regardless of its original degree. It is promising
to reinforce a network by giving incentives to some users

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2211

(e.g., anchored vertices) such that they will keep engaged in
the network and support the engagement of other users [6].
The anchored 𝑘-core problem has been further studied on
different aspects, e.g., the theoretical side [14, 15], the experi-
mental evaluation [21, 44] and the efficient solutions [40, 45].

Nevertheless, the anchored 𝑘-core (AK) problem is essen-
tially to reinforce a network in a “local" manner: it focuses on
enlarging the size of the 𝑘-core with a particular 𝑘 value. As
proved in [45], given an integer 𝑘 , the AK problem can only
increase the corenesses of a partial set of vertices, e.g., the
vertices with coreness 𝑘 −1. Besides, for the AK problem, the
valid vertices for anchoring are from a small set of vertices,
and the anchoring of other vertices cannot enlarge the size
of 𝑘-core [45]. Moreover, it is very hard to determine a good
input value of 𝑘 for the AK problem.

10

100

1000

1 6 11 16 31 36 41 46 5121 26

Figure 1: Check-in Number v.s. Coreness Value

As analyzed in the study of Friendster, its collapse may
start from the leave of users in either the center cores (𝑘-
cores with large 𝑘 values) [37] or the outside of the center
cores [21], i.e, the collapse may happen in a “global" way.
As shown in [31], the coreness of a user is the “best practice”
for measuring the engagement level of the user in a network.
We further examine the matching of coreness and user en-
gagement in real-life social networks. For each integer 𝑘 , we
count the average number of user check-ins (as the ground-
truth user engagement) for the users with coreness equals
to 𝑘 . As shown in Figure 1, the coreness value and check-in
number in Gowalla [27] are in a positive correlation, except
for the disturbance on the center cores due to the small sam-
ple. Thus, it is more promising to reinforce a network in
a “global" manner: considering the coreness increment of
every user. Motivated by the above facts, we propose and
study the anchored coreness (AC) problem: given a graph𝐺
and a budget 𝑏, anchor a set of 𝑏 vertices in the graph s.t.
the coreness gain (the total increment of coreness) of all the
vertices is maximized. The followers of an anchor 𝑥 are the
vertices with coreness increased after anchoring 𝑥 , except 𝑥 .

Table 1: Anchored 𝑘-Core v.s. Anchored Coreness in Fig. 2

Problem Input Anchor Followers Coreness

AK
𝑘 = 3, 𝑏 = 1 𝑢1 𝑢2, 𝑢3, 𝑢4 from 2 to 3
𝑘 = 4, 𝑏 = 1 𝑢5 𝑢6, 𝑢7, 𝑢8 from 3 to 4

AC 𝑏 = 1 𝑢2
𝑢3, 𝑢4 from 2 to 3
𝑢7, 𝑢8 from 3 to 4

Example 1.1. Figure 2 shows a graph 𝐺 of 13 vertices and
their connections. The coreness of each vertex is marked

2

3

3

1

2

2

2

3

4

4
4

4

4

Figure 2: A Toy Example

near the vertex, e.g., the coreness of 𝑢5 is 2. The 𝑘-core of 𝐺
is induced by all the vertices with coreness of at least 𝑘 , e.g.,
the 3-core is induced by 𝑢6, 𝑢7, ..., 𝑢12, and 𝑢13.
Table 1 records the results of anchored 𝑘-core (AK) prob-

lem and anchored coreness (AC) problem under different
inputs. For instance, when 𝑘 = 3 and 𝑏 = 1, the AK problem
anchors 𝑢1 which will increase the coreness of 𝑢2, 𝑢3 and 𝑢4
from 2 to 3. We can find that the anchoring of 𝑢2 according
to AC has a larger coreness gain (i.e., 4) compared to that
of AK (i.e., 3). Besides, the AC problem improves the vertex
coreness from the vertices with different corenesses, while
the AK model focuses on a partial set, e.g., the vertices with
coreness 𝑘−1. Thus, AK and AC are inherently different, and
the solutions for AK cannot be used to solve the AC problem.

Challenges. To the best of our knowledge, we are the first
to study the anchored coreness (AC) problem. We prove the
AC problem is NP-hard. Although the coreness gain can be
computed in 𝑂 (𝑚) time by core decomposition [4], a ba-
sic exact solution has to exhaustively compute the coreness
gain on every possible anchor set with size 𝑏, which is cost-
prohibitive. We also prove the problem is APX-hard and the
coreness gain function is non-submodular. Although it is un-
promising to estimate or predict the coreness gain of multiple
anchors, we observe that the change of coreness is relatively
restricted for one anchored vertex. Thus, we adopt a greedy
heuristic to find the best anchor in each iteration, while the
candidate anchor set is still very large and a straightforward
implementation is still very time consuming.

An efficient algorithm is proposed for the anchored 𝑘-core
(AK) problem in [45], while the AK model only considers the
coreness gain from 𝑘−1 to 𝑘 by maximizing the size of 𝑘-core
with a fixed 𝑘 . Since the AC problem aims to maximize the
coreness gain from all the vertices with different corenesses,
the solution in [45] cannot be applied to solve the problem.
Besides, the search space of the AC problem is much larger
than the AK problem because every vertex in the graph is
possible to be a valid anchor to improve the vertex core-
ness, while only a partial set of vertices related to 𝑘-core can
be valid anchors to enlarge the size of 𝑘-core for AK prob-
lem. Therefore, the AC problem is even more challenging
than the AK problem. It is critical to design strong strategies
to prune unpromising candidate anchors and speed up the
computation of coreness gain.

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2212

Our Solution.Due to the huge number of candidate anchors,
a well-designed reusing strategy is necessary for a greedy
heuristic which aims to exhaustively reuse the intermediate
results from the executed iterations. To do so, we apply the
tree structure T of core decomposition [4] to divide all the
vertices into tree nodes, where each tree node is an atomic
unit for deciding whether the computed results associated
with the node can be reused. Specifically, with the anchoring
of one vertex 𝑥 , we first prove the coreness of a vertex (except
the anchor) can increase by at most 1. Then, the followers
of 𝑥 can be divided into different tree nodes of T . In each
iteration, the number of 𝑥 ’s followers is the coreness gain of
anchoring 𝑥 . Thus, if 𝑥 was anchored and the follower set of
each vertex was computed (or reused) in the last iteration,
for each candidate anchor 𝑢 in current iteration, we can
efficiently decide whether the partial set of 𝑢’s followers
associated with a tree node keeps the same and can be reused.
The proposed computation of coreness gain is adaptive

to the reusing mechanism. If a follower unit (in a tree node)
cannot be reused, the follower computation is conducted
locally, i.e., within the tree node. Besides, we utilize the graph
degeneracy ordering (the vertex deletion sequence of core
decomposition) to largely speed up the follower computation.
We also propose an upper bound of coreness gain to further
prune candidate anchors, and well match the technique with
the reusing mechanism to improve efficiency. Combining all
these techniques, our final GAC algorithm is proposed to
efficiently identify the best anchor in each iteration.

Contributions. Our principal contributions are as follows.

• Motivated by many existing studies, we propose and
explore the anchored coreness problem to reinforce
social networks which considers the engagement of
every user. We prove the problem is NP-hard and APX-
hard. The problem is shown to be more challenging
than the anchored 𝑘-core problem which focuses on
the engagement of partial users.

• Based on the tree of core decomposition, we introduce
a novel mechanism to reuse the intermediate results
from the executed iterations. It exhaustively reuses
the computed result in each unit represented by a tree
node. We also propose the computation of coreness
gain which is largely faster than core decomposition.
An upper bound of coreness gain is proposed to further
prune unpromising candidates. All the techniques are
well equipped in the reusing mechanism.

• Comprehensive experiments are conducted on 8 real-
life datasets to show that (1) the proposed GAC algo-
rithm is more effective than the other heuristics on
improving vertex coreness; (2) the coreness gain from
the ACmodel is much larger than that of the AKmodel;
(3) the coreness values of the anchors and followers

Table 2: Summary of Notations

Notation Definition

𝐺 an unweighted and undirected graph

𝑉 (𝐺); 𝐸 (𝐺) the vertex set of 𝐺 ; the edge set of 𝐺
𝑛;𝑚 |𝑉 (𝐺) |; |𝐸 (𝐺) | (assume𝑚 > 𝑛)
𝑢, 𝑣 , 𝑥 a vertex in 𝐺
𝐸 (𝑢) the set of edges incident to 𝑢
𝑁 (𝑢,𝐺) the set of neighbors of 𝑢 in 𝐺
𝐶𝑘 (𝐺) the 𝑘-core of 𝐺
𝑐 (𝑢,𝐺) the coreness of 𝑢 in 𝐺
𝐴 the set of anchor vertices

𝑑𝑒𝑔(𝑢,𝐺) |𝑁 (𝑢,𝐺) | if 𝑢 ∉ 𝐴, or +∞ if 𝑢 ∈ 𝐴

𝑐𝐴 (𝑢,𝐺) the coreness of 𝑢 in 𝐺 with 𝐴 anchored

𝑏 the budget for the number of anchors

𝑔(𝐴,𝐺) the coreness gain of anchoring 𝐴 in 𝐺
T the core component tree of 𝐺
F (𝑥,𝐺) the set of followers of 𝑥 in 𝐺
𝐻 𝑖
𝑘
(𝐺) 𝑖-layer within the 𝑘-shell of 𝐺

P(𝑢) the shell-layer pair of a vertex 𝑢. If P(𝑢) =
(𝑘, 𝑖), 𝑢 is in the 𝑖-th layer of the 𝑘-shell,
i.e., 𝑢 ∈ 𝐻 𝑖

𝑘
(𝐺).

𝑥 � 𝑢 an upstair path from 𝑥 to 𝑢
𝐶𝐹 (𝑥) the candidate followers set of 𝑥
𝑑+(𝑥) the degree bound of 𝑥
𝑈𝐵𝜎 (𝑥) the upper bound of |F (𝑥) |

are more diverse in the AC model, compared with the
AK model; and (4) our proposed techniques largely
improve the algorithm efficiency.

2 PRELIMINARIES

We consider an unweighted and undirected graph𝐺 = (𝑉 , 𝐸),
where 𝑉 (𝐺) (resp. 𝐸 (𝐺)) represents the set of vertices (resp.
edges) in 𝐺 . 𝑁 (𝑢,𝐺) is the set of adjacent vertices of 𝑢 in
𝐺 , which is also called the neighbor set of 𝑢 in 𝐺 . Table 2
summarizes some notations used throughout this paper. Note
that we may omit the input graph in the notations when the
context is clear, e.g., using 𝑑𝑒𝑔(𝑢) instead of 𝑑𝑒𝑔(𝑢,𝐺).

Definition 2.1. 𝑘-core [32, 36]. Given a graph 𝐺 , a sub-
graph 𝑆 is the 𝑘-core of𝐺 , denoted by𝐶𝑘 (𝐺), if (𝑖) 𝑆 satisfies
degree constraint, i.e., 𝑑𝑒𝑔(𝑢, 𝑆) ≥ 𝑘 for each 𝑢 ∈ 𝑉 (𝑆); and
(𝑖𝑖) 𝑆 is maximal, i.e., any supergraph 𝑆 ′ ⊃ 𝑆 is not a 𝑘-core.

If 𝑘 ≥ 𝑘 ′, the 𝑘-core is always a subgraph of 𝑘 ′-core, i.e.,
𝐶𝑘 (𝐺) ⊆ 𝐶𝑘′ (𝐺). Each vertex in 𝐺 has a unique coreness.

Definition 2.2. coreness. Given a graph𝐺 , the coreness of
a vertex 𝑢 ∈ 𝑉 (𝐺), denoted by 𝑐 (𝑢,𝐺), is the largest 𝑘 such
that 𝐶𝑘 (𝐺) contains 𝑢, i.e., 𝑐 (𝑢,𝐺) =𝑚𝑎𝑥{𝑘 | 𝑢 ∈ 𝐶𝑘 (𝐺)}.

Definition 2.3. core decomposition. Given a graph 𝐺 ,
core decomposition of𝐺 is to compute the coreness of every
vertex in 𝑉 (𝐺).

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2213

Algorithm 1: CoreDecomp(𝐺 , 𝐴)

Input : a graph 𝐺 , an anchor set 𝐴
Output : 𝑐𝐴 (𝑢,𝐺) for each 𝑢 ∈ 𝑉 (𝐺)
𝑘 ← 1;1

while exist non-anchor vertices in 𝐺 do2

while ∃𝑢 ∈ 𝑉 (𝐺) with 𝑑𝑒𝑔(𝑢) < 𝑘 do3

𝑑𝑒𝑔(𝑣) ← 𝑑𝑒𝑔(𝑣) − 1 for each 𝑣 ∈ 𝑁 (𝑢,𝐺);4

remove 𝑢 and its adjacent edges from 𝐺 ;5

𝑐𝐴 (𝑢,𝐺) ← 𝑘 − 1;6

𝑘 ← 𝑘 + 1;7

return 𝑐𝐴 (𝑢,𝐺) for each 𝑢 ∈ 𝑉 (𝐺)8

In this paper, once a set 𝐴 of vertices in the graph 𝐺 is
anchored, the degrees of the vertices in 𝐴 are regarded as
positive infinity, i.e., for each 𝑥 ∈ 𝐴, 𝑑𝑒𝑔(𝑥,𝐺) = +∞. Every
anchored vertex is called an anchor or an anchor vertex.
The existence of anchor vertices may change the corenesses
of other vertices. We use 𝑐𝐴 (𝑢,𝐺) (resp. 𝑐𝑥 (𝑢,𝐺)) to denote
the coreness of 𝑢 in 𝐺 with the anchor set 𝐴 (resp. vertex 𝑥).
The computation of core decomposition with anchors is

the same as that without anchors [4], in which we recursively
delete the vertex with the smallest degree in the graph𝐺 . The
time complexity is still 𝑂 (𝑚), because the only difference is
that we do not delete the anchors in the core decomposition.
The pseudo-code is shown in Algorithm 1.

Definition 2.4. coreness gain. Given a graph 𝐺 and an
anchor set𝐴, the coreness gain of𝐺 regarding𝐴, denoted by
𝑔(𝐴,𝐺), is the total increment of coreness for every vertex
in 𝑉 (𝐺) \𝐴, i.e., 𝑔(𝐴,𝐺) =

∑
𝑢∈𝑉 (𝐺)\𝐴 (𝑐

𝐴 (𝑢) − 𝑐 (𝑢)).

Problem Statement. Given a graph 𝐺 and a budget 𝑏, the
anchored coreness problem aims to find a set 𝐴 of 𝑏 vertices
in 𝐺 such that the coreness gain regarding 𝐴 is maximized,
i.e., 𝑔(𝐴,𝐺) is maximized.

3 PROBLEM ANALYSIS

Theorem 3.1. Given a graph𝐺 , the anchored coreness prob-

lem is NP-hard.

Proof. We reduce the maximum coverage (MC) prob-
lem [24], which is NP-hard, to the anchored coreness prob-
lem. Given a number 𝑏 and a collection of sets where each
set contains some elements, the MC problem is to find at
most 𝑏 sets to cover the largest number of elements.

Consider an arbitrary instance𝐻 of MCwith 𝑐 sets𝑇1, ..,𝑇𝑐
and 𝑑 elements {𝑒1, .., 𝑒𝑑 } = ∪1≤𝑖≤𝑐𝑇𝑖 , we construct a corre-
sponding instance of the anchored coreness problem on a
graph 𝐺 . W.l.o.g., we assume 𝑏 < 𝑐 < 𝑑 . Figure 3 shows a
construction example from 3 sets and 4 elements.

The graph𝐺 contains three parts:𝑀 , 𝑁 , and some cliques.
The part 𝑀 contains 𝑐 vertices, i.e., 𝑀 = ∪1≤𝑖≤𝑐𝑤𝑖 where
each𝑤𝑖 corresponds to the set 𝑇𝑖 in the MC instance 𝐻 . The

: { , } : { , , } : { , } = 3= 4
(+2)-clique

Figure 3: Construction Example for Hardness Proofs

part 𝑁 contains 𝑑 vertices, i.e., 𝑁 = ∪1≤𝑖≤𝑑𝑣𝑖 where each
𝑣𝑖 corresponds to the element 𝑒𝑖 in 𝐻 . For every 𝑖 and 𝑗 , if
𝑒𝑖 ∈ 𝑇𝑗 in 𝐻 , we add an edge between 𝑣𝑖 and𝑤 𝑗 . For each 𝑣𝑖
in 𝑁 , we create 𝑑 cliques where each clique is a (𝑑 +2)-clique
(a clique of size 𝑑 + 2), and connect 𝑣𝑖 to one vertex of each
clique. The construction of 𝐺 is completed.

Assume each element in𝐻 is contained by at least 1 set, for
each 𝑤𝑖 ∈ 𝑀 and 𝑣 𝑗 ∈ (𝑉 (𝐺) \𝑀), we have 𝑑𝑒𝑔(𝑤𝑖) ≤ 𝑑 <
𝑑𝑒𝑔(𝑣 𝑗). Recall that the core decomposition of 𝐺 iteratively
deletes the vertices with degree less than 𝑘 and assigns the
coreness of 𝑘 − 1 to the deleted vertices in current iteration,
from 𝑘 = 1, 2, ... to 𝑘 = 𝑘𝑚𝑎𝑥 . Thus, the coreness of each𝑤𝑖 ∈

𝑀 is 𝑑𝑒𝑔(𝑤𝑖), as𝑤𝑖 can only be deleted when 𝑘 = 𝑑𝑒𝑔(𝑤𝑖)+1.
The coreness of each 𝑣 𝑗 ∈ 𝑁 is 𝑑 , as 𝑣 𝑗 is not deleted when
𝑘 = 𝑑 (due to the 𝑑 cliques), and 𝑣 𝑗 is deleted when 𝑘 = 𝑑 + 1
(due to the deletion of every𝑤𝑖 ∈ 𝑀). Similarly, the coreness
of every vertex in a (𝑑 + 2)-clique is 𝑑 + 1.
For each 𝑤𝑖 ∈ 𝑀 , even if all the neighbors of 𝑤𝑖 are an-

chored, the coreness of 𝑤𝑖 keeps same, as 𝑤𝑖 will still be
deleted when 𝑘 = 𝑑𝑒𝑔(𝑤𝑖) + 1. As we assume 𝑏 < 𝑐 < 𝑑 , for
the anchoring of any 𝑏 vertices, each non-anchor vertex 𝑢 in
a (𝑑 + 2)-clique will still be deleted when 𝑘 = 𝑑 + 2 (coreness
of𝑢 keeps same), and thus the anchoring of multiple anchors
cannot increase the coreness of any non-anchor 𝑣𝑖 ∈ 𝑁 to
larger than 𝑑 + 1. So, for each non-anchor 𝑣𝑖 ∈ 𝑁 , the core-
ness of 𝑣𝑖 increases by 1 (from 𝑑 to 𝑑 + 1) iff at least one
𝑣𝑖 ’s neighbor in 𝑀 is anchored. The optimal anchor set 𝐴
for anchored coreness problem corresponds to the optimal
set collection 𝐶 for MC problem, where each vertex𝑤𝑖 ∈ 𝐴
corresponds to the set 𝑇𝑖 ∈ 𝐶 . If there is a polynomial time
solution for the anchored coreness problem, the MC problem
will be solved in polynomial time. �

Then, we prove that there is no PTAS for the anchored
coreness problem and thus it is APX-hard unless P=NP.

Theorem 3.2. For any 𝜖 > 0, the anchored coreness problem
cannot be approximated in polynomial time within a ratio of

(1 − 1/𝑒 + 𝜖), unless P=NP.

Proof. We use the reduction from the MC problem same
to the proof of Theorem 3.1. For any 𝜖 > 0, the MC problem
cannot be approximated in polynomial time within a ratio
of (1 − 1/𝑒 + 𝜖), unless 𝑃 = 𝑁𝑃 [20]. We have an anchor
set 𝐴 for anchored coreness problem on 𝐺 corresponding

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2214

to a set collection 𝐶 for MC problem, where each 𝑤𝑖 ∈ 𝐴
corresponds to 𝑇𝑖 ∈ 𝐶 . Let 𝛾 > 1 − 1/𝑒 , if there is a solution
with 𝛾-approximation on the coreness gain for the anchored
coreness problem, there will be a 𝛾-approximate solution on
optimal element number for the MC problem. �

Besides, the function of coreness gain is not submodular.

Theorem 3.3. The function 𝑔(·) of coreness gain is not sub-

modular.

Proof. For two arbitrary anchor sets 𝐴 and 𝐵, if 𝑔(·) is
submodular, it must hold that 𝑔(𝐴) +𝑔(𝐵) ≥ 𝑔(𝐴∪𝐵) +𝑔(𝐴∩
𝐵). We consider a graph𝐺 where the vertex set𝑉 = ∪1≤𝑖≤6𝑣𝑖 ,
the vertices in ∪2≤𝑖≤5𝑣𝑖 form a 4-clique, 𝑣1 connects to 𝑣2 and
𝑣3, and 𝑣6 connects to 𝑣4 and 𝑣5. If 𝐴 = {𝑣1} and 𝐵 = {𝑣6},
𝑔(𝐴) + 𝑔(𝐵) = 0 < 𝑔(𝐴 ∪ 𝐵) + 𝑔(𝐴 ∩ 𝐵) = 4. �

4 OUR APPROACH

The hardness of the problem motivates us to develop an effi-
cient heuristic algorithm. We adopt a greedy heuristic which
iteratively finds one best anchor in each of the 𝑏 iterations,
i.e., the vertex with the largest coreness gain if anchored. To
find the best anchor in one iteration, we compute the core-
ness gain of every candidate anchor. The time complexity
of this heuristic is 𝑂 (𝑏 · 𝑛 ·𝑚). However, as our latter theo-
rems indicate, for the anchoring of one vertex, the change of
coreness for other vertices is restricted and the computation
cost may be largely reduced. Also, Our experiments on real
graphs find that the coreness gain from this greedy heuris-
tic is much larger than other heuristics. To improve the
efficiency of the greedy algorithm, we aim to significantly
reduce (1) the number of candidate anchors and (2) the time
cost of computing the coreness gain of one anchor.

We firstly review the tree structure of core decomposition,
which can be used to speed up the greedy algorithm (Sec-
tion 4.1), and the theorems of finding the candidate followers
which may increase the coreness due to the anchoring (Sec-
tion 4.2). Based on the tree and the theorems, we propose a
mechanism to reuse the intermediate results across iterations
(Section 4.3), and the algorithm to compute the coreness gain
of one anchor by partially exploring the tree (Section 4.4).
Combining the above with an upper bound technique for
candidate anchors pruning, our final GAC algorithm is pre-
sented (Section 4.5).

4.1 Core Component Tree

Definition 4.1. 𝑘-core component. Given a graph 𝐺 and
the 𝑘-core 𝐶𝑘 (𝐺), a subgraph 𝑆 is a 𝑘-core component if 𝑆 is
a connected component of 𝐶𝑘 (𝐺).

According to the definition of 𝑘-core, for every integer 𝑘 ,
we have disjointness property: every 𝑘-core component is
disjoint from other 𝑘-core components in the same 𝑘-core;

Table 3: Summary of Notations for T

Notation Definition

T [𝑣] the tree node which contains the vertex 𝑣
𝑇𝑁 a tree node

𝑇𝑁 .𝐾 a specific coreness 𝑘 associated with node 𝑇𝑁
𝑇𝑁 .𝑉 the set of vertices in tree node 𝑇𝑁
𝑇𝑁 .𝐼 the smallest vertex id in 𝑇𝑁 .𝑉
𝑇𝑁 .𝑃 the parent tree node of 𝑇𝑁
𝑇𝑁 .𝐶 the child tree node set of 𝑇𝑁
𝐶𝐶 (𝑇𝑁) the (𝑇𝑁 .𝐾)-core component containing 𝑇𝑁 .𝑉
𝑡𝑐𝑎[𝑢] [𝑖𝑑] the set of𝑢’s neighbors in𝑇𝑁 .𝑉 with𝑇𝑁 .𝐼 = 𝑖𝑑
𝑠𝑛(𝑢) the tree node id set where 𝑖𝑑 ∈ 𝑠𝑛(𝑢) iff ∃𝑣 ∈

𝑁 (𝑢) having 𝑐 (𝑣) ≥ 𝑐 (𝑢) & T [𝑣] .𝐼 = 𝑖𝑑
𝑝𝑛(𝑢) the tree node id set where 𝑖𝑑 ∈ 𝑝𝑛(𝑢) iff ∃𝑣 ∈

𝑁 (𝑢) having 𝑐 (𝑣) < 𝑐 (𝑢) & T [𝑣] .𝐼 = 𝑖𝑑
𝐹 [𝑥] [𝑖𝑑] the follower set of 𝑥 at tree node 𝑖𝑑 , i.e., 𝑣 ∈

𝐹 [𝑥] [𝑖𝑑] iff 𝑣 ∈ F (𝑥) & T [𝑣] .𝐼 = 𝑖𝑑

Algorithm 2: BuildCCT(𝐺 , 𝑃𝑁)

Input : 𝐺 : a connected graph, 𝑃𝑁 : a tree node
Output : T : the core component tree of 𝐺
𝑘𝑚𝑖𝑛 ← the smallest coreness from the vertices in 𝑉 (𝐺);1

𝑇𝑁 ← an empty tree node ;2

𝑇𝑁 .𝐾 := 𝑘𝑚𝑖𝑛 ; 𝑇𝑁 .𝑃 := 𝑃𝑁 ; 𝑃𝑁 .𝐶 := 𝑃𝑁 .𝐶 ∪𝑇𝑁 ;3

for each unassigned 𝑢 ∈ 𝑉 (𝐺) with 𝑐 (𝑢) = 𝑘𝑚𝑖𝑛 do4

𝑢 is set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ;5

𝑇𝑁 .𝑉 := 𝑇𝑁 .𝑉 ∪ {𝑢};6

T [𝑢] := 𝑇𝑁 ;7

𝑇𝑁 .𝐼 := the smallest vertex id from the vertices in 𝑇𝑁 .𝑉 ;8

for each unassigned 𝑢 ∈ 𝑉 (𝐺) in ascending coreness order do9

𝐺 ′ ← the 𝑐 (𝑢)-core component containing 𝑢;10

T ← T∪ BuildCCT(𝐺 ′, 𝑇𝑁);11

return T12

and containment property: a 𝑘-core component is contained
by exactly one (𝑘-1)-core component.

Tree Structure (T). Given a graph 𝐺 , the core component

tree of𝐺 , denoted by T , organizes𝑉 (𝐺) based on the 𝑘-core
components with different 𝑘 . Specifically, T contains all the
vertices in 𝑉 (𝐺) and each vertex is exclusively contained
in one tree node. Given a vertex 𝑣 , T [𝑣] is the tree node
containing 𝑣 .
We then clearly introduce the tree structure. Let 𝑇𝑁 de-

note a tree node.𝑇𝑁 .𝐾 is the coreness value associated with
𝑇𝑁 . The vertices in the subtree rooted at 𝑇𝑁 induce a sub-
graph that is a (𝑇𝑁 .𝐾)-core component, denoted by𝐶𝐶 (𝑇𝑁).
We use 𝑇𝑁 .𝑉 to denote the set of vertices in the tree node
𝑇𝑁 and they are the vertices with coreness equal to 𝑇𝑁 .𝐾 .
We assume each vertex in 𝑉 (𝐺) has its unique identifier, i.e.,
id. Let 𝑇𝑁 .𝐼 denote the smallest vertex id from the vertices
in 𝑇𝑁 .𝑉 . We use 𝑇𝑁 .𝑃 to denote the only parent tree node

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2215

of 𝑇𝑁 , and 𝑇𝑁 .𝐶 to denote the child tree node set of 𝑇𝑁 .
The notations for T are summarized in Table 3.

Algorithm 2 illustrates the structure of a core component
tree. It can be implemented in 𝑂 (𝑚) time as shown in [32].
If 𝐺 is not connected, we build a tree for each connected
component of 𝐺 . Given a connected graph 𝐺 , we execute
BuildCCT(𝐺 , ∅) to construct the tree. Initially, every vertex
in 𝑉 (𝐺) is unassigned. In each iteration, the algorithm con-
structs a tree node 𝑇𝑁 and sets up its domains, e.g., 𝑇𝑁 .𝐾
(Line 2-3). Let𝑘𝑚𝑖𝑛 be the smallest coreness from𝑉 (𝐺), every
unassigned vertex with coreness 𝑘𝑚𝑖𝑛 is pushed into 𝑇𝑁 .𝑉
and set to be assigned (Line 4-7). Note that the assigned or
unassigned status of a vertex is global. The construction
follows a recursive DFS resulting in the expected parent-
child relation between two nodes (𝑃𝑁 and𝑇𝑁) based on the
containment relation of 𝑘-core components (Line 9-11).
Some notations for the tree are defined as follows.

Definition 4.2. tree node classified adjacency (𝑡𝑐𝑎). For
a given graph𝐺 , we scan the adjacent neighbors of each ver-
tex and use the structure 𝑡𝑐𝑎 to organize them. We partition
the neighbors of a vertex according to the tree nodes they
belong to, i.e., for a vertex 𝑢, 𝑡𝑐𝑎[𝑢] [𝑖𝑑] is the set of 𝑢’s
neighbors in the tree node 𝑇𝑁 with 𝑇𝑁 .𝐼 = 𝑖𝑑 .

Definition 4.3. subtree adjacent nodes set (𝑠𝑛) Given a
vertex 𝑢 in a graph 𝐺 , the subtree adjacent nodes set of 𝑢,
denoted by 𝑠𝑛(𝑢) is the id set of adjacent tree nodes with
the associated coreness not less than 𝑐 (𝑢), i.e., 𝑖𝑑 ∈ 𝑠𝑛(𝑢) iff
∃𝑣 ∈ 𝑁 (𝑢,𝐺) having 𝑐 (𝑣) ≥ 𝑐 (𝑢) & T [𝑣] .𝐼 = 𝑖𝑑 .

Definition 4.4. parent adjacent nodes set (𝑝𝑛) Given a
vertex 𝑢 in a graph 𝐺 , the parent adjacent nodes set of 𝑢,
denoted by 𝑝𝑛(𝑢) is the id set of adjacent tree nodes with
the associated coreness less than 𝑐 (𝑢), i.e., 𝑖𝑑 ∈ 𝑝𝑛(𝑢) iff
∃𝑣 ∈ 𝑁 (𝑢,𝐺) having 𝑐 (𝑣) < 𝑐 (𝑢) & T [𝑣] .𝐼 = 𝑖𝑑 .

K = 1
I = 13 42

1

6 7
4-core5-clique

8
K = 2
I = 2

K = 3
I = 5

K = 3
I = 8

… …

5

Figure 4: Core Component Tree

Example 4.5. In Figure 4, we have a graph𝐺 at left and its
corresponding T at right. Each solid-line box of the right is
a tree node which corresponds to a dotted box of the left. We
have T [2] = 𝑇𝑁2, 𝑇𝑁2.𝐾 = 2 and 𝑇𝑁2 .𝐼 = 2, T [7] = 𝑇𝑁3,
𝑇𝑁3 .𝐾 = 3 and 𝑇𝑁3.𝐼 = 5. For 𝑡𝑐𝑎, 𝑠𝑛 and 𝑝𝑛, for some

instances, 𝑡𝑐𝑎[2] [5] = {7}, 𝑡𝑐𝑎[2] [2] = {3}, 𝑡𝑐𝑎[7] [2] =
{2} and 𝑡𝑐𝑎[7] [5] = {5}; 𝑠𝑛(2) = {2, 5} and 𝑝𝑛(7) = {2}.

Note that, 𝑡𝑐𝑎, 𝑠𝑛 and 𝑝𝑛 are the structures associated with
T and can be retrieved along with the building of T .

4.2 Restriction of Candidate Followers

If a vertex 𝑥 is anchored, the set of candidate vertices which
may increase their corenesses is restricted.

Theorem 4.6. If a vertex 𝑥 is anchored in𝐺 , any non-anchor

vertex 𝑢 ∈ 𝑉 (𝐺) can increase its coreness by at most 1.

Proof. In the rest of the paper, please find the proofs in
Section 8 for all the theorems. �

Tree Node Classified Follower Set (𝐹). Every non-anchor
vertex with coreness increased by anchoring 𝑥 is named as
a follower of 𝑥 . The follower set of 𝑥 in 𝐺 is denoted by
F (𝑥,𝐺) that contains all its followers. According to Theo-
rem 4.6,𝑔({𝑥}) = |F (𝑥) |. We define 𝐹 to divide the followers
of an anchor based on tree node classified adjacency. Specifi-
cally, for 𝑥 ∈ 𝑉 (𝐺), 𝑣 ∈ 𝐹 [𝑥] [𝑖𝑑] iff 𝑣 ∈ F (𝑥) & T [𝑣] .𝐼 = 𝑖𝑑 .

A fast method to compute the followers will be introduced
in Section 4.4. Note that, when we record the follower sets,
we do not store the specific followers of a vertex 𝑥 but only
store the number of followers of 𝑥 regarding each adjacent
tree node, so the space cost of 𝐹 is O(𝑚). The candidate
followers of a vertex 𝑥 can be extracted as follows.
Theorem 4.7. If a vertex 𝑥 is anchored in the graph 𝐺 , we

have F (𝑥) ⊂
⋃
𝑖𝑑 ∈𝑠𝑛 (𝑥) T [𝑖𝑑] .𝑉 .

4.3 Reuse of Intermediate Results

After one iteration of our greedy heuristic where we choose
to anchor 𝑥 . For each vertex 𝑢 ≠ 𝑥 , suppose we have had the
follower set 𝐹 [𝑢] [𝑖𝑑] for each tree node 𝑖𝑑 ∈ 𝑠𝑛(𝑢) before
anchoring 𝑥 . To reuse the follower results after anchoring 𝑥 ,
we apply Algorithm 3 to decide, for every vertex 𝑢, whether
the follower set of 𝑢 on each tree node keeps the same in the
next iteration.
According to Theorem 4.7, we get the affected vertex set

𝑉𝑥 :=
⋃
𝑖𝑑∈𝑠𝑛 (𝑥) T [𝑖𝑑] .𝑉 (Line 1), and initialize the reusable

node set 𝑟𝑛(·) for each vertex (Line 2). We remove the tree
node ids from 𝑟𝑛(·) where the followers cannot be reused in
the next iteration (Line 3-6). Thenwe run core decomposition
on the subgraph 𝐶𝐶 (T [𝑥]) with 𝑥 anchored (Line 7-8) and
update the subtree rooted at 𝑥 (Line 9-11). The update of tree
structure finds some other vertices which may be affected
w.r.t 𝑥 (Line 12-13). Similar to Line 3-6, we remove the tree
node ids from 𝑟𝑛(·) where the followers cannot be reused by
above affected vertices (Line 13-16). In the implementation,
for a vertex 𝑢, we can easily avoid duplicate removals in
𝑟𝑛(𝑢) triggered by 𝑢’s neighbors using tree node tags.

Algorithm 1 (Line 8) and Algorithm 2 (Line 9) both have
O(𝑚) time complexity. In Line 3-6 and Line 13-16, each edge

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2216

Algorithm 3: ResultReuse(𝑥 , 𝐺 , T)

Input : 𝑥 : the anchor vertex, 𝐺 : a social network, T : the
core component tree of 𝐺 ,

Output : the tree node set 𝑟𝑛(𝑢) for each vertex 𝑢 ∈ 𝑉 (𝐺),
where 𝐹 [𝑢] [𝑖𝑑] can be reused for each 𝑖𝑑 ∈ 𝑟𝑛(𝑢)

𝑉𝑥 :=
⋃
𝑖𝑑∈𝑠𝑛 (𝑥) T [𝑖𝑑] .𝑉 ;1

𝑟𝑛(𝑢) := 𝑠𝑛(𝑢) for each 𝑢 ∈ 𝑉 (𝐺);2

for each 𝑣 ∈ 𝑉𝑥 do3

𝑖𝑑 := T [𝑣] .𝐼 ; 𝑟𝑛(𝑣) := 𝑟𝑛(𝑣) \ {𝑖𝑑};4

for each 𝑖𝑑 ′ ∈ 𝑝𝑛(𝑣) and each 𝑢 ∈ 𝑡𝑐𝑎[𝑣] [𝑖𝑑 ′] do5

𝑟𝑛(𝑢) := 𝑟𝑛(𝑢) \ {𝑖𝑑};6

𝐺 ′ ← 𝐶𝐶 (T [𝑥]); 𝑃 ′ ← T [𝑥] .𝑃 ;7

CoreDecomp(𝐺 ′, {𝑥});8

T∗ ← BuildCCT(𝐺 ′, 𝑃 ′);9

T ′ ← T with the subtree rooted at 𝑃 ′ replaced by T∗;10

Get 𝑡𝑐𝑎′, 𝑠𝑛′ and 𝑝𝑛′ from T ′;11

𝑉 ′
𝑥 :=

⋃
𝑣∈𝑉𝑥 T

′[𝑣] .𝑉 ;12

for each 𝑣 ∈ 𝑉 ′
𝑥 \𝑉𝑥 do13

𝑖𝑑 := T [𝑣] .𝐼 ; 𝑟𝑛(𝑣) := 𝑟𝑛(𝑣) \ {𝑖𝑑};14

for each 𝑖𝑑 ′ ∈ 𝑝𝑛′(𝑣) and each 𝑢 ∈ 𝑡𝑐𝑎′[𝑣] [𝑖𝑑 ′] do15

𝑟𝑛(𝑢) := 𝑟𝑛(𝑢) \ {𝑖𝑑};16

return 𝑟𝑛(𝑢) for every vertex 𝑢 ∈ 𝑉 (𝐺)17

is accessed at most one time, respectively. So, the time com-
plexity of Algorithm 3 is O(𝑚).

Lemma 4.8. After the anchoring of vertex 𝑥 and the execu-

tion of Algorithm 3, for every non-anchor vertex 𝑢 ∈ 𝑉 (𝐺)
and each 𝑖𝑑 ∈ 𝑟𝑛(𝑢), we have 1) 𝑖𝑑 ∈ 𝑠𝑛′(𝑢), 2) T ′[𝑖𝑑] .𝐾 =
T [𝑖𝑑] .𝐾 and 3) T ′[𝑖𝑑] .𝑉 = T [𝑖𝑑] .𝑉 .

Theorem 4.9. After the anchoring of vertex 𝑥 and the ex-

ecution of Algorithm 3, let 𝐺𝑥 denote the graph with 𝑥 an-

chored, considering a non-anchor vertex 𝑢 ∈ 𝑉 (𝐺𝑥), for each

𝑖𝑑 ∈ 𝑟𝑛(𝑢) and each 𝑣 ∈ T ′[𝑖𝑑] .𝑉 , we have 𝑣 ∈ F (𝑢,𝐺𝑥) iff

𝑣 ∈ 𝐹 [𝑢] [𝑖𝑑].

After anchoring 𝑥 , the search space of followers for a non-
anchor vertex 𝑢 is within

⋃
𝑖𝑑 ∈𝑠𝑛′ (𝑢) T

′[𝑖𝑑] .𝑉 according to
Theorem 4.7. By executing Algorithm 3, we get the 𝑟𝑛(𝑢)
so that a subset of search space

⋃
𝑖𝑑 ∈𝑟𝑛 (𝑢) T

′[𝑖𝑑] .𝑉 does not
need to be recomputed, as proven by Theorem 4.9. Essentially,
we reduce the search space of follower computation from
⋃
𝑖𝑑∈𝑠𝑛′ (𝑢) T

′[𝑖𝑑] .𝑉 to
⋃
𝑖𝑑 ∈𝑠𝑛′ (𝑢)\𝑟𝑛 (𝑢) T

′[𝑖𝑑] .𝑉 .

Example 4.10. In Figure 4, we can know that, anchoring
vertex 1 can make 5, 6 and 7 the followers, which means
𝐹 [1] [5] = {5, 6, 7}. And anchoring vertex 2 can make 3,
4 and 7 the followers, which means 𝐹 [2] [2] = {3, 4} and
𝐹 [2] [5] = {7}. Now we have 𝑠𝑛(1) = {5} and 𝑠𝑛(2) =
{2, 5}. If we choose to anchor 1, then 𝑉1 := {5,6,7}, 5, 6
and 7 become the followers and join the child node of their
current tree node. For vertex 2, initially we have 𝑟𝑛(2) =
𝑠𝑛(2) = {2, 5}. But𝑉1 makes 𝑟𝑛(2) := 𝑟𝑛(2) \ {5}. Obviously,
T [7] .𝐼 = 5 and 7 is indeed not the follower of 2 any more.

And we can see 3 and 4 are still the followers of 2, which
confirms 𝐹 [2] [2] can be reused since 2 ∈ 𝑟𝑛(2).

4.4 Coreness Gain Computation
In this section, we utilize the vertex deletion order in core
decomposition to speed up the follower computation. Recall
that we have 𝑔({𝑥},𝐺) = |F (𝑥) | for an anchored vertex 𝑥 .
Given a graph 𝐺 , the k-shell, denoted by 𝐻𝑘 (𝐺), is the

set of vertices in 𝐺 with coreness equal to 𝑘 , i.e., 𝐻𝑘 (𝐺) =
𝑉 (𝐶𝑘 (𝐺)) \𝑉 (𝐶𝑘+1(𝐺)). The vertices in the 𝑘-shell can be
further divided to different vertex sets, named layers, ac-
cording to their deletion sequence in the core decompo-
sition (Algorithm 1). We use 𝐻 𝑖

𝑘
to denote the 𝑖-layer of

the 𝑘-shell, which is the set of vertices that are deleted in
the 𝑖-th batch. Specifically, when 𝑖 = 1, 𝐻 𝑖

𝑘
is defined as

{𝑢 | 𝑑𝑒𝑔(𝑢,𝐶𝑘 (𝐺)) < 𝑘 +1 &𝑢 ∈ 𝐶𝑘 (𝐺)}. The deletion of the
1st-layer will produce the 2nd-layer. Recursively, when 𝑖 > 1,
𝐻 𝑖
𝑘
= {𝑢 | 𝑑𝑒𝑔(𝑢,𝐺𝑖) < 𝑘 + 1 & 𝑢 ∈ 𝐺𝑖 } where 𝐺1 = 𝐶𝑘 (𝐺)

and𝐺𝑖 is the subgraph induced by 𝑉 (𝐺𝑖−1) \𝐻
𝑖−1
𝑘

on 𝐶𝑘 (𝐺).

Shell-layer Pair. Based on the above definition, each vertex
𝑢 in the graph𝐺 has a shell-layer pair (𝑘 , 𝑖), which means𝑢 in
the 𝑖-th layer of the 𝑘-shell, i.e., 𝑢 ∈ 𝐻 𝑖

𝑘
. We record the shell-

layer pair of every vertex𝑢 in P. Specifically, for every vertex
𝑣 , it is contained in the (P[𝑣] .𝑖)-th layer of the (P[𝑣] .𝑘)-
shell in 𝐺 . We define P[𝑣𝑖] ≺ P[𝑣 𝑗] iff P[𝑣𝑖] .𝑘 < P[𝑣 𝑗] .𝑘
or P[𝑣𝑖] .𝑘 = P[𝑣 𝑗] .𝑘 & P[𝑣𝑖] .𝑖 < P[𝑣 𝑗] .𝑖 .
Example 4.11. In Figure 5 (a), we can see the 2-shell con-

tains 𝑢1, 𝑢2 and 𝑢3, and the 3-shell contains 𝑢4 and 𝑢5. How-
ever, 𝑢1 is the first to be deleted in core decomposition, be-
cause𝑢1 is the only one whose degree is less than 3 currently.
After 𝑢1 being deleted with P[𝑢1] = (2, 1), edges (𝑢1, 𝑢2) and
(𝑢1, 𝑢4) are deleted. Then, 𝑢2 becomes the only one with de-
gree less than 3, so𝑢2 is deleted with P[𝑢2] = (2, 2). Similarly,
P[𝑢3] = (2, 3). Both P[𝑢4] and P[𝑢5] are equal to (3, 1) since
they contradict the degree constraint at the same time.

5-clique

(a) (b)
Figure 5: Example Figures

Definition 4.12. Upstair Path. We say there is an upstair
path in𝐺 for𝑢 ∈ 𝑉 (𝐺) w.r.t a given anchor vertex 𝑥 if there is
a path 𝑥 � 𝑢 where (i) for every vertex𝑦 in the path except 𝑥 ,
P[𝑦] .𝑘 = P[𝑢] .𝑘 ; and (ii) for every two consecutive vertices
𝑣 ′ and 𝑣 ′′ from 𝑥 to 𝑢, (𝑣 ′, 𝑣 ′′) ∈ 𝐸 (𝐺) and P[𝑣 ′] ≺ P[𝑣 ′′].

Example 4.13. In Figure 5 (b), we can compute the shell-
layer pairs of the vertices and get P[𝑢1] = (1, 1), P[𝑢2] =

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2217

Algorithm 4: FindFollowers(𝑥 , 𝐺 , T)

Input : 𝑥 : the anchor, 𝐺 : a social network, T : the core
component tree of 𝐺

Output : 𝐹 [𝑥] [·] : tree node classified follower sets of 𝑥
𝑥 is set survived;1

for each non-reusable tree node 𝑖𝑑 ∈ 𝑠𝑛(𝑥) \ 𝑟𝑛(𝑥) do2

𝐻 := ∅;3

if 𝑖𝑑 = 𝑖𝑥 then4

𝐻.𝑝𝑢𝑠ℎ(𝑢) for each 𝑢 ∈ 𝑡𝑐𝑎>= (𝑥);5

else6

𝐻.𝑝𝑢𝑠ℎ(𝑢) for each 𝑢 ∈ 𝑡𝑐𝑎[𝑥] [𝑖𝑑];7

while 𝐻 ≠ ∅ do8

𝑢 ← 𝐻.𝑝𝑜𝑝 ();9

Compute 𝑑+(𝑢);10

if 𝑑+(𝑢) ≥ 𝑐 (𝑢,𝐺) + 1 then11

𝑢 is set survived;12

for each 𝑣 ∈ 𝑡𝑐𝑎>= (𝑢) and 𝑣 ∉ 𝐻 do13

𝐻.𝑝𝑢𝑠ℎ(𝑣);14

else15

𝑢 is set discarded ;16

Shrink(𝑢);17

𝐹 [𝑥] [𝑖𝑑] ← survived vertices\{𝑥} ;18

return 𝐹 [𝑥]19

Algorithm 5: Shrink(𝑢)

Input : 𝑢 : the vertex for degree check
for each survived neighbor 𝑣 with 𝑣 ≠ 𝑥 do1

𝑑+(𝑣) := 𝑑+(𝑣) − 1;2

𝑇 ← 𝑣 If 𝑑+(𝑣) < 𝑐 (𝑣,𝐺) + 1;3

for each 𝑣 ∈ 𝑇 do4

𝑣 is set discarded;5

Shrink(𝑣);6

P[𝑢3] = P[𝑢4] = (2, 1), P[𝑢5] = P[𝑢6] = (2, 2) and P[𝑢7]
= P[𝑢8] = P[𝑢9] = P[𝑢10] = (3, 1). The path (𝑢1, 𝑢2, 𝑢5) is
an upstair path for 𝑢5 w.r.t 𝑢1, because P[𝑢1] ≺ P[𝑢2],
P[𝑢2] ≺ P[𝑢5], and P[𝑢2] .𝑘 = P[𝑢5] .𝑘 . (𝑢2, 𝑢5) itself can
also be an upstair path for 𝑢5 w.r.t 𝑢2, because it does not
contradict any constraint in Definition 4.12. On the contrary,
(𝑢3, 𝑢4, 𝑢6) cannot be an upstair path for 𝑢6 w.r.t 𝑢3 because
P[𝑢3] = P[𝑢4] (contradicts (ii) of Definition 4.12), neither
nor (𝑢3, 𝑢6, 𝑢8) for 𝑢8 w.r.t. 𝑢3 because P[𝑢6] .𝑘 ≠ P[𝑢8] .𝑘
which contradicts the (i) of Definition 4.12.

Theorem 4.14. A vertex 𝑢 ∈ 𝑉 (𝐺) is a follower of the

anchor 𝑥 implies that there is an upstair path 𝑥 � 𝑢 in 𝐺 .

Computing Followers. According to Theorem 4.14, the
vertices without any upstair path from the anchor vertex 𝑥
cannot be a follower of 𝑥 . We use 𝐶𝐹 (𝑥) to denote all the
candidate followers of an anchor 𝑥 , i.e., the vertices that

can be reached by 𝑥 via upstair paths. Instead of doing core
decomposition of the whole graph, we only need to explore
the candidate followers 𝐶𝐹 (𝑥) to compute the follower set
of 𝑥 . We use 𝑡𝑐𝑎≤= (𝑢) to denote the set of 𝑢’s neighbours
where each neighbor 𝑣 has P[𝑣] .𝑘 = P[𝑢] .𝑘 & P[𝑣] .𝑖 ≤
P[𝑢] .𝑖 . Similarly, 𝑡𝑐𝑎>= (𝑢) contains every 𝑢’s neighbour 𝑣
with P[𝑣] .𝑘 = P[𝑢] .𝑘 & P[𝑣] .𝑖 > P[𝑢] .𝑖 . For simplicity, we
use 𝑖𝑢 to denote the id of the tree node which contains the
vertex 𝑢, i.e., 𝑖𝑢 = T [𝑢] .𝐼 . Note that, 𝑡𝑐𝑎≤= (𝑢) and 𝑡𝑐𝑎>= (𝑢)
are easily retrieved along with core decomposition.
Algorithm 4 shows the pseudo-code for computing the

followers. In each iteration, we search the non-reusable tree
nodes (section 4.3) in T to compute the followers of 𝑥 in the
nodes (Line 2, Algorithm 4). We maintain a min heap 𝐻 to
store the candidate followers 𝐶𝐹 (𝑥) which will be explored
(Line 3-7 and 13-14). The key of a vertex in 𝐻 is its shell-
layer pair with ties broken by the vertex id. In each tree node
𝑖𝑑 ∈ 𝑠𝑛(𝑥) \ 𝑟𝑛(𝑥), we explore 𝐶𝐹 (𝑥) in a layer-by-layer
manner: from 𝑗-th layer to (𝑗 + 1)-th layer starting from 𝑥 .

In the layer-by-layer search, a vertex is set as unexplored
if it has never been checked with the degree constraint (Line
11). A vertex is set as survived if it survived the degree
check (Line 12), otherwise it is set as discarded (Line 16).
The discarded vertices will never be visited again, and a sur-
vived vertex may become discarded later due to the deletion
cascade. The vertices that will not be visited in the search,
e.g., not in any upstair path, are regarded as discarded.
Once a candidate follower 𝑢 is discarded (Line 16), Algo-

rithm 5 will be called to recursively delete other vertices
without sufficient degree bound due to the deletion of 𝑢. Af-
ter traversing all the candidate followers and deleting the
candidates that cannot survive the degree check, the remain-
ing vertices in 𝐶𝐹 (𝑥) are the true followers of 𝑥 . Note that
the followers are separately computed and returned for each
tree node (Line 2 and Line 18 of Algorithm 4).

The time complexity of Algorithm 4 is O(𝑚), because each
edge is accessesed at most three times: push neighbors into
𝐻 , degree check, and compute the cascade of shrink.

Degree Check. The degree bound of a vertex 𝑢 ∈ 𝐶𝐹 (𝑥)
is denoted by 𝑑+(𝑢). Specifically, 𝑑+(𝑢) = 𝑑+𝑠 (𝑢) + 𝑑

+
𝑢 (𝑢) +

𝑑> (𝑢), in which 𝑑+𝑠 (𝑢) (resp. 𝑑+𝑢 (𝑢)) is the number of
𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 (resp. 𝑢𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑) neighbors in {𝑥} ∪ (𝑡𝑐𝑎≤= (𝑢) ∩
𝐻) ∪ 𝑡𝑐𝑎>= (𝑢), and 𝑑> (𝑢) is the number of neighbors in
⋃
𝑖𝑑∈𝑠𝑛 (𝑢)\{𝑖𝑢 } 𝑡𝑐𝑎[𝑢] [𝑖𝑑]. The following theorem indicates

that we can exclude a candidate follower 𝑢 if 𝑑+(𝑢) <
𝑐 (𝑢,𝐺) + 1. The discard of a vertex may invoke the discard of
other vertices, as shown in Algorithm 5. When the deletion
cascade terminates, the tags of all the vertices affected by
the discard of 𝑢 will be correctly updated.

Theorem 4.15. A vertex 𝑢 ∈ 𝐶𝐹 (𝑥) cannot be a follower of
𝑥 if 𝑑+(𝑢) < 𝑐 (𝑢,𝐺) + 1.

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2218

For simplicity, in the following examples, the 𝑖𝑑 of a vertex
𝑢𝑖 is 𝑢𝑖 itself where 𝑖 ∈ [1,𝑉 (𝐺)] & 𝑖 ∈ N. For two vertices
𝑢𝑖 and 𝑢 𝑗 , we set 𝑢𝑖 < 𝑢 𝑗 iff 𝑖 < 𝑗 .

Example 4.16. In Figure 5 (b), we explain an example of us-
ing Algorithm 4 to compute the followers of 𝑢1 from a single
tree node. For the core component tree T , we can see there
are three tree nodes𝑇𝑁1,𝑇𝑁2 and𝑇𝑁3, where𝑇𝑁1 .𝑉 = {𝑢1},
𝑇𝑁1 .𝐾 = 1 and 𝑇𝑁1.𝐼 = 𝑢1; 𝑇𝑁2.𝑉 = {𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6},
𝑇𝑁2 .𝐾 = 2 and 𝑇𝑁2.𝐼 = 𝑢2; 𝑇𝑁3.𝑉 = {𝑢7, 𝑢8, 𝑢9, 𝑢10},
𝑇𝑁3 .𝐾 = 3 and 𝑇𝑁3.𝐼 = 𝑢7. Initially, 𝑢1 itself is set sur-
vived and we push the only adjacent vertex 𝑢2 which is
in 𝑡𝑐𝑎[𝑢1] [𝑢2] into the min Heap 𝐻 . Then we pop 𝑢2 and
have 𝑑+𝑠 (𝑢2) = 1, 𝑑+𝑢 (𝑢2) = 2 and 𝑑> (𝑢2) = 0, so 𝑢2 sur-
vives the degree check since 𝑑+(𝑢2) = 𝑐 (𝑢2) + 1 and we set
𝑢2 survived. We put the vertices of 𝑡𝑐𝑎>= (𝑢2) into the heap
so 𝑢5 and 𝑢6 are now in 𝐻 . We first explore 𝑢5 and have
𝑑+𝑠 (𝑢5) = 1, 𝑑+𝑢 (𝑢5) = 0, 𝑑> (𝑢5) = 2 and 𝑑+(𝑢5) = 𝑐 (𝑢5) + 1,
so we set 𝑢5 survived. As 𝑡𝑐𝑎

>
= (𝑢5) = ∅, we do not put any

more vertices into 𝐻 for now. Then we explore 𝑢6 and have
𝑑+𝑠 (𝑢6) = 1, 𝑑+𝑢 (𝑢6) = 0 and 𝑑> (𝑢6) = 1. Note that, 𝑢3 and
𝑢4 are unexplored neighbors of 𝑢6 in 𝑡𝑐𝑎≤= (𝑢6), but they
will not be added into 𝐻 so cannot be counted in 𝑑+𝑢 (𝑢6).
𝑑+(𝑢6) < 𝑐 (𝑢6) + 1 so we will discard it. As illustrated in
Algorithm 5, for each survived neighbor of 𝑢6 which is 𝑢2,
we make 𝑑+(𝑢2) = 𝑑+(𝑢2) − 1 = 2 so that 𝑑+(𝑢2) < 𝑐 (𝑢2) + 1.
So we discard 𝑢2 and then make 𝑑+(𝑢5) = 𝑑+(𝑢5) − 1 = 2.
Obviously 𝑑+(𝑢5) < 𝑐 (𝑢5) + 1 and gets discarded. Finally, the
heap 𝐻 becomes empty and anchoring 𝑢1 has no follower.

Reusing Followers. Since we compute the followers of 𝑥
regarding each tree node 𝑖𝑑 ∈ 𝑠𝑛(𝑥) separately, it is very
simple to reuse the followers computed from the last iteration.
Specifically, after anchoring each vertex 𝑥 , we erase some
follower results by Algorithm 3. Once a tree node 𝑖𝑑 is visited
(Line 2, Algorithm 4), we first check whether 𝑖𝑑 ∈ 𝑟𝑛(𝑥) or
not. If 𝑖𝑑 ∈ 𝑟𝑛(𝑥), the follower set of 𝑥 in this tree node is
not erased by Algorithm 3. Thus we do not need to compute
these followers (Line 3-17, Algorithm 4) again, and use the
existing 𝐹 [𝑥] [𝑖𝑑] instead. If 𝑖𝑑 ∉ 𝑟𝑛(𝑥), we execute the Line
3-17 of Algorithm 4 to find the correct followers.

4.5 The GAC Algorithm

We first introduce an upper bound of follower number.

Upper Bound Based Pruning. We introduce an easy-to-
compute upper bound to further prune unpromising candi-
dates before the computation of followers. For a vertex 𝑥 , by
Equation 1, we firstly get the upper bound of followers from
its own tree node T [𝑥]. Then for each 𝑖𝑑 ∈ 𝑠𝑛(𝑥) \ {𝑖𝑥 }, we
get an upper bound𝑈𝐵>

𝑖𝑑
(𝑥) by Equation 2. At last we can

compute the total upper bound 𝑈𝐵𝜎 (𝑥) by Equation 3. Note
that when 𝑡𝑐𝑎>= (𝑢) = ∅ for a vertex 𝑢, we set𝑈𝐵𝑖𝑢 (𝑢) to 0.

𝑈𝐵𝑖𝑥 (𝑥) =
∑
𝑢∈𝑡𝑐𝑎>= (𝑥)

(𝑈𝐵𝑖𝑢 (𝑢) + 1) (1)

𝑈𝐵>
𝑖𝑑
(𝑥) =

∑
𝑢∈𝑡𝑐𝑎 [𝑥] [𝑖𝑑] (𝑈𝐵𝑖𝑢 (𝑢) + 1) (2)

𝑈𝐵𝜎 (𝑥) = 𝑈𝐵𝑖𝑥 (𝑥) +
∑
𝑖𝑑 ∈𝑠𝑛 (𝑥)\{𝑖𝑥 }𝑈𝐵>

𝑖𝑑
(𝑥) (3)

Theorem 4.17. Given a graph 𝐺 and an anchor vertex

𝑥 , |𝐹 [𝑥] [𝑖𝑥] | ≤ 𝑈𝐵𝑖𝑥 (𝑥), and for each 𝑖𝑑 ∈ 𝑠𝑛(𝑥) \ {𝑖𝑥 },
|𝐹 [𝑥] [𝑖𝑑] | ≤ 𝑈𝐵>

𝑖𝑑
(𝑥). So, 𝑔({𝑥},𝐺) ≤ 𝑈𝐵𝜎 (𝑥).

About the computation of the upper bound, after getting
the partial ordering (i.e., shell-layer pairs) of 𝑉 (𝐺), we use
topological sorting to construct a compatible total ordering
of 𝑉 (𝐺). Then we can accumulatively compute the upper
bound of each vertex with the reverse sequence of the total
ordering with a time complexity of O(𝑚).

Example 4.18. In Figure 5(a), after getting the shell-layer
pair of each vertex, P[𝑢1] = (2, 1), P[𝑢2] = (2, 2), P[𝑢3] =
(2, 3), and P[𝑢4] = P[𝑢5] = (3, 1). Now in T , we have
𝑇𝑁1 where 𝑇𝑁1.𝑉 = {𝑢1, 𝑢2, 𝑢3}, 𝑇𝑁1.𝐾 = 2 and 𝑇𝑁1 .𝐼 = 𝑢1.
𝑇𝑁2 .𝑉 = {𝑢4} where 𝑇𝑁2.𝐾 = 3 and 𝑇𝑁2.𝐼 = 𝑢4. 𝑇𝑁3.𝑉 =
{𝑢5} where 𝑇𝑁3.𝐾 = 3 and 𝑇𝑁3.𝐼 = 𝑢5. Then we get a to-
tal ordering of them: 𝑢1 ≺ 𝑢2 ≺ 𝑢3 ≺ 𝑢4 ≺ 𝑢5. We com-
pute their upper bounds following this order. For 𝑢4 and 𝑢5,
𝑈𝐵𝑢4 (𝑢4) = 𝑈𝐵𝑢5 (𝑢5) = 0 since 𝑡𝑐𝑎>= (𝑢4) = 𝑡𝑐𝑎>= (𝑢5) = ∅.
For 𝑢3, 𝑡𝑐𝑎

>
= (𝑢3) = ∅ so 𝑈𝐵𝑢1 (𝑢3) = 0. 𝑡𝑐𝑎[𝑢3] [𝑢4] = {𝑢4}

and 𝑡𝑐𝑎[𝑢3] [𝑢5] = {𝑢5} , so that 𝑈𝐵>
𝑢4 (𝑢3) = (𝑈𝐵𝑢4 (𝑢4) +

1) = 1 and 𝑈𝐵>
𝑢5 (𝑢3) = (𝑈𝐵𝑢5 (𝑢5) + 1) = 1. Therefore,

𝑈𝐵𝜎 (𝑢3) = 𝑈𝐵𝑢1 (𝑢3) + 𝑈𝐵>
𝑢4 (𝑢3) + 𝑈𝐵>

𝑢5 (𝑢3) = 2. For 𝑢2,
𝑡𝑐𝑎>= (𝑢2) = {𝑢3} so 𝑈𝐵𝑢1 (𝑢2) = (𝑈𝐵𝑢1 (𝑢3) + 1) = 1, and
𝑡𝑐𝑎[𝑢2] [𝑢5] = {𝑢5} so that 𝑈𝐵>

𝑢5 (𝑢2) = (𝑈𝐵𝑢5 (𝑢5) + 1) = 1.
Then we have 𝑈𝐵𝜎 (𝑢2) = 𝑈𝐵𝑢1 (𝑢2) + 𝑈𝐵>

𝑢5 (𝑢2) = 2. At
last, we get 𝑡𝑐𝑎>= (𝑢1) = {𝑢2} and 𝑡𝑐𝑎[𝑢1] [𝑢4] = {𝑢4}, so
we can get 𝑈𝐵𝑢1 (𝑢1) = (𝑈𝐵𝑢1 (𝑢2) + 1) = 2, 𝑈𝐵>

𝑢4 (𝑢1) =
(𝑈𝐵𝑢4 (𝑢4) + 1) = 1,𝑈𝐵𝜎 (𝑢1) = 𝑈𝐵𝑢1 (𝑢1) +𝑈𝐵>

𝑢4 (𝑢1) = 3.

Upper Bound Refining. After anchoring a vertex in each
iteration, we can retain and update some computed upper
bounds based on our tree node classified adjacency. Firstly,
for each 𝑖𝑑 ∈ 𝑟𝑛(𝑢) of a non-anchor vertex 𝑢, 𝑈𝐵𝑖𝑥 (𝑥) or
𝑈𝐵>

𝑖𝑑
(𝑢) stays the same, so does not need to be recomputed.

Secondly, if 𝐹 [𝑢] [𝑖𝑑] has been computed and is not erased
in Algorithm 3, it can replace 𝑈𝐵𝑖𝑥 (𝑥) or 𝑈𝐵>

𝑖𝑑
(𝑢) so that a

more accurate bound is found.

Combining the Techniques. Algorithm 6 shows the de-
tail of our final greedy algorithm which combines all the
proposed techniques. We firstly apply Algorithm 1 (Line 1)
to get the initial coreness of each vertex of the given graph
𝐺 . Then, we apply Algorithm 2 (Line 2) to build the core
component tree for the first time, followed by the computing
of our upper bound of follower numbers (Line 3), which will
be updated after anchoring every vertex (Line 12-13). Then,
the greedy heuristic starts (Line 4). In each iteration, we use
𝑎 to record the best anchor vertex found so far, and use 𝜆
to record the number of followers of the best anchor (Line

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2219

Algorithm 6: GAC(𝐺 , 𝑏)

Input : 𝐺 : a social network, 𝑏 : number of anchors
Output : 𝐴 : the set of anchor vertices
CoreDecomp(𝐺 , ∅);1

T ← BuildCCT(𝐺 , 𝑟𝑜𝑜𝑡);2

Compute upper bounds of follower numbers;3

for 𝑖 from 1 to 𝑏 do4

𝜆 := −1; 𝑎 := 𝑛𝑢𝑙𝑙 ;5

for each 𝑢 ∈ 𝑉 (𝐺) with decreasing order𝑈𝐵𝜎 (𝑢) do6

if 𝑢 ∉ 𝐴 and𝑈𝐵𝜎 (𝑢) > 𝜆 then7

𝐹 [𝑢] := FindFollowers(𝑢, 𝐺 , T);8

if |F [𝑢] | > 𝜆 then9

𝑎 := 𝑢; 𝜆 := |F [𝑢] |;10

𝐴 := 𝐴 ∪ {𝑎}; 𝑑𝑒𝑔(𝑎,𝐺) := +∞;11

ResultReuse(𝑎, 𝐺 , T);12

Refine upper bounds;13

return 𝐴14

5). We sequentially compute the followers for the vertices in
decreasing order of their upper bounds (Line 6). Only if the
upper bound of a vertex 𝑢 is larger than 𝜆 and 𝑢 is not an
existing anchor (Line 7), we will continue the follower com-
putation for 𝑢 (Line 8-10). Note that we will not compute the
follower number for 𝑢 in the tree nodes where the numbers
of followers do not change from last iteration and can be
reused. After the follower computation of current iteration,
the best anchor 𝑎 is added to the set 𝐴, and the degree of 𝑎
is set to be positive infinity. After 𝑏 iterations, Algorithm 6
returns the set 𝐴 of 𝑏 anchor vertices (Line 14).

5 EXPERIMENTAL EVALUATION
Datasets.We use eight real-life datasets in our experiments.
Brightkite, Gowalla, Youtube and Livejournal are from
http://snap.stanford.edu/. The other datasets are from http:
//konect.uni-koblenz.de/. Table 4 shows the statistics of the
datasets, listed in increasing order of edge numbers.
Algorithms. Towards effectiveness, we mainly compare 6
algorithms with our GAC algorithm, including 4 heuristics,
the exact solution, and the algorithm for anchored 𝑘-core
problem. Towards the efficiency, we incrementally equip
the baseline with our proposed techniques to evaluate the
performance. Table 5 lists all the evaluated algorithms.
Parameters.We conducted experiments by varying the bud-
get 𝑏 from 1 to 100 where the default value is 100. All the
programs are implemented in C++ and compiled with G++
on Linux. The experiments are conducted on a machine with
3.4GHz Intel Xeon CPU and Redhat system.

5.1 Effectiveness
Comparison with Other Heuristics. In Figure 6, we com-
pare the coreness gain from GAC with other heuristics (Rand,

Table 4: Statistics of Datasets

Dataset Nodes Edges 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥 𝑘𝑚𝑎𝑥

Brightkite 58,228 194,090 6.7 1098 52

Arxiv 34,546 421,578 24.4 846 30

Gowalla 196,591 456,830 9.2 10721 51

NotreDame 325,729 1,497,134 6.5 3812 155

Stanford 281,903 2,312,497 16.4 38626 71

YouTube 1,134,890 2,987,624 5.3 28754 51

DBLP 1,566,919 6,461,300 8.3 2023 118

LiveJournal 3,997,962 34,681,189 17.4 14815 360

Table 5: Summary of Algorithms

Algorithm Description

Exact identifies the optimal solution by searching all
possible combinations of 𝑏 anchors

Rand randomly chooses the 𝑏 anchors from 𝑉 (𝐺)
Deg chooses the 𝑏 anchors from 𝑉 (𝐺) with the high-

est degree

Deg-C chooses the 𝑏 anchors with the highest value of
𝑑𝑒𝑔(𝑢,𝐺) − 𝑐 (𝑢) for each 𝑢 ∈ 𝑉 (𝐺)

SD chooses the 𝑏 anchors with the highest succes-
sive degree 𝑑𝑒𝑔�(·) for every 𝑢 ∈ 𝑉 (𝐺), where
𝑑𝑒𝑔�(𝑢) = |{𝑣 | 𝑣 ∈ 𝑁 (𝑢,𝐺) & P(𝑣) � P(𝑢)}|

OLAK the state-of-the-art algorithm for anchored𝑘-core
problem [45]

GAC Algorithm 6

GAC-U GAC without upper bound pruning (Section 4.5)

GAC-U-R GAC-U without result reusing (Algorithm 3)

Baseline GAC-U-R using core decomposition (Algorithm 1)
to compute coreness gain, without Algorithm 4

Deg, Deg-C, and SD). For SD, the successive degree of a ver-
tex 𝑢 is defined as 𝑑𝑒𝑔�(𝑢) = |{𝑣 | 𝑣 ∈ 𝑁 (𝑢,𝐺) & P(𝑣) �
P(𝑢)}| where P(𝑢) = (𝑘, 𝑖) means 𝑢 is in the 𝑖-th layer of
the 𝑘-shell. The details of these heuristics are in Table 5.
As shown in Figure 6 (a), the performance of Rand is the

worst as it chooses random vertices to anchor. The perfor-
mance of Deg and Deg-C are better than Rand as they choose
vertices with large degrees to anchor. SD has more coreness
gain because the vertices with higher successive degree have
more candidate followers (Theorem 4.14). Compared with
the above heuristics, GAC achieves the much larger coreness
gains on all the datasets. The effect of varying 𝑏 is shown in
Figures 6 (b) and (c). The coreness gain of GAC increases with
larger 𝑏 values and is better than all other four heuristics
under all the settings.

Comparison with Exact Solution. We also compare the
result of GAC with the Exact algorithm, which identifies the
optimal 𝑏 anchors by enumerating all possible combinations
of 𝑏 vertices. Due to the huge time cost of Exact, we extract
small datasets by iteratively extracting a vertex and all its
neighbours, until the number of extracted vertices reaches
100. For both Brighkite and Arxiv, we extracted 10 such
subgraphs and report the average coreness gain of them. The

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2220

10

10

10

10

10

B. A. G. N. S. Y. D. L.

Rand Deg Deg-C SD GAC

(a) All Datasets, b=100

1

10

10

10

10

0 20 40 60 80 100

GAC Rand
Deg Deg-C
SD

(b) Gowalla

10
10
10
10
1 0 20 40 60 80 100

GAC Rand
Deg Deg-C
SD

(c) Livejournal

Figure 6: Coreness Gain from Different Heuristics

0
20
40
60
80
100

1 2 3 4 5

Exact GAC

0.01s
0.01s

0.4s
0.01s

0.02s

337s
13.9s 0.02s

6595s0.03s

(a) Brightkite

0

20

40

60

1 2 3 4 5

Exact GAC

0.01s0.01s 0.01s
0.3s

10.9s
0.02s

0.02s272s 0.02s
5267s

(b) Arxiv

Figure 7: GAC v.s. Exact

Dataset 𝐷𝑒𝑔𝑎𝑣𝑔 𝐷𝑒𝑔𝑎𝑛𝑐 𝑝𝐷𝑒𝑔 𝑝𝐶𝑁 𝑝𝑆𝐷
Brightkite 7.35 37.76 0.884 0.891 0.893

Arxiv 24.37 29.71 0.670 0.663 0.678

Gowalla 9.67 43.86 0.904 0.919 0.919

NotreDame 6.69 11.28 0.808 0.828 0.846

Stanford 14.14 56.09 0.745 0.763 0.788

YouTube 5.27 81.85 0.985 0.982 0.982

DBLP 8.08 27.85 0.905 0.896 0.911

LiveJournal 17.35 145.74 0.935 0.940 0.943

Table 6: Characteristics of Anchor Set

0
10
20
30
40
50

3 9 15 21 27 33 39 45 51

GAC OLAK9
OLAK27 OLAK45

(a) Gowalla

0

20

40

60

80

3 11 19 27 35 43 51 59 67

GAC OLAK11
OLAK35 OLAK59

(b) Stanford
Figure 8: Distribution of Anchors on Coreness

runtimes are also reported. Figure 7 shows that the coreness
gain of GAC is always at least 70% of Exact, and GAC is faster
than Exact by up to 5 orders of magnitude. Note that the
coreness gain percentage of GAC over Exact may increase
with larger 𝑏 values, e.g., from 𝑏 = 4 to 𝑏 = 5.

Characteristics of Anchor Set. Table 6 shows the average
degree of anchors (𝐷𝑒𝑔𝑎𝑛𝑐) from GAC is much larger than the
average degree of all the vertices in the graph (𝐷𝑒𝑔𝑎𝑣𝑔). Then,
we investigate the average ranking of an anchor in all the
vertices regarding degree, coreness, and successive degree,
denoted by 𝑝𝐷𝑒𝑔, 𝑝𝐶𝑁 , and 𝑝𝑆𝐷 , respectively. According to
Theorem 4.14, a vertex with larger successive degree has

Dataset 𝐺𝑎𝑖𝑛𝑈𝐵 𝐺𝑎𝑖𝑛𝐷𝐺 𝐺𝑎𝑖𝑛𝑅𝐷 𝐽𝑈𝐵𝐷𝐺 𝐽𝑈𝐵𝑅𝐷
Brightkite 2357 2598 2488 0.538 0.538

Arxiv 5426 5391 5503 0.739 0.681

Gowalla 4260 4259 4258 0.754 0.887

NotreDame 2798 2803 2803 0.653 0.681

Stanford 7748 7695 7727 0.695 0.739

YouTube 4571 4525 3782 0.361 0.370

DBLP 4159 4166 4396 0.802 0.695

LiveJournal 27067 27113 27072 0.869 0.887

Table 7: Statistics of Top-𝑏 Solutions

Dataset B. A. G. N. S. Y. D. L.

𝑎𝑣𝑔𝑂𝐿𝐴𝐾 41% 34% 38% 4% 25% 36% 12% 21%

𝑚𝑎𝑥𝑂𝐿𝐴𝐾 61% 60% 66% 54% 70% 77% 46% 59%

Table 8: Coreness Gain, OLAK v.s. GAC

more potential followers. For each anchor 𝑥 ∈ 𝐴, we get its
ranking in all the vertices, denoted by O𝑥

𝐷𝑒𝑔, O
𝑥
𝐶𝑁 and O𝑥

𝑆𝐷 ,

in ascending order of degree, coreness and successive degree,

respectively. Then 𝑝𝐷𝑒𝑔 =
∑

𝑥∈𝐴 O𝑥
𝐷𝑒𝑔

|𝐴 | |𝑉 (𝐺) | , 𝑝𝐶𝑁 =
∑

𝑥∈𝐴 O𝑥
𝐶𝑁

|𝐴 | |𝑉 (𝐺) | and

𝑝𝑆𝐷 =
∑

𝑥∈𝐴 O𝑥
𝑆𝐷

|𝐴 | |𝑉 (𝐺) | . Table 6 shows the rankings of anchors are

higher than around 80% of the vertices in the graph, i.e., the
anchors tend to be high-degree vertices while not the top ver-
tices with extremely large degrees. Besides, for the anchors,
we find that 𝑃𝑆𝐷 is slightly higher than 𝑃𝐷𝑒𝑔 and 𝑃𝐶𝑁 on 7
of the 8 datasets. However, the backward reasoning is not
effective, i.e., the vertices with large successive degree are
not effective anchors, as shown by 𝑆𝐷 in Figure 6. Moreover,
Figure 8 shows the distribution of 100 anchors (from GAC) on
coreness is relatively uniform, i.e., the coreness values of the
anchors can be either small, moderate, or large.

Analysis of Top-𝑏 Solutions In one iteration of the GAC
algorithm, when there are more than one best anchor, all of
which have the same largest coreness gain, we break the ties
by the follower upper bound of the candidate anchors (Sec-
tion 4.5). For clearness, we denote GAC by GAC-UB. Besides,
we may use other criteria to break the ties in the greedy
algorithm: choosing the vertex with the largest degree (de-
noted by GAC-DG), or randomly choosing a vertex (denoted by
GAC-RD). As shown in Table 7, the coreness gains of different
solutions (anchor sets) are very similar, where the values are
denoted by 𝐺𝑎𝑖𝑛𝑈𝐵 , 𝐺𝑎𝑖𝑛𝐷𝐺 and 𝐺𝑎𝑖𝑛𝑅𝐷 accordingly, and
the largest value for each dataset is marked in bold. More-
over, as shown in Table 7, there are many common anchors
in different solutions, as the similarities (Jaccard Index) of

the solutions are mostly over 0.5, where 𝐽𝑈𝐵𝐷𝐺 = |𝐴𝑈𝐵∩𝐴𝐷𝐺 |
|𝐴𝑈𝐵∪𝐴𝐷𝐺 |

and 𝐽𝑈𝐵𝑅𝐷 = |𝐴𝑈𝐵∩𝐴𝑅𝐷 |
|𝐴𝑈𝐵∪𝐴𝑅𝐷 |

. In terms of running time, the three

strategies are almost same, because the time cost to break
the ties is dominated by other parts of the greedy algorithm.

Correlation with #Checkin We generate 19 different net-
works from Gowalla based on the user check-ins, where the
𝑖-th network is the induced subgraph by the users with at

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2221

1

10

1 4 7 10 13 16 19

avgCheckin avgCoreness
3-core 6-core
10-core 14-core
18-core 22-core

Figure 9: #Checkin, Coreness & 𝑘-Core Size

0
1000
2000
3000
4000
5000
6000

2 6 10 14 18 22 26 30

GAC
OLAK

(a) Arxiv

0
1000
2000
3000
4000

3 9 15 21 27 33 39 45 51

GAC
OLAK

(b) Gowalla

Figure 10: Coreness Gain on Different Inputs of 𝑘

1

10

100

1000

3 9 15 21 27 33 39 45 51

GAC OLAK9
OLAK27 OLAK45

(a) Gowalla

1

10

100

1000

3 11 19 27 35 43 51 59 67

GAC OLAK11
OLAK35 OLAK59

(b) Stanford

Figure 11: Distribution of Followers on Coreness

least 1 check-in during the (𝑖 + 1)-th month, except for the
first and the last months where the data is incomplete. We
consider the number of user check-ins because a user with
more friends may be more active in Gowalla network.
For each network, we divide the sum of #checkins, the

sum of coreness, and the size of 𝑘-core, by the number of
users, respectively. As shown in Figure 9, the pattern of size
proportions of 𝑘-cores are more fluctuated compared to the
pattern of average #checkins and average coreness, especially
for large 𝑘 values. However, if we choose a small 𝑘 for OLAK,
it generally has small coreness gain as shown in Figure 10.
The pattern of average coreness over the first 7 months in
Figure 9 is not similar to average #checkins, which may due
to the extremely few numbers of users (less than 100) for
these months. Overall, using coreness values to reinforce a
social network (anchored coreness model) is more reasonable
than using the size of 𝑘-core (anchored 𝑘-core model).

Comparisonwith OLAK. Table 8 is added to show that the
largest coreness gain (denoted by𝑚𝑎𝑥𝑂𝐿𝐴𝐾) that OLAK can
achieve only reaches 46%-77% of the coreness gain by GAC,
on all the datasets. The largest coreness gain of OLAK is com-
puted by running the algorithm with every possible input of
𝑘 . For the anchor set 𝐴 computed by OLAK, we compute the
total sum of coreness gain for every coreness value and for
every anchor vertex in𝐴. Table 8 also shows that the average
coreness gain (denoted by 𝑎𝑣𝑔𝑂𝐿𝐴𝐾) of OLAK for different 𝑘
values is only 4%-41% of the coreness gain of GAC. Besides,
Figure 10 shows that the best 𝑘 for OLAK is rather different for

10
10
10
10
10
10
10

B. A. G. N. S. Y. D. L.

GAC-U-R GAC-U GAC

(a) All Datasets, b=100

1

10

10

0 20 40 60 80 100

)

Baseline GAC-U-R
GAC-U GAC

10

(b) Brightkite

10

10

10

0 20 40 60 80 100

GAC-U-R GAC-U
GAC

(c) Livejournal

Figure 12: Time Cost of Different Algorithms

different datasets. There is no uniform preference on large,
moderate, or small 𝑘 values for different datasets.

Distribution of Anchors and Followers. Figure 8 shows
the distribution of 100 anchors (from GAC) on coreness is
relatively uniform, compared with the anchors from OLAK,
where OLAK9 denotes the anchors from OLAK with 𝑘 = 9.
Given an input 𝑘 , the coreness values of the 100 anchors
from OLAK can only be less than 𝑘 (mostly have the coreness
of 𝑘 − 1), which is consistent with the theory in [45]. Besides,
Figure 11 shows the distribution of followers, which has the
similar result as the distribution of anchors.

5.2 Efficiency

Overall Performance. Figure 12(a) shows the total run-
ning time of GAC, GAC-U and GAC-U-R on all the 8 datasets
when 𝑏 = 100. GAC-U-R does not return on Youtube and
Livejournal after 10 days and thus the runtime is not re-
ported. With our result-reusing mechanism (Algorithm 3),
GAC-U is faster than GAC-U-R by 1 order of magnitude on
average. Further benefitting from the upper bound based
pruning (Section 4.5), the runtime of GAC is usually faster
than GAC-U by more than 3 times. The details are as follows.

Efficient Followers Computing. Equipped with our im-
proved algorithm for computing coreness gain of anchors
(Algorithm 4), GAC-U-R is faster than Baseline by at least 1
order of magnitude on Brightkite, as shown in Figure 12(b).
As it is very time-consuming to compute the coreness gain
of candidate anchors using core decomposition, we can only
report the runtime of Baseline on Brightkite.

Intermediate Result Reusing. By applying the core com-
ponent tree (Section 4.1) and the result-reusing mechanism
(Algorithm 3), GAC-U always outperforms GAC-U-R on run-
time by at least 1 order of magnitude, as shown in Figure 12.
Note that GAC-U-R can only find 10 anchors on Livejournal
within the time limit. The scalability of GAC-U is also better
than GAC-U-R in the experiments. The outperformance is
because we can prune the search space by reusing the inter-
mediate results associated with the tree nodes, when they

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2222

10
10
10
10
10
10 B. A. G. N. S. Y. D. L.

GAC-U-R GAC-U GAC

(a) visited tree nodes

10

10

10

10

10 B. A. G. N. S. Y. D. L.

GAC-U-R GAC-U GAC

(b) visited vertices

Figure 13: Visited Amount

keep same for one anchoring. In Figure 13(a), the number of
visited tree nodes of GAC-U is around 10% of GAC-U-R.

Candidate Anchors Pruning. In Figure 12, we can see our
final algorithm GAC achieves further speedup based on GAC-U
when the upper bound pruning is equipped (Section 4.5). The
processing time of GAC is only 20% − 30% of GAC-U because
GAC reduces the search space by pruning the vertices with
insufficient upper bounds of coreness gains. In Figure 13(a)-
(b), the number of visited tree nodes and the number of
visited vertices in GAC are much less than that in GAC-U.

6 RELATEDWORK

Many cohesive subgraph models are studied in different sce-
narios, e.g., clique [9, 13], quasi-clique [1, 35], 𝑘-core [8, 22,
32, 36], 𝑘-truss [17, 23, 39, 42], and 𝑘-ecc [11, 50]. Among
them, the 𝑘-core is widely studied with a lot of applica-
tions such as community discovery [18, 19, 28], influen-
tial spreader identification [26, 29, 30, 41], discovering pro-
tein complexes [3], recognizing hub-nodes in brain func-
tion networks [7], analyzing the structure of Internet [10],
understanding software networks and its functional con-
sequences [48], predicting structural collapse in ecosys-
tems [34], and graph visualization [2, 49].

An in-memory algorithm for core decomposition is intro-
duced in [4] with a time complexity of O(𝑚 + 𝑛). External
algorithms are proposed to handle graphs that cannot reside
in the memory [12]. An I/O efficient algorithm is introduced
in [43] which assumes the memory can maintain a small
constant amount of data. In addition, a distributed algorithm
is developed in [33] for core decomposition. Core decompo-
sition is investigated in [25] using different frameworks to
compare the performance on a single PC.
The engagement dynamics in social networks has at-

tracted increasing attention, e.g., [6, 16, 31, 46]. The 𝑘-core
model is widely applied, as its degeneration property well
models the dynamic of user engagement [31]. Besides, the
𝑘-truss is also used in the study of user engagement [47],
which may be feasible for particular communities.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose and study the anchored coreness
problem aiming to anchor a set of vertices such that the
coreness gain from all the vertices is maximized. We prove
the problem is NP-hard and APX-hard. An efficient greedy
algorithm is proposed with a novel tree based result reusing
mechanism. We also propose effective pruning techniques to
reduce the search space. Extensive experiments on 8 real-life
networks demonstrate the effectiveness of our model and the
efficiency of our algorithm. The reusing mechanism sheds
light on the computings for other problems on hierarchical
decomposition, e.g., truss decomposition. It implies that the
computation can be divided into independent units and the
reuse of intermediate results is feasible. The data locality and
independency in the tree structure of decompositions may
also inspire efficient parallel and distributed solutions.

8 PROOFS OF THEOREMS
Proof of Theorem 4.6: We prove it by contradiction. Sup-
pose there is a non-anchor vertex 𝑢 ∈ 𝑉 (𝐺) with core-
ness increasing from 𝑘 ′ to 𝑘∗ after anchoring 𝑥 and 𝑘∗ >
𝑘 ′ + 1. Let 𝑀 be the 𝑘∗-core after 𝑥 is anchored, we have
𝑢 ∈ 𝑀 and 𝑑𝑒𝑔(𝑣,𝑀) ≥ 𝑘∗ for every vertex 𝑣 ∈ 𝑀 . If
we delete 𝑥 and its corresponding edges from 𝑀 , we have
𝑑𝑒𝑔(𝑣,𝑀 \ {𝑥 ∪ 𝐸 (𝑥)}) ≥ 𝑘∗ − 1 for every 𝑣 ∈ 𝑀 because
at most one edge is removed for each vertex 𝑣 ∈ 𝑀 . Thus,
𝑀 \ {𝑥 ∪ 𝐸 (𝑥)} ⊆ 𝐶𝑘∗−1 (𝐺). As 𝑢 ∈ 𝑀 and 𝑢 ≠ 𝑥 , we have
𝑢 ∈ 𝐶𝑘∗−1 (𝐺) and thus 𝑘 ′ ≥ 𝑘∗ − 1 which contradicts with
𝑘∗ > 𝑘 ′ + 1. �

Proof of Theorem 4.7: Let𝑂 denote a vertex deletion order
of core decomposition on𝐺 without the anchoring of 𝑥 . Note
that the deletion order may be different when there are some
vertices with same degree in the deletion procedure, while
it is proved in [45] that any order following Algorithm 1
leads to the same coreness result. We denote the graph after

anchoring 𝑥 by𝐺𝑥 . After the anchoring of 𝑥 , for every vertex
𝑢 ∈ 𝑉 (𝐺𝑥) with 𝑐 (𝑢,𝐺) < 𝑐 (𝑥,𝐺), we can follow the deletion
order 𝑂 of 𝐺 in the core decomposition of 𝐺𝑥 , and then
𝑐𝑥 (𝑢,𝐺𝑥) = 𝑐 (𝑢,𝐺) because the degree of𝑢 in the order keeps
same when𝑢 is visited and to be deleted. Let 𝑘 ′ = 𝑐 (𝑥,𝐺), we
have𝐶𝑘′ (𝐺𝑥) = 𝐶𝑘′ (𝐺). Let𝐶 denote the 𝑘 ′-core component
containing 𝑥 , for every vertex 𝑢 ∈ {𝐶𝑘′ (𝐺𝑥) −𝐶}, we have
𝑐𝑥 (𝑢,𝐺𝑥) = 𝑐 (𝑢,𝐺) because 𝑢 and 𝑥 are not in the same
connected component of 𝐶𝑘′ (𝐺𝑥).
Consider a tree node 𝑇𝑁 in T of 𝐺 with 𝑇𝑁 .𝐼 ∉ 𝑠𝑛(𝑥)

and 𝑇𝑁 .𝐾 ≥ 𝑐 (𝑥,𝐺). The anchoring of 𝑥 may make a ver-
tex set 𝑉+ (from 𝑇𝑁 .𝑃) increase coreness and enter 𝐶𝐶 (𝑇𝑁).
However, for each 𝑣 ∈ 𝑉+, 𝑣 ∉ 𝐶 (𝑇𝑁 .𝐾)+1(𝐺𝑥) because, 1) the
coreness of a vertex can increase by at most 1 for one anchor,
according to Theorem 4.6; 2) 𝑥 ∉ 𝑉+ otherwise𝑇𝑁 .𝐼 ∈ 𝑠𝑛(𝑥)
which contradicts the assumption. Thus, if we delete the ver-
tices in 𝑉+ before 𝑇𝑁 .𝑉 in core decomposition, each vertex

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2223

𝑢 ∈ 𝑇𝑁 .𝑉 has the same degree as in𝑂 when 𝑢 is visited and
to be deleted, i.e., 𝑐𝑥 (𝑢,𝐺𝑥) = 𝑐 (𝑢,𝐺). Thus, only the vertices
in

⋃
𝑖𝑑 ∈𝑠𝑛 (𝑥) T [𝑖𝑑] .𝑉 may be the followers of 𝑥 . �

Proof of Lemma 4.8: We prove it by contradiction. To prove
1), suppose an 𝑖𝑑 ∈ 𝑟𝑛(𝑢) has 𝑖𝑑 ∉ 𝑠𝑛′(𝑢). That means a©
T ′[𝑖𝑑] .𝑉 does not contain any neighbor of 𝑢 or b© T ′[𝑖𝑑] .𝑉
contains the neighbors of 𝑢 but also contains another vertex
whose 𝑖𝑑 ′ < 𝑖𝑑 so T ′[𝑖𝑑] .𝐼 = 𝑖𝑑 ′ and 𝑖𝑑 ′ ∈ 𝑠𝑛′(𝑢).

For a©, if vertex 𝑖𝑑 itself did not increase its coreness, then
the neighbors of 𝑢 in T [𝑖𝑑] .𝑉 must have increased their
coreness and left T [𝑖𝑑] .𝑉 . So these neighbors belong to 𝑉𝑥
(Line 1 of Algorithm 3) and they are used to erase 𝑖𝑑 at Line
3-6, which contradicts with 𝑖𝑑 ∈ 𝑟𝑛(𝑢); If 𝑖𝑑 increased its
coreness, 𝑖𝑑 would make all the vertices in T [𝑖𝑑] .𝑉 belong
to 𝑉𝑥 (Line 1), and then 𝑖𝑑 is erased from 𝑟𝑛(𝑢) at Line 3-
6 which contradicts with 𝑖𝑑 ∈ 𝑟𝑛(𝑢). For b©, if vertex 𝑖𝑑
did not increase its coreness, it means there is a vertex 𝑣
with coreness increased and then joined T ′[𝑖𝑑] .𝑉 . For such
𝑣 , 𝑣 ∈ 𝑉𝑥 which makes the neighbors of 𝑢 in T ′[𝑖𝑑] .𝑉 be
included in 𝑉 ′

𝑥 (Line 12). So, 𝑖𝑑 is erased from 𝑟𝑛(𝑢) at Line
13-16 which contradicts with 𝑖𝑑 ∈ 𝑟𝑛(𝑢); If 𝑖𝑑 increased its
coreness, it contradicts with 𝑖𝑑 ∈ 𝑟𝑛(𝑢) because of the same
reason when 𝑖𝑑 increased its coreness in a©.
To prove 2), suppose there is an 𝑖𝑑 ∈ 𝑟𝑛(𝑢) having

T ′[𝑖𝑑] .𝐾 ≠ T [𝑖𝑑] .𝐾 , that means vertex 𝑖𝑑 must have in-
creased its coreness. So, all the vertices of T [𝑖𝑑] .𝑉 belong
to 𝑉𝑥 (Line 1) which erased 𝑖𝑑 from 𝑟𝑛(𝑢) at Line 3-6 and
contradicts with 𝑖𝑑 ∈ 𝑟𝑛(𝑢).
To prove 3), suppose there is an 𝑖𝑑 ∈ 𝑟𝑛(𝑢) having

T ′[𝑖𝑑] .𝑉 ≠ T [𝑖𝑑] .𝑉 . We already proved that 𝑖𝑑 ∈ 𝑠𝑛′(𝑢)
and T ′[𝑖𝑑] .𝐾 = T [𝑖𝑑] .𝐾 . Thus, there must be c© a vertex
𝑣 ∈ T [𝑖𝑑] .𝑉 increased 𝑐 (𝑣) and then left T [𝑖𝑑] .𝑉 , or d© a
vertex 𝑣 joined in T ′[𝑖𝑑] .𝑉 because its coreness increased.

For c©, 𝑣 can make all vertices of T [𝑖𝑑] .𝑉 belong to 𝑉𝑥
(Line 1) then erase 𝑖𝑑 (Line 3-6). For d©, 𝑣 can make 𝑢’s
neighbors in T ′[𝑖𝑑] .𝑉 belong to 𝑉 ′

𝑥 (Line 12) and can erase
𝑖𝑑 (Line 13-16). Both c© and d© contradict with 𝑖𝑑 ∈ 𝑟𝑛(𝑢). �

Proof of Theorem 4.9: Let𝑂 denote a vertex deletion order
of core decomposition on 𝐺 without anchoring 𝑥 . Similar
to the proof of Theorem 4.7, we follow the deletion order
𝑂 in the core decomposition of 𝐺𝑥 . Let 𝑘

∗ = T ′[𝑖𝑑] .𝐾 . The
anchoring of 𝑥 may make a vertex set 𝑉+ (from T [𝑖𝑑] .𝑃)
increase coreness so enter 𝐶𝐶 (T ′[𝑖𝑑]), but for each 𝑣 ∈ 𝑉+,
𝑣 ∉ 𝐶𝑘∗+1 (𝐺𝑥) since the coreness of a vertex can increase
by at most 1 for one anchor according to Theorem 4.6. Also,
we have T ′[𝑖𝑑] .𝐾 = T [𝑖𝑑] .𝐾 and T ′[𝑖𝑑] .𝑉 = T [𝑖𝑑] .𝑉 from
Lemma 4.8. Thus,𝑉+ = ∅. Now we conclude each vertex 𝑢 ∈
T ′[𝑖𝑑] .𝑉 has the same degree as in 𝑂 when 𝑢 is visited and
to be deleted in core decomposition of 𝐺𝑥 , i.e., 𝑐

𝑥 (𝑢,𝐺𝑥) =
𝑐 (𝑢,𝐺). So the followers of 𝑥 at node 𝑖𝑑 keeps same after
anchoring 𝑥 . �

Proof of Theorem 4.14: Before the anchoring of 𝑥 in 𝐺 ,
let 𝑘 = 𝑐 (𝑢,𝐺), all the neighbors of 𝑢 in 𝐺 are classified
into three sets: 𝑁 0

𝑢 contains every neighbor 𝑣 with P[𝑣] .𝑘 <
P[𝑢] .𝑘 , i.e., 𝑐 (𝑣,𝐺) < 𝑐 (𝑢,𝐺); 𝑁 1

𝑢 contains every neighbor 𝑣
withP[𝑣] .𝑘 = P[𝑢] .𝑘 andP[𝑣] .𝑖 < P[𝑢] .𝑖; and𝑁 2

𝑢 contains
the other neighbors of 𝑢. (i) Suppose 𝑥 ∈ 𝑁 0

𝑢 ∪ 𝑁 1
𝑢 , (𝑥,𝑢)

itself is an upstair path from 𝑥 to 𝑢. (ii) Suppose 𝑥 ∈ 𝑁 2
𝑢 , let

𝑂 denote a vertex deletion order of core decomposition on
𝐺 without any anchors (Algorithm 1). We denote the graph
after anchoring 𝑥 by 𝐺𝑥 . For every vertex 𝑣 ∈ 𝑉 (𝐺𝑥) with
P[𝑣] ≺ P[𝑥], we can follow the same deletion order 𝑂 in
the core decomposition of 𝐺𝑥 , and then 𝑐𝑥 (𝑣,𝐺𝑥) = 𝑐 (𝑣,𝐺)
because the degree of 𝑣 in the order keeps same when 𝑣
is visited and to be deleted. Thus, 𝑐𝑥 (𝑢,𝐺𝑥) = 𝑐 (𝑢,𝐺) and
𝑢 is not a follower of 𝑥 if 𝑥 ∈ 𝑁 2

𝑢 . So 𝑥 ∉ 𝑁 2
𝑢 . (iii) Suppose

𝑥 ∉ 𝑁 0
𝑢∪𝑁

1
𝑢∪𝑁

2
𝑢 ,𝑢 must have a neighbor 𝑣0 ∈ 𝑁 1

𝑢∩𝐶𝑘+1 (𝐺𝑥);
otherwise, 𝑐𝑥 (𝑢,𝐺𝑥) = 𝑐 (𝑢,𝐺) as in case (ii) following the
deletion order 𝑂 . Thus, if a vertex 𝑣𝑖 ∈ 𝐶𝑘+1(𝐺𝑥) \𝐶𝑘+1(𝐺),
𝑣𝑖 must have a neighbor 𝑣𝑖+1 ∈ 𝑁 1

𝑣𝑖 ∩ 𝐶𝑘+1(𝐺𝑥) or 𝑣𝑖+1 = 𝑥 .
Recursively, 𝑢 ∈ F (𝑥) implies there is a path (𝑥, ..., 𝑢) which
is an upstair path from 𝑥 to 𝑢 where each vertex in the path
is a follower of 𝑥 except 𝑥 itself. �

Proof of Theorem 4.15: We denote the graph after an-
choring 𝑥 by 𝐺𝑥 , and let 𝑘+ = 𝑐 (𝑢,𝐺) + 1. We show if
𝑑+(𝑢) < 𝑐 (𝑢,𝐺) + 1, then 𝑑𝑒𝑔(𝑢,𝐶𝑘+ (𝐺𝑥)) < 𝑘+, so 𝑢
cannot be a follower of 𝑥 . 𝑢’s neighous can be divided
into those in

⋃
𝑖𝑑∈𝑝𝑛 (𝑢) 𝑡𝑐𝑎[𝑢] [𝑖𝑑], 𝑡𝑐𝑎

≤
= (𝑢) ∪ 𝑡𝑐𝑎>= (𝑢) and⋃

𝑖𝑑∈𝑠𝑛 (𝑢)\{𝑖𝑢 } 𝑡𝑐𝑎[𝑢] [𝑖𝑑], respectively. Obviously the neigh-
bors of

⋃
𝑖𝑑∈𝑝𝑛 (𝑢) 𝑡𝑐𝑎[𝑢] [𝑖𝑑] are not in𝐶𝑘+ (𝐺𝑥), because they

cannot increase the coreness by 2 according to Theorem 4.6.
For the neighbors in 𝑡𝑐𝑎≤= (𝑢) ∪ 𝑡𝑐𝑎>= (𝑢), they are all consid-
ered in 𝑑+𝑠 (𝑢) or 𝑑

+
𝑢 (𝑢), unless they are 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 or never

pushed to 𝐻 , both of which mean they are not in 𝐶𝑘+ (𝐺𝑥).
At last, for the neighbors in

⋃
𝑖𝑑∈𝑠𝑛 (𝑢)\{𝑖𝑢 } 𝑡𝑐𝑎[𝑢] [𝑖𝑑], they

satisfy |
⋃
𝑖𝑑 ∈𝑠𝑛 (𝑢)\{𝑖𝑢 } 𝑡𝑐𝑎[𝑢] [𝑖𝑑] | = 𝑑> (𝑢). Since 𝑑

+(𝑢) con-
siders all the neighbors of 𝑢 which are possible to be in
𝐶𝑘+ (𝐺𝑥), 𝑑

+(𝑢) is a degree bound of 𝑑𝑒𝑔(𝑢,𝐶𝑘+ (𝐺𝑥)). �

Proof of Theorem 4.17: According to the Equation 1 and 2,
all the vertices of

⋃
𝑖𝑑 ∈𝑠𝑛 (𝑥) T [𝑖𝑑] .𝑉 which are reachable by

𝑥 via upstair paths are counted at least once in the equa-
tions. Therefore, based on Theorem 4.14, we can prove that
|𝐹 [𝑥] [𝑖𝑥] | ≤ 𝑈𝐵𝑖𝑥 (𝑥) and |𝐹 [𝑥] [𝑖𝑑] | ≤ 𝑈𝐵>

𝑖𝑑
(𝑥) for each

𝑖𝑑 ∈ 𝑠𝑛(𝑥)\{𝑖𝑥 }. Then, based on Equation 3 and Theorem 4.7,
we can conclude that 𝑔({𝑥},𝐺) ≤ 𝑈𝐵𝜎 (𝑥). �

ACKNOWLEDGMENTS

Fan Zhang is supported by RQ2020090. Xuemin Lin
is supported by 2018YFB1003504, NSFC61232006, ARC
DP180103096 and DP170101628. Wenjie Zhang is supported
by ARC DP180103096. Ying Zhang is supported by ARC
DP180103096 and FT170100128.

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2224

REFERENCES
[1] James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. 2002.

Massive Quasi-Clique Detection. In LATIN. 598–612.

[2] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessan-

dro Vespignani. 2005. Large scale networks fingerprinting and visual-

ization using the k-core decomposition. In NeurIPS. 41–50.

[3] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated

method for finding molecular complexes in large protein interaction

networks. BMC Bioinformatics 4 (2003), 2.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for

Cores Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[5] Kshipra Bhawalkar, Jon M. Kleinberg, Kevin Lewi, Tim Roughgarden,

and Aneesh Sharma. 2012. Preventing Unraveling in Social Networks:

The Anchored k-Core Problem. In ICALP. 440–451.

[6] Kshipra Bhawalkar, Jon M. Kleinberg, Kevin Lewi, Tim Roughgarden,

and Aneesh Sharma. 2015. Preventing Unraveling in Social Networks:

The Anchored k-Core Problem. SIAM J. Discrete Math. 29, 3 (2015),

1452–1475.

[7] Michal Bola and Bernhard A. Sabel. 2015. Dynamic reorganization of

brain functional networks during cognition. NeuroImage 114 (2015),

398–413.

[8] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-

generalized Core Decomposition. In SIGMOD. 1006–1023.

[9] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an

Undirected Graph (Algorithm 457). Commun. ACM 16, 9 (1973), 575–

576.

[10] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran

Shir. 2007. A model of Internet topology using k-shell decomposition.

Proceedings of the National Academy of Sciences 104, 27 (2007), 11150–

11154.

[11] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and

Weifa Liang. 2013. Efficiently computing k-edge connected compo-

nents via graph decomposition. In SIGMOD. 205–216.

[12] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Effi-

cient core decomposition in massive networks. In ICDE. 51–62.

[13] James Cheng, Yiping Ke, AdaWai-Chee Fu, Jeffrey Xu Yu, and Linhong

Zhu. 2010. Finding maximal cliques in massive networks by H*-graph.

In SIGMOD. 447–458.

[14] Rajesh Chitnis, Fedor V. Fomin, and Petr A. Golovach. 2016. Parame-

terized complexity of the anchored k-core problem for directed graphs.

Inf. Comput. 247 (2016), 11–22.

[15] Rajesh Hemant Chitnis, Fedor V. Fomin, and Petr A. Golovach. 2013.

Preventing Unraveling in Social Networks Gets Harder. In AAAI.

[16] M. S.-Y. Chwe. 2000. Communication and coordination in social net-

works. The Review of Economic Studies 67, 1 (2000), 1–16.

[17] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network

analysis. National security agency technical report 16 (2008), 3–1.

[18] YonDourisboure, FilippoGeraci, andMarco Pellegrini. 2009. Extraction

and classification of dense implicit communities in the Web graph.

TWEB 3, 2 (2009), 7:1–7:36.

[19] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng

Hu. 2017. Effective Community Search over Large Spatial Graphs.

PVLDB 10, 6 (2017), 709–720.

[20] Uriel Feige. 1998. A Threshold of ln n for Approximating Set Cover. J.

ACM 45, 4 (1998), 634–652.

[21] David García, Pavlin Mavrodiev, and Frank Schweitzer. 2013. Social re-

silience in online communities: the autopsy of friendster. In Conference

on Online Social Networks. 39–50.

[22] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and

Michalis Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph

Clustering Framework. In AAAI. 44–50.

[23] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu.

2014. Querying k-truss community in large and dynamic graphs. In

SIGMOD. 1311–1322.

[24] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems.

In Complexity of Computer Computations. 85–103.

[25] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015.

K-Core Decomposition of Large Networks on a Single PC. PVLDB 9, 1

(2015), 13–23.

[26] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev

Muchnik, H Eugene Stanley, and Hernán A Makse. 2010. Identification

of influential spreaders in complex networks. Nature physics 6, 11

(2010), 888.

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large

Network Dataset Collection. http://snap.stanford.edu/data.

[28] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong

Xiao, and Zibin Zheng. 2018. Skyline Community Search in Multi-

valued Networks. In SIGMOD. 457–472.

[29] Jian-Hong Lin, Qiang Guo, Wen-Zhao Dong, Li-Ying Tang, and Jian-

Guo Liu. 2014. Identifying the node spreading influence with largest

k-core values. Physics Letters A 378, 45 (2014), 3279–3284.

[30] Fragkiskos DMalliaros,Maria-Evgenia G Rossi, andMichalis Vazirgian-

nis. 2016. Locating influential nodes in complex networks. Scientific

reports 6 (2016), 19307.

[31] Fragkiskos D. Malliaros and Michalis Vazirgiannis. 2013. To stay or

not to stay: modeling engagement dynamics in social graphs. In CIKM.

469–478.

[32] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering

and clustering and Graph Coloring Algorithms. J. ACM 30, 3 (1983),

417–427.

[33] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi.

2013. Distributed k-Core Decomposition. IEEE Trans. Parallel Distrib.

Syst. 24, 2 (2013), 288–300.

[34] Flaviano Morone, Gino Del Ferraro, and Hernán A Makse. 2019. The

k-core as a predictor of structural collapse in mutualistic ecosystems.

Nature Physics 15, 1 (2019), 95.

[35] Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph

quasi-cliques. In SIGKDD. 228–238.

[36] S. B. Seidman. 1983. Network structure and minimum degree. Social

networks 5, 3 (1983), 269–287.

[37] Kazunori Seki and Masataka Nakamura. 2016. The collapse of the

Friendster network started from the center of the core. In ASONAM.

477–484.

[38] Kazunori Seki and Masataka Nakamura. 2017. The mechanism of

collapse of the Friendster network: What can we learn from the core

structure of Friendster? Social Netw. Analys. Mining 7, 1 (2017), 10:1–

10:21.

[39] Yingxia Shao, Lei Chen, and Bin Cui. 2014. Efficient cohesive subgraphs

detection in parallel. In SIGMOD. 613–624.

[40] Babak Tootoonchi, Venkatesh Srinivasan, and Alex Thomo. 2017. Ef-

ficient Implementation of Anchored 2-core Algorithm. In ASONAM.

1009–1016.

[41] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon M. Klein-

berg. 2012. Structural diversity in social contagion. Proc. Natl. Acad.

Sci. U.S.A. 109, 16 (2012), 5962–5966.

[42] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive

Networks. PVLDB 5, 9 (2012), 812–823.

[43] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016.

I/O efficient Core Graph Decomposition at web scale. In ICDE. 133–

144.

[44] Shaomei Wu, Atish Das Sarma, Alex Fabrikant, Silvio Lattanzi, and

Andrew Tomkins. 2013. Arrival and departure dynamics in social

networks. InWSDM. 233–242.

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2225

[45] Fan Zhang, Wenjie Zhang, Ying Zhang, Lu Qin, and Xuemin Lin. 2017.

OLAK: An Efficient Algorithm to Prevent Unraveling in Social Net-

works. PVLDB 10, 6 (2017), 649–660.

[46] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017.

Finding Critical Users for Social Network Engagement: The Collapsed

k-Core Problem. In AAAI. 245–251.

[47] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2018.

Efficiently Reinforcing Social Networks over User Engagement and

Tie Strength. In ICDE. 557–568.

[48] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010.

Using the k-core decomposition to analyze the static structure of large-

scale software systems. The Journal of Supercomputing 53, 2 (2010),

352–369.

[49] Feng Zhao and Anthony K. H. Tung. 2012. Large Scale Cohesive

Subgraphs Discovery for Social Network Visual Analysis. PVLDB 6, 2

(2012), 85–96.

[50] Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen,

and Jianxin Li. 2012. Finding maximal k-edge-connected subgraphs

from a large graph. In EDBT. 480–491.

Research 25: Social Network Analysis SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2226

