
Exploring Finer Granularity within the Cores:
Efficient (k,p)-Core Computation

Chen Zhang‡†, Fan Zhang‡�, Wenjie Zhang†, Boge Liu†, Ying Zhang§, Lu Qin§, Xuemin Lin†
‡Guangzhou University, †University of New South Wales, §University of Technology Sydney

fanzhang.cs@gmail.com, {chenz, wenjie.zhang, boge.liu, xuemin.lin}@unsw.edu.au, {ying.zhang, lu.qin}@uts.edu.au

Abstract—In this paper, we propose and study a novel cohesive
subgraph model, named (k,p)-core, which is a maximal subgraph
where each vertex has at least k neighbours and at least p
fraction of its neighbours in the subgraph. The model is motivated
by the finding that each user in a community should have at
least a certain fraction p of neighbors inside the community to
ensure user engagement, especially for users with large degrees.
Meanwhile, the uniform degree constraint k, as applied in the
k-core model, guarantees a minimum level of user engagement
in a community, and is especially effective for users with small
degrees. We propose an O(m) algorithm to compute a (k,p)-core
with given k and p, and an O(dm) algorithm to decompose
a graph by (k,p)-core, where m is the number of edges in
the graph G and d is the degeneracy of G. A space efficient
index is designed for time-optimal (k,p)-core query processing.
Novel techniques are proposed for the maintenance of (k,p)-core
index against graph dynamic. Extensive experiments on 8 real-
life datasets demonstrate that our (k,p)-core model is effective
and the algorithms are efficient.

I. INTRODUCTION

Graphs are widely used to model the relationships of entities
in a large spectrum of applications including social networks,
world wide web, collaboration networks, and biology. Co-
hesive subgraph mining, as a fundamental graph problem,
extracts highly connected structures from large graphs. The
cohesive subgraph model of k-core has attracted great attention
due to its elegant property and linear-time computation [19].
Given a graph G, k-core is a maximal subgraph of G such
that every vertex in the subgraph is connected to at least
k other vertices within the same subgraph. It has a wide
range of applications such as social contagion [22], community
detection [28], influential spreader identification [8], collapse
prediction [14], anomalies detection [21], core resilience [9],
and user engagement study [12].

Many studies in sociology and economics reveal that the
behavior of a user (e.g., leave or remain within the social
group, adoption of a new technique/product/idea) is highly
influenced by his/her neighborhood. A user tends to adopt a
new behavior if there are a considerable number of friends
in the group who adopted the same behavior [12]. The k-core
model is considered as a powerful tool and a common practice
in studying the user engagement dynamics of social networks.
The nondiscriminatory degree constraint of k ensures a basic
engagement level of a vertex in the k-core subgraph.

∗Chen Zhang and Fan Zhang are the joint first authors. Fan Zhang is
the corresponding author.

-core -core
-core

Fig. 1. Three (k, p)-Cores when k = 3

Nevertheless, in a real-life social network, the same degree
constraint k may affect differently to users with different scales
of degree (i.e., numbers of neighbors) in the network [15].
An empirical study validates that a large-degree user usually
needs more friends (i.e., neighbors) than a small-degree user
to motivate him/her to adopt a certain behavior [2]. Thus,
in the k-core model, the single degree constraint k may not
be sufficient to ensure that every user in the k-core is well-
engaged. For instance, consider two users A with 100 friends
and B with 20 friends in a social network G. Suppose the
k-core of G contains both A and B, where each of them
has 20 friends in the k-core. In such a scenario, A has a
significantly worse engagement than B, because most of A’s
friends (80%) are not in the k-core. Therefore, a customized
degree constraint should be applied for every vertex in the
network to find the groups of well-engaged users.

Similar rational has also been proposed in the long-term
community discovery, e.g., a community is identified in [7],
[17] where each vertex has more neighbors within the com-
munity than outside of the community. In the contagion
model [15], a user will be influenced by (e.g., adopt) a new
behavior in social interactions, if at least a certain fraction p of
his/her friends adopted the behavior. Easley and Kleinberg [6]
further emphasize the contagion model and show that a com-
munity is homogeneous if every vertex in the community has
at least a fraction p of its neighbors inside. New innovations
are difficult to enter such communities, because people tend
to actively interact with their neighbors [6]. Nevertheless, the
basic degree constraint k is not considered in above studies.
Many small-degree users with a few (but a large fraction of)
neighbors may be contained in these communities.

Motivated by the above facts, we propose and study a
novel cohesive subgraph model, named (k,p)-core, which is a
maximal subgraph where each vertex has at least k neighbours

181

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00023

and at least p fraction of its neighbours in the subgraph.
The fraction constraint p is further applied in the k-core
model, to customize and polish the degree constraint for every
vertex. Such a fraction requirement helps refine the k-core
model to more accurately capture the engagement dynamics
of users and explore a finer granularity on top of the k-
core model. Figure 1 shows three different (k,p)-cores when
k = 3. Although the core numbers of vertices v5 to v13 are
the same, the 3-core subgraph is further refined into (k,p)-
cores with smaller sizes by incorporating the new fraction
requirement. Our empirical studies in Section VII demonstrate
that such a fine-grained (k,p)-core model better captures the
user engagement dynamics in real social networks.

Despite the promising characteristics and performance of
(k,p)-core, the extra consideration of neighborhood fraction
also brings challenges in both structural analysis and com-
puting technique development. In the paper, we aim to com-
prehensively study the computation of (k,p)-core for given
k and p values, the decomposition of (k,p)-core (computing
the (k,p)-core for every possible pair of k and p), the index-
based query processing techniques to support frequent (k,p)-
core computation requests, as well as the maintenance of
the index over dynamic graphs. The extra fraction aspect in
the (k,p)-core model brings challenges especially in dynamic
maintenance of (k,p)-cores due to the non-trivial change of
fraction values of vertices with edge insertion or deletion.

In the paper, we address the above challenges and objec-
tives. The principal contributions of this paper are summarized
in the following.

• We propose and advocate a novel cohesive subgraph
model (k,p)-core. Based on k-core, the new model con-
siders the extra fraction constraint p to customize the
degree requirement for every vertex, and better captures
the engagement dynamics in real social networks.

• We analyze the (k,p)-core subgraphs from hierarchical
structures regarding increasing p values for a given k.
We devise an algorithm with O(m) time complexity to
compute a (k,p)-core subgraph with given k and p values
where m is the number of edges in a graph G. A (k,p)-
core decomposition algorithm is developed with O(dm)
time to compute the (k,p)-core for all possible inputs of
k and p values where d is the degeneracy of graph G,
i.e., the maximum k for a non-empty k-core of G.

• We propose an index with O(m) space cost and the index
maintenance techniques to answer (k, p)-core query over
large dynamic graphs. The index can support optimal
(k,p)-core query processing with processing time depend-
ing on the size of result. For maintenance of the index, we
identify a small part of the index which may be affected,
by deriving effective fraction upper and lower bounds.

• Comprehensive experiments are conducted over 8 real-
world datasets to demonstrate the effectiveness of our
(k,p)-core model and the efficiency of our algorithms.
Case studies are also reported on real datasts.

TABLE I
SUMMARY OF NOTATIONS

Notation Definition
G = (V,E) an unweighted and undirected graph
n, m the number of vertices and edges in G, respec-

tively (assume m > n)
u, v a vertex in the graph
S a subgraph of G
V (S); E(S) the vertex set of S; the edge set of S
E(v, S) the edges in S that are incident to v
deg(v, S) the number of adjacent vertices of v in S
N(v, S) the set of adjacent vertices of v in S
k the degree threshold
p the fraction threshold
Ck(G) the k-core of G
cn(v,G) the core number of v in G
d, or d(G) the degeneracy of G, i.e., max{k|Ck(G) �= ∅}
frac(v, S,G) the fraction of v’s neighbors in S over in G, i.e.,

deg(v, S)/deg(v,G)
Ck,p(G) the (k,p)-core of G
pn(v, k,G) the p-number of a vertex v in G for a given k,

i.e., max{p|v ∈ Ck,p(G)}
I the (k,p)-core index of G, i.e.,

⋃
1≤k≤d(G) Ak

Ak an array of I, i.e., (Vk, Pk) where Vk is the
vertex set of Ck(G) and Pk contains the unique
p-numbers of the vertices in Vk

II. PRELIMINARIES

Let G = (V,E) be a simple unweighted and undirected
graph, where V represents the set of vertices and E represents
edges in G. We denote n = |V |, m = |E| and assume m > n.
N(v,G) denotes the set of adjacent (neighbor) vertices of v
in G. Let S denote a subgraph of G. We use deg(v, S), the
degree of v in S, to represent the number of adjacent vertices
of v in S. We summarize the notations in Table I.

When the context is clear, we omit the input graph in
notations, e.g, using deg(e) instead of deg(e,G).

Definition 1. k-core. Given a graph G and an integer k,
a subgraph S is the k-core of G, denoted by Ck(G), if (i)
deg(v, S) ≥ k for every v ∈ S (degree constraint); and (ii)
S is maximal, i.e., any subgraph S′ is not a k-core if S is a
subgraph of S′ and S �= S′.

Given a graph G and an integer k, the k-core of G is
unique [26]. The core number of a vertex u in G is defined
as the largest k such that u is contained in the k-core of
G. The degeneracy d(G) of a graph G is defined as the
maximum k such that the k-core of G is not empty. The
core decomposition problem is to compute the core number of
every vertex in G, or equivalently, the k-core for every integer
k from 1 to d(G). Given a graph, the k-core can be computed
by recursively removing every vertex with degree less than k,
with time complexity of O(m) [3].

Before introducing (k,p)-core, we first define the fraction of
a vertex regarding a subgraph S and the graph G.

Definition 2. fraction. Given a graph G, and a subgraph S
of G, the fraction of vertex v in S is defined as the degree of
v in S divided by the degree of v in G, that is, frac(v, S,G)
= deg(v, S)/deg(v,G).

182

Based on the definition of k-core and the fraction of a
vertex, we define (k,p)-core as follows.

Definition 3. (k,p)-core. Given a graph G, an integer k and
a decimal p, a subgraph S is the (k,p)-core of G, denoted by
Ck,p(G), if for every vertex v in S, (i) deg(v, S) ≥ k (degree
constraint) and (ii) frac(v, S,G) ≥ p (fraction constraint);
and (iii) S is maximal, i.e., any subgraph S′ is not a (k,p)-
core if S is a subgraph of S′ and S �= S′.

Given a graph G with any input of k and p, the (k,p)-core is
always a subgraph of k-core. When k and p are specified, the
(k,p)-core of G is unique. Suppose there exist two subgraphs
G1 and G2 which are both the (k,p)-core of G and G1 �= G2.
Then, G1+G2 forms a larger (k,p)-core which contradicts with
that G1 and G2 are both (k,p)-core (the maximality constraint).

Example 1. In Figure 1, the 3-core is induced by 9 vertices: v5
to v13. The core number of vertex v5 is 3. The fraction of vertex
v5 in the 3-core is 0.5, because 3 out of its 6 neighbors are in
the 3-core. The 3-core itself is a (3,0.5)-core which contains
two smaller (k,p)-cores: (3,0.6)-core and (3,2/3)-core.

Problem Definition. Given a graph G, we comprehensively
study the (k,p)-core computation: (i) we compute the (k,p)-
core of G with specified k and p values; (ii) the (k,p)-
core decomposition that retrieves the (k,p)-cores of G for all
possible pairs of (k, p) values where 1 ≤ k ≤ d(G) and
0 ≤ p ≤ 1; and (iii) the index construction for fast (k,p)-core
query, and the maintenance of the index on dynamic graphs.*

III. (k,p)-CORE COMPUTATION WITH GIVEN k AND p

Algorithm 1 describes the pseudo-code for computing the
(k,p)-core of G, with specified k and p values. In Line 1, we
first compute the combined degree threshold for each vertex,
which is the larger one in k and �p×deg(v,G)�. Note that this
threshold will not change during the computation. Then we do
the degree check on G. For each vertex with insufficient degree
value (Line 3), we delete the vertex and its incident edges
(Line 4). We use a queue Q to record the vertices waiting for
deletion in Line 3. The deletion of a vertex will decrease the
degrees of its neighbors by 1 in Line 4. Once the degree of a
vertex v decreases from t[v] to t[v] − 1, we push v into the
queue Q. We maintain a tag set T to distinguish the status of
every vertex: (1) in G but not in Q, (2) in G and in Q, and
(3) not in G. Note that we do not need to update the vertex
degree which is already smaller than its combined threshold.

Example 2. Consider the graph in Figure 1, suppose k = 3
and p = 2/3, we firstly push v1, v2, v3 and v4 to the queue
waiting for deletion, as their degrees are all smaller than k.
After deleting the 4 vertices one by one, the degree of v5 is
3, less than its combined threshold max(k, �p× deg(v5)�) =
max(3, 4) = 4. The deletion of v5 will remove v6, v7 and

*While the (k, p)-core with given k and p can be computed by trivially
extending the k-core computation (Section III), the decomposition (Sec-
tion IV), index construction (Section V), and index maintenance (Section VI)
for (k, p)-core are non-trivial and challenging due to the extra consideration
of fraction constraint (p).

Algorithm 1: kpCore
Input : a graph G, the degree threshold k, the fraction

threshold p
Output : the (k,p)-core of G
t[v] ← max(k, �p× deg(v,G)�) for every vertex v ∈ G;1
G′ ← G;2
while exists v ∈ G′ with deg(v,G′) < t[v] do3

G′ ← G′ \ {v ∪ E(v,G′)};4

return G′5

v8 sequentially. Then, every vertex remaining satisfies its
combined threshold and the (k,p)-core is produced.

Complexity. In Algorithm 1, the vertex deletion and edge
deletion take O(n) and O(m), respectively. Finding the initial
vertices to delete takes O(n). The degree update takes O(m).
So the time complexity is O(m).

Correctness. Every vertex in the subgraph S returned by
Algorithm 1 satisfies the degree constraint k and the fraction
constraint p; otherwise, Algorithm 1 will continue to delete
the vertices violating the two constraints. Suppose S is not a
maximal (k,p)-core, and there is a supergraph S′ of S which
is a larger (k,p)-core. It contradicts with deletion condition in
Line 3. Thus, Algorithm 1 is correct.

IV. (k,p)-CORE DECOMPOSITION

According to the definition of (k,p)-core, the containment
property is immediate: given a graph, if k ≥ k′ and p ≥ p′, the
(k,p)-core is a subgraph of (k′, p′)-core. Although the input k
ranges from integer 1 to integer d(G) and the input p ranges
from 0 to 1 continuously, many (k,p)-cores are exactly same
with different inputs of k and p. For instance, the (3, 0.55)-
core is the same as the (3, 0.6)-core in Figure 1.

We define the p-number of a vertex to facilitate the decom-
position of (k,p)-core.

Definition 4. p-number. Given a graph G and a degree
threshold k, a decimal p is called the p-number of a vertex u,
denoted by pn(u, k,G), if (i) the (k,p)-core contains u and
(ii) (k, p′)-core does not contain u for any p′ > p.

Given a graph and an input k, the p-number of a vertex is
unique according to the definition. Note that the p-numbers of
the vertices can be very different for different k values. The
(k,p)-core numbers of a vertex are multiple pairs of k and p,
where the value of p is the p-number of the vertex according
to the value of k. In the following, we introduce the (k,p)-core
decomposition algorithm. Since the value of p is continuous,
we decompose the graph with a fixed value of k, i.e., lifting
the value of p based on the definition of p-number.

(k,p)-Core Decomposition. Algorithm 2 shows the process of
(k,p)-core decomposition. The decomposition is computed for
k from 1 to d(G) (Line 1). Since the (k,p)-core is always a
subgraph of k-core (p = 0), the largest value of k is d(G), and
the decomposition with fixed k can be computed on the k-core
of G (Line 2). Here the k-core with every k value is computed
by the k-core decomposition [3]. The fraction value of every
vertex in the k-core S may be different. At Line 4, we find

183

Algorithm 2: kpCoreDecom
Input : a graph G
Output : p-numbers of vertices for every k
for k from 1 to d(G) do1

S ← the k-core of G;2
while S is not empty do3

pmin ← min{deg(v, S)/deg(v,G) | ∀v ∈ S};4
while exists v ∈ S with deg(v, S) < k or5
deg(v, S)/deg(v,G) ≤ pmin do

pk[v] ← pmin;6
S ← S \ {v ∪ E(v, S)};7

return pk[v] of every v in k-core for every k8

the minimum fraction value among all the k-core vertices.
For every vertex with degree smaller than k or fraction not
larger than pmin in S (Line 5), we record the p-number of
the vertex by pmin at Line 6, and remove the vertex from S
at Line 7. After deleting all such vertices, we find the next
smallest fraction value again and follow the process to delete
vertices. We repeat this process until S is empty. Finally, we
return the p-numbers for every k.

Example 3. Consider the graph in Figure 1. When k = 1, the
pmin in Algorithm 2 is 1. Thus G itself is a (1, 1)-core. When
k = 2, the 2-core of G is induced by V (G) minus v2 and v4.
In 2-core, the pmin is 5

6 from v5. So the p-number of v5 is 5
6

(Line 6), and v5 is deleted (Line 7). The deletion of v5 will
result in the deletion of all the vertices in 2-core, according
to Line 5. Thus, the p-number of every vertex in 2-core is 5

6
for k = 2. The (k,p)-cores with k = 3 are shown in Figure 1
which can be computed similarly following Algorithm 2.

Complexity. The k-core decomposition takes O(m). For
(k,p)-core decomposition with a fixed k (Line 2 to 7), finding
pmin takes O(n), the vertex deletion takes O(n), the edge
deletion takes O(m), and the degree update takes O(m), and
the update of the queue and the tag set takes O(n). The
decomposition is computed for d times, so the time complexity
is O(dm).

Correctness. The correctness follows the correct computation
of p-number of each vertex for every possible k. Given a k-
core at Line 2, the first p-number (denoted by p1) in Line 4
is correct, because every vertex in the k-core satisfies the
constraints of (k, p1)-core and p = p1 is the largest input for
a (k,p)-core to contain all the k-core vertices. After deleting
the vertices with p1 as their p-number, the second correct p-
number p2 is computed similarly. Recursively, we get that all
the correct p-numbers for each k.

V. (k,p)-CORE INDEX AND QUERY PROCESSING

In Section III we present an algorithm for computing a
(k,p)-core with given k and p, which takes O(m) time by
traversing the entire graph. Considering that the real graph
can be very large and the requests to compute (k,p)-core can
be frequent in real applications, in this section, we present an
efficient algorithm based on index. Particularly, we organize
the (k,p)-cores into a linear space index structure, through
which a (k,p)-core query can be answered in optimal time. We

Algorithm 3: kpCoreQuery
Input : the KP-Index I of the graph G, the degree threshold

k, the fraction threshold p
Output : the vertex set of (k,p)-core Ck,p(G)
(Vk, Pk) ← access Ak of I;1
if k > d or p′ > the largest p-number in Pk then2

return ∅;3

p′ ← the first p-number in Pk which is not smaller than p;4
u ← the vertex in Vk pointed by p′;5
for each vertex v from u to end of Vk in its order do6

Vk,p ← Vk,p ∪ v;7

return Vk,p8

first introduce the index structure, KP-Index, and analyze its
space complexity. Based on KP-Index, we propose an optimal
query processing algorithm.

A. KP-Index

We build an index structure I, named KP-Index, to maintain
all the p-numbers and the corresponding vertices, for every
integer k. The index I consists of d(G) number of arrays,
i.e., I = ⋃

1≤k≤d(G)Ak, where each array Ak contains Vk -
the vertex set of k-core, and Pk - the unique p-numbers of the
vertices in Vk. In every Ak, the vertices in Vk are ordered by
their deletion sequence in Line 5 of Algorithm 2; and every
p-number in Pk points to the first vertex v in Vk with such
p-number. Then, the vertices behind v in Vk have the same
p-number unless they are pointed by another p-number from
Pk. In each Pk of Ak, the p-numbers are ordered by ascending
values.

Example 4. Considering the graph G in Figure 2, the KP-
Index I of G is given in Figure 3. When k = 3, there are
four p-numbers in Pk where each p-number points to the first
vertex in Vk with such p-number, i.e., in the (3, p)-core.

Space Complexity of KP-Index. Next we prove that the KP-
Index structure is space efficient.

Lemma 1. Given a graph G, the space cost of its KP-Index
I is bounded by O(m).

Proof. Every vertex u ∈ G appears at most cn(u) times in the
KP-Index I. Thus, let t(u) denote the times that u appears
in I, the size of I is

∑
u∈V (G) t(u) ≤ ∑

u∈V (G) cn(u) ≤∑
u∈V (G) deg(u) = 2|E(G)|. Consequently, the vertex part

of I, i.e.,
⋃

1≤k≤d(G) Vk, is bounded by O(m). The p-number

part of I, i.e.,
⋃

1≤k≤d(G) Pk, is not larger than the vertex

part. Thus, the space cost of I is bounded by O(m).

B. Optimal Query Processing

With KP-Index, we can optimally retrieve the vertex set of
(k,p)-core with given k and p by visiting only the vertices in
the (k,p)-core. If required, the edge set of the (k,p)-core can
be immediately retrieved by visiting the neighbor set of every
vertex of (k,p)-core. Algorithm 3 shows the pseudo-code for
the (k,p)-core query. For a given query with parameter k, the
corresponding array in I is located in Line 1. Then, p′ is found
in Pk by the first value of p-numbers which is not smaller than

184

Fig. 2. An Example Graph

Fig. 3. KP-Index I
the given parameter p in Line 4. The result Vk,p consists of
all the vertices pointed by p′ to the end of the vertex set of Vk

(Line 7). In case that the input k is larger than the degeneracy
of G, or the input p is greater than the largest p value in Pk,
the result is empty (Line 3).

Example 5. For a (k,p)-core query with k = 3 and p = 0.5,
by checking the p-numbers in Pk, we find 4

7 is the first value
not smaller than 0.5. Then, the vertex pointed by p-number
4
7 and all the vertices behind form the (3, 0.5)-core, i.e., v14,
v15, v16, v17, and v18.

The time complexity of the (k,p)-core query is linear
regarding the result size. As it requires at least linear time
to output the result, the algorithm is optimal. The following
theorem is immediate as only the vertices in Ck,p(G) and the
corresponding p-numbers are visited.

Theorem 1. Given a (k,p)-core query with specified k and
p on the graph G, Algorithm 3 computes the vertex set of
Ck,p(G) in O(|V (Ck,p(G))|) time.

Discussion of KP-Index. As introduced above, KP-Index I is
space-efficient taking O(m) space and supports time-optimal
(k,p)-core query. Revisit the example in Fig. 3, one may
wonder if the space could be further reduced since k-core
is a subgraph of k′-core when k > k′. Observe that the orders
of vertices in Vk across different k in I are inconsistent. For
example, when k = 2, vertex v4 is pointed by a p-number
smaller than that points to v6, while this order is reversed
when k = 3. Thus, we remark that it is not feasible to trivially
record only the vertex set of G (e.g., the vertices in 1-core)
and still support time-optimal query of (k,p)-core.

Fig. 4. The Change of KP-Index after Inserting (v5, v11)

VI. MAINTENANCE OF (k,p)-CORE INDEX

A real-world graph can be highly dynamic where new
vertices/edges are inserted to the graph and some existing
vertices/edges are deleted. In this section, we propose efficient
algorithm to update the KP-Index I against edge insertion and
deletion in the graph.

The dynamic of vertices on the graph G can be processed
as follows: (1) if a non-isolated vertex v is inserted to G, the
index I is updated by inserting each of v’s incident edges.
Both cn(v,G) and pn(v, k,G) are set to 0 in the proposed
algorithm; and (2) if an existing vertex v is deleted from G,
the index I is updated by deleting each of v’s incident edges.

Due to the non-trivial change of p-numbers, it is challenging
to efficiently maintain the KP-Index I. We firstly introduce the
case of edge insertion and then for edge deletion.

A. Edge Insertion

Let (u, v) denote an edge which will be inserted to the
graph G. The following theorem implies that the some arrays
in the (k,p)-core index, i.e., some Ak, remain the same, with
the insertion of (u, v).

Theorem 2. Given a graph G, and an edge (u, v) /∈ G, let
G+ = G+ {(u, v)}, if k > max(cn(u,G+), cn(v,G+)), the
insertion of (u, v) to G does not change the p-number of any
vertex w in the Ak, i.e., pn(w, k,G) = pn(w, k,G+).

Proof. When k > max(cn(u,G+), cn(v,G+)), the k-core of
G is the same as the k-core of G+, as proved in [18]. Because
both u and v are not in the k-core Ck(G), the neighbor set
of every vertex in Ck(G) keeps same after the insertion of
(u, v). Thus, the p-number of each vertex in Ck(G) remains
unchanged.

According to Theorem 2, we do not need to update the
(k,p)-core index for k > max(cn(u,G+), cn(v,G+)). Nev-
ertheless, the p-numbers in the index may change for every
k ≤ max(cn(u,G+), cn(v,G+)). For different k values, the
changed part of p-number index by edge insertion may also
be different, as shown in Example 6.

Example 6. After the insertion of edge (v5, v11), A2 and A3

of the KP-index in Figure 3 are updated as shown in Figure 4,
where A1 and A4 keep unchanged. For A2, a new p-number
pn = 2

3 appears, and v11 moves from p-number 3/4 to 2/3.
For A3, the change of p-numbers and the vertex order are
quite different to the change in A2.

In the following, we explore the change of p-numbers after
inserting (u, v) for different cases.

Insertion Case 1: core number keeps same. In this case,
the insertion of (u, v) does not change the core number of any

185

0.6

0.7

0.6

0.3

0.4

Fig. 5. Example for Computing the Upper Bound of p-Number

vertex, which is usually the major case for edge insertion [30].
Then, for each Ak in the index, we find the p-number range
[p−, p+] such that a vertex in Ak with p-number p0 will not
change its p-number if p0 < p− or p0 > p+. Therefore, we
aim to find a large p− and a small p+.

Case 1.1: k ≤ min{cn(u), cn(v)}. For conciseness, we firstly

present the techniques for k ≤ min{cn(u), cn(v)} if (u, v)
will be inserted to G, and deal with the other case afterwards.
For p−, the following theorem finds a proper value.

Theorem 3. Given a graph G, a degree threshold k and an
edge (u, v) /∈ G, let p− = min{pn(u, k,G), pn(v, k,G)}, for
any vertex w with pn(w, k,G) < p−, the insertion of (u, v)
will not change the p-number of w in Ak, i.e., pn(w, k,G) =
pn(w, k,G+ {(u, v)}).
Proof. After the insertion of (u, v), for every vertex w with
p-number less than p−, the neighbor set of w in the k-core
keeps same. The same topology leads to the same p-numbers
of these vertices.

Given the insertion of (u, v) /∈ G, the p-number of a vertex
w with pn(w, k,G) ≥ min{pn(u, k,G), pn(v, k,G)} may
increase. To find a proper p+, we propose the upper bound
of p-number.

Definition 5. upper bound of p-number, (p̂). Given a graph
G, a degree threshold k, the k-core C = Ck(G), and a vertex
w in C, the p̂ upper bound of pn(w, k,G) is defined by

p̂(w, k,G) = max(i
deg(w,G)) s.t.

|{v | v ∈ N(w,C), deg(v,C)
deg(v,G) ≥ i

deg(w,G)}| ≥ i
(1)

Lemma 2. Given the input graph G, for every valid input of
k and every vertex w ∈ Ck(G), the upper bound p̂(w, k,G)
is correct, i.e., p̂(w, k,G) ≥ pn(w, k,G).

Proof. Suppose pn(w, k,G) = t
deg(w,G) , let C1 denote

the (k, t
deg(w,G))-core, there are at least t neighbors of w

in C1 with fraction values of at least t
deg(w,G) . We have

deg(v,Ck(G))
deg(v,G) ≥ deg(v,C1)

deg(v,G) ≥ t
deg(w,G) for each v of the

t neighbors of w. According to Equation 1, p̂(w, k,G) ≥
t

deg(w,G) = pn(w, k,G).

Example 7. In Figure 5, given an input k, we show vertex
v1 and its 5 neighbours in the k-core. The p-number of each
neighbor is shown in the figure. Suppose deg(v1, G) = 6,
we find that v1 has 3 neighbours with p-number not smaller
than 3/6 = 0.5, and only one neighbor of v1 has a p-number
of at least 4/6. Thus, the p-number upper bound of v1 is
p̂(v1, k,G) = 3/6 = 0.5.

A tighter upper bound can be derived from p̂.

Definition 6. upper bound of p-number, (p̃). Given a graph
G, a degree threshold k, the k-core C = Ck(G), and a vertex
w in C, the p̃ upper bound of pn(w, k,G) is defined by

p̃(w, k,G) = max(i
deg(w,G)) s.t.

|{v | v ∈ N(w,C), p̂(v, k) ≥ i
deg(w,G)}| ≥ i

(2)

When the context is clear, we omit the input graph G in
notations, e.g, using pn(v, k) instead of pn(v, k,G).

Lemma 3. Given the input graph G, for every valid input of
k and every vertex w ∈ Ck(G), the upper bound p̃(w, k) is
correct and tight, i.e., p̂(w, k) ≥ p̃(w, k) ≥ pn(w, k).

Proof. (i) Suppose pn(w, k,G) = t
deg(w,G) , let C1 denote

the (k, t
deg(w,G))-core, for each vertex v ∈ C1, there are

at least t neighbors of v in C1 with fraction values of
at least t

deg(w,G) . For a neighbor v of w in C1, we have

p̂(v, k,G) ≥ pn(v, k,G) ≥ t
deg(w,G) . According to Equa-

tion 2, p̃(w, k,G) ≥ t
deg(w,G) = pn(w, k,G).

(ii) Suppose p̃(w, k,G) = t
deg(w,G) , let C2 denote the

(k, t
deg(w,G))-core, there are at least t neighbors of w in C2

with p̂ upper bound of at least t
deg(w,G) . For a neighbor v

of w in C2, we have
deg(v,C)
deg(v,G) ≥ p̂(v, k,G) ≥ t

deg(w,G) .

According to Equation 1, we have p̂(w, k,G) ≥ t
deg(w,G) =

p̃(w, k,G).

The above upper bounds enable us to find a small p+ to
locate the candidate range of vertices for p-number update.

Theorem 4. Given a graph G, a degree threshold k, and an
edge (u, v) to be inserted, let G+ = G+ {(u, v)} and p+ =
max

{
min{p̃(u, k,G+), p̃(v, k,G+)}, pn(u, k), pn(v, k)

}
, a

vertex w with p-number pn(w, k) > p+ will not change its
p-number if (u, v) is inserted.

Proof. Suppose pn(u, k) ≤ pn(v, k) without loss of gener-
ality, let pm = min{p̃(u, k,G+), p̃(v, k,G+)}. For any p-
number p0 > p+, the following holds.

(i) If pm ≥ pn(v, k), suppose pm = p̃(u, k,G+) ≤
p̃(v, k,G+), the (k, p0)-core of G+ does not contain u since
p̃(u, k,G+) ≤ p+ < p0. Then the insertion of (u, v) may
reduce the p-number of v in G because (u, v) is not in the
(k, pn(v, k))-core of G+ and deg(v,G+) = deg(v,G) + 1.
Thus, the (k, p0)-core of G+ does not contain v as p0 > p+ ≥
pn(v, k). The p-number of every vertex w with pn(w, k) > p+
keeps same.

(ii) If pm < pn(v, k), then p+ = pn(v, k). Since p0 >
p+ > pm, the (k, p0)-core of G+ does not contain both u and
v. The p-number of every vertex w with pn(w, k) > p+ keeps
same.

Note that for the insertion of (u, v), let pm =
min{p̃(u, k,G+), p̃(v, k,G+)}, a vertex w with pn(w, k) >
pm may change its p-number.

Case 1.2: cn(u) < k ≤ cn(v) suppose cn(u) < cn(v). In this
case, the p-number of v may decrease. Thus, we have p+ =
pn(v, k,G). The value of p− can be found by the following
theorem.

186

Theorem 5. Given a graph G, an edge (u, v) /∈ G with
cn(u) < cn(v), and a degree threshold k with cn(u) < k ≤
cn(v), let p1 = pn(v, k,G) and C = Ck,p1(G), we have

p− = max{ i
deg(v,G)+1} s.t.

|{w | w ∈ N(v, C), deg(w,C)
deg(w,G) ≥ i

deg(v,G)+1}| ≥ i
(3)

for any vertex w with pn(w, k,G) < p−, the insertion of
(u, v) will not change the p-number of w, i.e., pn(w, k,G) =
pn(w, k,G+ {(u, v)}).
Proof. Suppose p− = t

deg(v,G)+1 , there are at least t vertices

in N(v, C) with fraction value of at least p−. For every vertex

w ∈ C,
deg(w,C)
deg(w,G) ≥ pn(v, k,G) ≥ p−. Thus, t

deg(v,G)+1 is a

lower bound of pn(v, k,G + {(u, v)}). For every vertex w
with pn(w, k,G) < p−, the neighbor set of w keeps same
after the insertion of (u, v). Thus, pn(w, k,G) = pn(w, k,G+
{(u, v)}).

Insertion Case 2: core number changes. It is proved in [18]
that the insertion of an edge (u, v) can only increase the core
number of the incident vertex u or v by at most 1. Besides, if
cn(u) < cn(v), the core number cn(v) will not change given
the insertion of (u, v).

Compared to Case 1, the difference in Case 2 is that some
new vertices are added to the Ak of the index, where k =
min{cn(u), cn(v)} + 1. Note that this is the minor case for
core maintenance as shown in [30]. We apply the state-of-the-
art core maintenance algorithm [30] to find these vertices with
increased core numbers.

For a degree threshold k and an edge (u, v) /∈ G,
let G+ = G + {(u, v)}, C+ = Ck(G+), and V+ =
V (C+) \ V (Ck(G)) as the new vertices added to Ak. We
set p− by 0 for Ak. If cn(u,G) < cn(v,G), we have
p+ = pn(v, k,G). If cn(u,G) = cn(v,G), we have p+ =
min{p̃(u, k,G+), p̃(v, k,G+)}.

The following theorem can fast determine whether a Ak in
the index keeps same, for both Case 1 and 2.

Theorem 6. Given a graph G, an edge (u, v) /∈ G to be
inserted, and a degree threshold k, let p1 = pn(v, k,G),
C = Ck,p1(G) and G+ = G + {(u, v)}, if cn(u,G+) <
k ≤ cn(v,G+) and p∗(v, k,G+) ≥ pn(v, k,G), the Ak of the
index does not change, where

p∗(v, k,G+) = max{ i
deg(v,G)+1}s.t.

|{w | w ∈ N(v, C), deg(w,C)
deg(w,G) ≥ i

deg(v,G)+1}| ≥ i
(4)

Proof. Suppose p∗(v, k,G+) = t
deg(v,G)+1 , there are at

least t neighbors of v in Ck,p1
(G) with fraction value

of at least t
deg(v,G)+1 . After the insertion of (u, v), if

p∗(v, k,G+) ≥ pn(v, k,G) = p1, every vertex w in Ck(G)
has pn(w, k,G+) = pn(w, k,G) due to the same topology of
Ck(G) and Ck(G+). Thus, Ak does not change.

Algorithm for Edge Insertion. The pseudo-code of the edge
insertion is shown in Algorithm 4. First, we assume cn(u) ≤
cn(v), and let G+ = G+ {(u, v)}. For each Ak with k from
2 to max{cn(v,G+), cn(u,G+)}, we consider two cases to

Algorithm 4: kpIndexInsert
Input : a graph G, the (k,p)-core index I of G, an edge

(u, v) not in G
Output : I: the (k,p)-core index of G + {(u, v)}
G+ ← G + {(u, v)}; Suppose cn(u,G) ≤ cn(v,G);1
for each integer k ∈ [2,max{cn(v,G+), cn(u,G+)}] do2

C+ ← Ck(G+);3
if Ck(G) = C+ then4

/* major case */5
if k ≤ cn(u) (Case 1.1) then6

p− ← min{pn(u, k,G), pn(v, k,G)}7
(Theorem 3);
p+ ← max

{
min{p̃(u, k,G+), p̃(v, k,G+)},8

pn(u, k), pn(v, k)
}
(Theorem 4);

else if cn(u) < k ≤ cn(v) (Case 1.2) then9
p− ← Theorem 5;10
p+ = pn(v, k,G);11

else12
/* minor case */13
p− ← 0;14
p+ ← pn(v, k,G) if cn(u,G) < cn(v,G);15
p+ ← min{p̃(u, k,G+), p̃(v, k,G+)} if16
cn(u,G) = cn(v,G);

if cn(u,G+) < k ≤ cn(v,G+) and17
p∗(v, k,G+) ≥ pn(v, k,G) then
continue (Theorem 6);18

Update Ak of I from p-number p− to p+;19

return I20

compute p− and p+, i.e., the major case (Line 4 to 11) and the
minor case (Line 12 to Line 16). In each subcase, we compute
p− and p+ according to the proposed theorems. When Ak of
the index will not change according to Theorem 6, we can
jump to the next loop (Line 17 to Line 18). At Line 19, we
update the p-numbers of the vertices in Ak with p-number
from p− to p+.

Example 8. We give an example by inserting an edge (v5, v11)
to the graph in Figure 2. We show the new index in Figure 4
after the insertion. By Theorem 2, the larger core number
between v5 and v11 is 3, hence A4 of the index will not change.
For A3, the corresponding k-core changes (the minor case).
Since p− = 0, and p+ = pn(v11, 3, G) =

3
7 according to

Algorithm 4, we update the vertices in A3 with p-number from
0 to 3

7 . We can update A2 similarly.

B. Edge Deletion

Let (u, v) denote an edge in the graph G which will be
deleted. The following theorem implies that the some Ak in
the (k,p)-core index remain same, with the deletion of (u, v).

Theorem 7. Given a graph G, and an edge (u, v) ∈ G, let
G− = G − {(u, v)}, if k > max(cn(u,G), cn(v,G)), the
deletion of (u, v) does not change the p-number of a vertex w
in Ak, i.e., pn(w, k,G) = pn(w, k,G−).

Proof. When k > max(cn(u,G), cn(v,G)), the k-core of G
is the same as the k-core of G−, as proved in [18]. Because
both u and v are not in the k-core Ck(G), the neighbor set
of every vertex in Ck(G) keeps same after the deletion of

187

(u, v). Thus, the p-number of each vertex in the k-core keeps
same.

According to Theorem 7, we do not need to update the
(k,p)-core index for every k > max(cn(u,G), cn(v,G)). Note
that the p-numbers in the index may change for every k ≤
max(cn(u,G), cn(v,G)). For different k values, the changed
part of p-number index by edge deletion may be different.

Deletion Case 1: core number keeps same. In this case, the
deletion of (u, v) does not change the core number of any
vertex, which is usually the major case for edge deletion [30].
Then, for each Ak in the index, we find the p-number range
[p−, p+] such that a vertex with p-number p0 will not change
its p-number if p0 < p− or p0 > p+. Therefore, we aim to
find a large p− and a small p+.

When k ≤ min{cn(u), cn(v)}, a proper lower bound for
p− is as follows.

Definition 7. lower bound of p-number, (p). Given a graph G,
an edge (u, v) ∈ G to be deleted, and a degree threshold k ≤
min{cn(u), cn(v)}, let p1 = pn(u, k,G), C = Ck,p1

(G), and
G− = G− {(u, v)}, the p∧ value for u is defined by

p∧(u, k,G−) = min{p1, p0};
p0 = max{ i

deg(u,G)−1} s.t.

|{w | w ∈ N(u,C) \ v, deg(w,C)
deg(w,G) ≥ i

deg(u,G)−1}| ≥ i

(5)

If pn(u, k,G) < pn(v, k,G), the p lower bound of u is defined
by p(u, k,G−) = p∧(u, k,G−). If pn(u, k,G) = pn(v, k,G)
the p lower bound of u or v is defined by p(u, k,G−) =
p(v, k,G−) = min{p∧(u, k,G−), p∧(v, k,G−)}.
Lemma 4. Given a graph G, an edge (u, v) ∈ G to be
deleted, and a degree threshold k ≤ min{cn(u), cn(v)},
suppose pn(u, k,G) ≤ pn(v, k,G), let G− = G − {(u, v)},
the lower bound p(u, k,G−) is correct, i.e., pn(u, k,G−) ≥
p(u, k,G−).

Proof. Let p1 = pn(u, k,G) and p2 = pn(v, k,G). Suppose
p(u, k,G−) = t

deg(u,G−) , there are at least t neighbors of u

in Ck,p1(G) \ v with fraction value of at least t
deg(u,G−) .

(i) If p1 < p2, we have pn(v, k,G−) ≥ pn(v, k,G)

because every vertex w ∈ Ck,p2
(G) have

deg(w,Ck,p2
(G))

deg(w,G−) ≥
p2 > p1 ≥ p(u, k,G−). For every vertex r ∈ Ck,p1

(G),

we have
deg(r,Ck,p1

(G))

deg(r,G−) ≥ t
deg(u,G−) . Thus, pn(u, k,G−) ≥

p(u, k,G−).
(ii) If p1 = p2, For every vertex r ∈ Ck,p1(G), we

have
deg(r,Ck,p1

(G))

deg(r,G−) ≥ t
deg(u,G−) . Thus, pn(u, k,G−) ≥

p(u, k,G−).

When k ≤ max{cn(u), cn(v)}, a proper p− for edge
deletion is as follows.

Theorem 8. Given a graph G, a degree threshold k, an edge
(u, v) ∈ G, and G− = G − {(u, v)}, suppose cn(u) ≤
cn(v), let p− = pn(v, k,G) if cn(u) < k ≤ cn(v), and
p− = p(u, k,G−) if k ≤ cn(u). For any vertex w with
pn(w, k,G) < p−, the deletion of (u, v) will not change the
p-number of w, i.e., pn(w, k,G) = pn(w, k,G−).

Algorithm 5: kpIndexDelete
Input : a graph G, the (k,p)-core index I of G, an edge

(u, v) in G
Output : I: the (k,p)-core index of G− {(u, v)}
G− ← G− {(u, v)}; Suppose cn(u) ≤ cn(v);1
for each integer k ∈ [2, cn(v,G)] do2

C− ← Ck(G−);3
if Ck(G) = C− then4

/* major case */5
if k ≤ cn(u) then6

p− ← p(u, k,G−) (Theorem 8);7
p+ ← max{p̃(u, k,G−), p̃(v, k,G−)}8
(Theorem 9);

else if cn(u) < k ≤ cn(v) then9
p− ← pn(v, k,G) (Theorem 8);10
p+ ← p̃(v, k,G−) (Theorem 9);11

else12
/* minor case */13
p− ← 0;14
p+ ← p̃(u, k,G−) if u ∈ C− and v /∈ C−;15
p+ ← p̃(v, k,G−) if u /∈ C− and v ∈ C−;16
p+ ← pn(u, k,G) = pn(v, k,G) if u /∈ C− and17
v /∈ C−;

Update Ak of I from p-number p− to p+;18

return I19

Proof. If cn(u) < k ≤ cn(v), we have deg(v,G−) =
deg(v,G) − 1 and Ck(G−) = Ck(G). Thus, we have
p− = pn(v, k,G) ≥ pn(v, k,G−). For every vertex w with
pn(w, k,G) < p−, the same topology in Ck(G−) leads
to the same p-number. If k ≤ cn(u), the fraction values
of u will not increase after the deletion of (u, v). Since
pn(u, k,G−) ≥ p(u, k,G−) by Lemma 4, every vertex w with
pn(w, k,G) < p− = p(u, k,G−) has the same p-number in
G−.

Upper Bound of p-Number for Edge Deletion. The deletion
of (u, v) may increase the p-number of a vertex, the upper
bound of p-number of a vertex w is the same as the case of
edge insertion. The following theorem finds a proper p+.

Theorem 9. Given a graph G, an edge (u, v) ∈ G with
cn(u) ≤ cn(v), and a degree threshold k, let G− = G −
{(u, v)}, if cn(u) < k ≤ cn(v), we have p+ = p̃(v, k,G−);
if k ≤ cn(u), we have p+ = max{p̃(u, k,G−), p̃(v, k,G−)}.
Proof. It is proved by the correctness of Lemma 3.

Deletion Case 2: core number changes. It is proved in [18]
that the deletion of an edge (u, v) can only decrease the core
number of the incident vertex u or v by at most 1. Besides, if
cn(u) < cn(v), the core number cn(v) will not change given
the deletion of (u, v).

Compared to Case 1, the difference in Case 2 is that
some vertices are deleted from Ak of the index, where
k = min{cn(u), cn(v)}. Note that this is the minor case for
core maintenance as shown in [30]. We apply the state-of-the-
art core maintenance algorithm [30] to find these vertices with
decreased core numbers.

188

TABLE II
STATISTICS OF DATASETS

Dataset Vertices Edges davg dmax

Facebook 4,039 88,234 43.69 1,045
Brightkite 58,228 214,078 7.35 1,134
Gowalla 196,591 950,327 9.66 14,730
YouTube 1,134,890 2,987,624 5.26 28,754
Pokec 1,212,349 8,320,600 13.72 7,266
DBLP 1,431,977 8,221,193 11.48 2,268
LiveJournal 3,997,962 34,681,189 17.34 14,815
Orkut 3,072,441 117,185,083 76.28 33,313

Fig. 6. Core Size in All Datasets, k = 10, p = 0.6

For a degree threshold k and an edge (u, v) ∈ G, let
G− = G − {(u, v)}, C− = Ck(G−), and V− = V (Ck(G)) \
V (Ck(G−)) as the deleted vertices in Ak. We set p− by
0 for Ak in Theorem 3. If u ∈ C− and v /∈ C−, we
have p+ = p̃(u, k,G−). If u /∈ C− and v ∈ C−, we have
p+ = p̃(v, k,G−). If u /∈ C− and v /∈ C−, the deletion of u
or v will remove all the vertices in V− by the degree constraint.
Thus, every vertex w in V− has the same p-number, and we
have p+ = pn(u, k,G) = pn(v, k,G).

Algorithm for Edge Deletion. The pseudo-code for the edge
deletion is shown in Algorithm 5. we assume cn(u) ≤ cn(v),
and let G− ← G − {(u, v)}. We have two cases to compute
p− and p+ in edge deletion, i.e., the major case (Line 4 to 11)
and the minor case (Line 12 to Line 17). In each subcase, we
compute p− and p+ according to the proposed theorems. For
every k, we update the p-numbers of the vertices in Ak with
p-number from p− to p+.

VII. EXPERIMENTAL EVALUATION

We conduct extensive performance studies to evaluate the
effectiveness of our proposed algorithms.

A. Experimental Setting

Datasets. We use 8 real-life graphs in our experiments. The
DBLP data is extracted from https://dblp.uni-trier.de/xml/ and
the other datasets are downloaded from http://snap.stanford.
edu/. In DBLP, each author corresponds to a vertex and there
is an edge for a pair of authors iff they have at least 1 co-
authored paper. In other datasets, there are existing edge data,
i.e., the connections between vertex pairs. Table II shows the
statistics of the datasets, ordered by the number of edges.

Algorithms. To the best of our knowledge, no existing work
investigates the (k,p)-core model and the corresponding al-
gorithms. We compare the (k,p)-core with k-core since it
is the base of our model and also the most related model.
Specifically, we evaluate the following algorithms:

• kCore(Comp): the state-of-the-art k-core computation
algorithm in [3].

Fig. 7. Global Clustering Coefficient

Fig. 8. Graph Density

• kcoreDecomp: the state-of-the-art core decomposition
algorithm in [3].

• kpCore(Comp): our (k,p)-core computation with given
k and p (Algorithm 1).

• kpCoreDecomp: our (k,p)-core decomposition algo-
rithm (Algorithm 2).

• kpCoreQuery: our query algorithm on the KP-Index
(Algorithm 3).

• kpIndexInsert: our KP-Index update algorithm for
edge insertion (Algorithm 4).

• kpIndexDelete: our KP-Index update algorithm for
edge deletion (Algorithm 5).

All algorithms are implemented in C++ and compiled by
GNU GCC 4.8.2 with O3 optimization. All experiments are
conducted on a machine with an Intel Xeon 2.2GHz CPU and
64GB main memory.

Parameters. We conducted experiments under different set-
tings by varying the degree threshold k and the fraction
threshold p. The default values of k and p are 10 and 0.6,
respectively.

B. Evaluation of Effectiveness

Statistics. In Figure 6, we report the size of (k,p)-core on
8 different graphs using default settings. We can clearly see
that, except for Facebook and Orkut, the size of our (10, 0.6)-
cores is much smaller than the size of 10-cores in terms of
vertex number. The similar size of (10, 0.6)-core and 10-core
on both Facebook and Orkut is due to their high density
such that most vertices have larger fraction values than in the
other datasets.

Comparing (k, p)-core with k-core For each graph, we report

the global clustering coefficient (3×|�|
|triplet|) [11] and graph

density (2m
n×(n−1)) [5] of k-core and (k,p)-core using the

default setting (k = 10 and p = 0.6). Figure 7 shows that the
(k,p)-core has significantly higher global clustering coefficient
than that of k-core on all the datasets, with the consideration
of vertex fraction. Figure 8 reports that the graph density of
(k,p)-core is higher than that of k-core on most datasets. This
experiment indicates that (k,p)-core may be more promising
than k-core, considering the similar computation costs.

189

(a) Case study of k-core and (k,p)-core on DBLP-3

(b) Case study 1 on DBLP-10 (c) Case study 2 on DBLP-10

Fig. 9. Real-life k-Cores and (k, p)-Cores

Case study on DBLP. Figure 9(a) depicts one connected
component of the k-core and (k,p)-core with k = 15 and
p = 0.5 on DBLP-3 where an edge exists between two
vertices iff the corresponding two authors have co-authored at
least 3 papers. As the whole k-core and (k,p)-core are too large
to present, we show one connected component on DBLP-3 for
a clear visualization. The vertices of k-core are marked by dark
grey and blue. The vertices of (k,p)-core are marked by blue
color. The light grey vertices are the 1-hop neighbors of the
k-core vertices, which help to illustrate the connection of the
k-core vertices to the rest of the graph. The size of each vertex
in k-core reflects the fraction value of the vertex i.e., its degree
in k-core divided by its degree in the whole graph. We can
see that, with fraction constraint, the vertices in (k,p)-core are
less connected to rest of the graph compared to the vertices
in k-core. Figures 9(b)(c) show two connected components
of k-core on DBLP-10 (10 co-authored papers required for
each edge), when k = 5 and p = 0.4. Similarly, the (k,p)-core
vertices are marked by blue and the k-core vertices are marked
by dark grey and blue. In Figure 9(b), the author “Xiangfang
Gu” has the smallest faction value, i.e., the highest connection
to the outside vertices of k-core. In the (k,p)-core computation,
the leave of “Xiangfang” leads to the departure of the other
7 authors. Similarly in Figure 9(c), the leave of “Hans-Peter
Kriegel” results in the leave of a group of authors and then
produces the (k,p)-core.

Case study on Gowalla. The effectiveness of k-core and
(k,p)-core models in analyzing user engagement over dataset
Gowalla is demonstrated in Figure 10. The Gowalla
dataset is a location-based social network which records both
friendship network and the spatial checking-ins of each user,
launched in Feb. 2009 to Oct. 2010. We measure the engage-
ment of users using their check-in times (i.e., numbers). We
compare the check-in times based on k-core decomposition,
(k,p)-core decomposition and onion layers (graph degeneracy
order) [26].

In Figure 10(a), for every core number k in core decom-
position, we show the average check-in times of the vertices

(a) (k,p)-core vs k-core

(b) k-core vs graph degeneracy order

Fig. 10. User Check-in Number in Gowalla

Fig. 11. Computation Time, k = 10, p = 0.6

with same core number, and the average check-in times of the
vertices with same p-number given the core number k. The x-
axis is the k value for k-core decomposition, and (k+p−0.5)
for (k,p)-core decomposition. We can see the average check-
in time basically increases with a larger core number in k-
core, while some users with small core numbers can have
many check-ins, as found by the (k,p)-core decomposition.
The users who are more active (with more check-ins) basically
have larger p-numbers. The (k,p)-core decomposition reveals
finer granularity in k-core decomposition.

In Figure 10(b), we further compare (k,p)-core decomposi-
tion with the onion layers in k-core decomposition. The onion
layers cannot effectively distinguish the users with different
activeness (check-in times) on a same core number k.

C. Evaluation of Efficiency

Computation time. Figure 11 reports the time of computing
the (k,p)-core with default k and p values, by kpCoreComp
and kpCoreQuery, respectively. We also report the time
of kCoreComp for the same input of k. We can see that
kpCoreComp is slightly slower than kCoreComp because
some k-core vertices are deleted in (k,p)-core computation.
The efficiency of the two algorithms are quite close, because
we can use one combined vertex threshold set to conduct
the (k,p)-core computation which is as efficient as using the
degree threshold k in k-core computation. kpCoreQuery
outperforms the other two algorithms in runtime by more than
1 order of magnitude, because its time cost is linear to the size
of output.

In Figure 12, we show the effect of different k and p
to the algorithms on Orkut. The time costs of kCoreComp
and kpCoreComp both increase with a larger input of k, as
they need to remove more vertices and edges. The runtime of
kpCoreComp becomes slightly higher with a larger input of
p due to more deletion steps. The runtime of kpCoreQuery
is much faster and almost same for different k and p values.

190

Fig. 12. Effect of Different Inputs

Fig. 13. Decomposition Time

Decomposition time. Figure 13 compares the decomposition
time between kcoreDecomp and kpCoreDecomp on all
the datasets. We can see that kpCoreDecomp costs more
time than kcoreDecomp because it conducts d(G) times
the decomposition for p-numbers. In general, our (k,p)-core
decomposition can finish in 10s on most datasets and can
finish in 1000s on a dataset with more than 100 million edges
(Orkut).

Scalability of (k,p)-core decomposition. To test the scalabil-
ity of k-core decomposition (kcoreDecomp) and (k,p)-core
decomposition (kpCoreDecomp), we vary the number of
nodes (resp. edges) by randomly sampling nodes (resp. edges)
from 20% to 100% on Orkut dataset. We use the induced
subgraphs of the sampled vertex/edge set as the input graphs.
As shown in Figure 14, the time cost of both k-core and (k,p)-
core decomposition increases when the input data becomes
larger. We can see both algorithms are scalable given the larger
datasets. The trends are similar on other datasets.

D. Index Maintenance

Update time of index on different datasets. In this experi-
ment, we randomly remove 500 distinct existing edges from
the graph and then insert them back, to test the time cost of in-
dex update. We report the average processing time for one edge
insertion and removal, respectively. kpCoreDecomp is used
as the baseline algorithm which computes the (k,p)-core index
from scratch for each edge insertion or deletion. The results
are shown in Figure 15. Our proposed (k,p)-core maintenance
algorithms (kpIndexInsert and kpIndexDelete) can
achieve up to two orders of magnitude speed-up, compared
with the baseline algorithm. For example, on LiveJournal,
our proposed algorithm can handle one edge insertion and
removal in 1.6s and 5.3s, respectively, while kpCoreDecomp
requires 159s. It is benefit from the well-designed fraction
upper bounds and lower bounds in Section VI. Our (k,p)-core
maintenance algorithms only need to update a small portion
of the index for both edge insertion and deletion.

Scalability of (k,p)-core index maintenance. We sample the
graph in the same way as in the scalability test of (k,p)-core
decomposition. Figure 16 shows the results on Orkut and the
trends are similar on other datasets. The result shows that our

(a) Varying edges (b) Varying vertices

Fig. 14. Scalability of Decomposition Algorithms

Fig. 15. Update Time of KP-Index

proposed index maintenance algorithms are as scalable as the
decomposition algorithm kpCoreDecomp. This is because
our algorithms always visit a small part of the index for update
which is proportional to the size of input graph.

VIII. RELATED WORK

Cohesive subgraph mining is a fundamental problem in
graph structure analysis. The clique [11] is defined as a sub-
graph in which every vertex is adjacent to every other vertex
in the subgraph. As the definition of clique is often too rigid,
many clique-relaxed cohesive subgraphs are proposed, e.g., k-
plex [20] and quasi-clique [1]. However, the above models
suffer from computation intractability due to their exponential
results or NP-hard computations. Recently, the model of k-
core receives a lot of interests for its elegant structures as
well as efficient solutions [19]. The k-core is shown to be the
maximal equilibrium in the game that each vertex incurs a
cost k to remain engaged while obtains a benefit of 1 from
each engaged neighbor [4]. A linear-time solution for k-core
computation and decomposition is proposed in [3]. A fast
order-based core number maintenance algorithm is proposed
in [30]. There are many k-core related studies, such as [10],
[23], [24], [25], [26], [27], [29], [31]. Nevertheless, none of
the above models consider the fraction constraint [2] of vertex
neighbors in modeling cohesive subgraphs.

On a time-evolving social network, an empirical study [2]
of user-to-user content transfer demonstrates that (1) user
adoption rates increase as more friends are adopting (reasoning
degree constraint k in (k,p)-core) and (2) high-degree users
need more friends in adopting to reach a certain adoption rate,
compared with low-degree users (reasoning fraction constraint
p in (k,p)-core). Besides, the contagion model [15] applies the
fraction constraint to model user interactions, where a user
adopts a behaviour if at least a certain fraction of his/her
network neighbors adopted the behaviour. In their textbook [6],
Easley and Kleinberg emphasize the contagion model and
show that the fraction constraint may be used in cohesive
subgraphs. It is promising to apply the fraction constraint p in
modeling cohesive subgraphs.

191

(a) Insertion, varying vertices (b) Deletion, varying vertices

(c) Insertion, varying edges (d) Deletion, varying edges

Fig. 16. Scalability of KP-Index Maintenance

The (α, β)-cluster model proposed in [13] requires that each
vertex in the cluster is adjacent to at least β-faction of vertices
in the cluster and each vertex outside of the cluster is adjacent
to at most α-fraction of vertices in the cluster. When β gets
closer to 1, the cluster approaches a clique; when β < 1 and
α = (1 − ε)β, the cluster becomes a quasi-clique [16]. Our
(k,p)-core model is inherently different from (α, β)-cluster
as (k,p)-core imposes the requirement on the degree of a
vertex while (α, β)-cluster imposes requirement for a vertex
regarding the adjacency to the whole cluster. A vertex u in an
(α, β)-cluster may not be well-engaged in the cluster, because
its outside neighbors can be much larger than the neighbors
inside of the cluster, while this is avoided in the (k,p)-core
model as the fraction constraint p is applied to every vertex.

IX. CONCLUSION

In this paper, we propose a novel cohesive subgraph, named
(k,p)-core, which requires that each vertex has at least k
neighbors and at least p fraction of its network neighbors in
the subgraph. We propose an efficient algorithm to compute
the (k,p)-core with given k and p. Besides, we present an
algorithm for the decomposition of (k, p)-core, which can also
be applied to build the KP-Index for time-optimal (k, p)-core
query. Novel index maintenance algorithms are also introduced
to handle the dynamic of real-world graphs. Extensive exper-
iments validate that our proposed algorithms are efficient and
the (k,p)-core model is effective on real-life networks.

ACKNOWLEDGMENTS

Xuemin Lin is supported by 2018YFB1003504,
NSFC61232006, ARC DP180103096 and DP170101628.
Ying Zhang is supported by ARC DP180103096 and
FT170100128. Lu Qin is supported by ARC DP160101513.
Wenjie Zhang is supported by ARC DP180103096.

REFERENCES

[1] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique
detection. In LATIN, pages 598–612, 2002.

[2] E. Bakshy, B. Karrer, and L. A. Adamic. Social influence and the
diffusion of user-created content. In ACM Conference on Electronic
Commerce (EC), pages 325–334, 2009.

[3] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decompo-
sition of networks. CoRR, cs.DS/0310049, 2003.

[4] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma.
Preventing unraveling in social networks: the anchored k-core problem.
SIAM Journal on Discrete Mathematics, 29(3):1452–1475, 2015.

[5] T. F. Coleman and J. J. Moré. Estimation of sparse jacobian matrices and
graph coloring blems. SIAM journal on Numerical Analysis, 20(1):187–
209, 1983.

[6] D. A. Easley and J. M. Kleinberg. Networks, Crowds, and Markets
- Reasoning About a Highly Connected World. Cambridge University
Press, 2010.

[7] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of
web communities. In KDD, pages 150–160, 2000.

[8] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse. Identification of influential spreaders in
complex networks. Nature physics, 6(11):888–893, 2010.

[9] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad, A. Pinar, and S. Soundara-
jan. Measuring and improving the core resilience of networks. In WWW,
pages 609–618, 2018.

[10] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient
(α, β)-core computation: an index-based approach. In WWW, pages
1130–1141, 2019.

[11] R. D. Luce and A. D. Perry. A method of matrix analysis of group
structure. Psychometrika, 14(2):95–116, 1949.

[12] F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling
engagement dynamics in social graphs. In CIKM, pages 469–478, 2013.

[13] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Finding strongly-
knit clusters in social networks. Internet Math., 5(1-2):153–172, 2009.

[14] F. Morone, G. Del Ferraro, and H. A. Makse. The k-core as a predictor of
structural collapse in mutualistic ecosystems. Nature Physics, 15(1):95,
2019.

[15] S. Morris. Contagion. The Review of Economic Studies, 67(1):57–78,
2000.

[16] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in
network analysis. European Journal of Operational Research, 226(1):9–
18, 2013.

[17] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining
and identifying communities in networks. Proceedings of the National
Academy of Sciences, 101(9):2658–2663, 2004.

[18] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V. Çatalyürek.
Streaming algorithms for k-core decomposition. PVLDB, 6(6):433–444,
2013.

[19] S. B. Seidman. Network structure and minimum degree. Social
Networks, 5(3):269–287, 1983.

[20] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of
the clique concept. Journal of Mathematical sociology, 6(1):139–154,
1978.

[21] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms. In ICDM,
pages 469–478, 2016.

[22] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural
diversity in social contagion. PNAS, 109(16):5962–5966, 2012.

[23] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient computing
of radius-bounded k-cores. In ICDE, pages 233–244, 2018.

[24] F. Zhang, C. Li, Y. Zhang, L. Qin, and W. Zhang. Finding critical users
in social communities: The collapsed core and truss problems. TKDE,
2018.

[25] F. Zhang, L. Yuan, Y. Zhang, L. Qin, X. Lin, and A. Zhou. Discovering
strong communities with user engagement and tie strength. In DASFAA,
pages 425–441, 2018.

[26] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. OLAK: an efficient
algorithm to prevent unraveling in social networks. PVLDB, 10(6):649–
660, 2017.

[27] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical
users for social network engagement: The collapsed k-core problem. In
AAAI, pages 245–251, 2017.

[28] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engagement
meets similarity: Efficient (k, r)-core computation on social networks.
PVLDB, 10(10):998–1009, 2017.

[29] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Efficiently reinforcing
social networks over user engagement and tie strength. In ICDE, pages
557–568, 2018.

[30] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based approach
for core maintenance. In ICDE, pages 337–348, 2017.

[31] Z. Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen. K-core maximiza-
tion: An edge addition approach. In IJCAI, pages 4867–4873, 2019.

192

