
The VLDB Journal
https://doi.org/10.1007/s00778-019-00579-4

REGULAR PAPER

Efficient community discovery with user engagement and similarity

Fan Zhang1 · Xuemin Lin2,3 · Ying Zhang4 · Lu Qin4 ·Wenjie Zhang2

Received: 7 November 2018 / Revised: 30 August 2019 / Accepted: 5 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In this paper, we investigate the problem of (k,r)-core which intends to find cohesive subgraphs on social networks considering
both user engagement and similarity perspectives. In particular, we adopt the popular concept of k-core to guarantee the
engagement of the users (vertices) in a group (subgraph) where each vertex in a (k,r)-core connects to at least k other vertices.
Meanwhile, we consider the pairwise similarity among users based on their attributes. Efficient algorithms are proposed to
enumerate allmaximal (k,r)-cores and find themaximum (k,r)-core, where both problems are shown to be NP-hard. Effective
pruning techniques substantially reduce the search space of two algorithms. A novel (k,k′)-core based (k,r)-core size upper
bound enhances the performance of the maximum (k,r)-core computation. We also devise effective search orders for two
algorithms with different search priorities for vertices. Besides, we study the diversified (k,r)-core search problem to find l
maximal (k,r)-cores which cover the most vertices in total. These maximal (k,r)-cores are distinctive and informationally rich.
An efficient algorithm is proposed with a guaranteed approximation ratio.We design a tight upper bound to prune unpromising
partial (k,r)-cores. A new search order is designed to speed up the search. Initial candidates with large size are generated to
further enhance the pruning power. Comprehensive experiments on real-life data demonstrate that the maximal (k,r)-cores
enable us to find interesting cohesive subgraphs, and performance of three mining algorithms is effectively improved by all
the proposed techniques.

Keywords Community detection · User engagement · User similarity · Diversification

1 Introduction

Nowadays, data become diverse and complex in real-life
social networks, which not only consist of users and friend-
ship, but also have various attribute values on each user.

B Fan Zhang
fanzhang.cs@gmail.com

Xuemin Lin
lxue@cse.unsw.edu.au

Ying Zhang
ying.zhang@uts.edu.au

Lu Qin
lu.qin@uts.edu.au

Wenjie Zhang
zhangw@cse.unsw.edu.au

1 Guangzhou University, Guangzhou, China

2 University of New South Wales, Sydney, Australia

3 East China Normal University, Shanghai, China

4 Centre for AI, University of Technology Sydney, Sydney,
Australia

As such, social networks can be naturally modeled as
attributed graphswhere vertices represent users, edges repre-
sent friendship, andvertex attribute is associatedwith specific
properties, such as locations or keywords. Mining cohesive
subgraphs is one fundamental graph problem which aims to
find groups of well-connected nodes (e.g., people), and a
variety of models have been proposed such as clique [14],
k-core [45] and k-truss [31]. Most of the existing work only
consider the structural cohesiveness of the subgraphs. How-
ever, in practice, we usually need to consider both structure
and attribute perspectives for cohesive subgraph mining.
In this paper, we move beyond the simple structure-based
cohesive subgraph models and advocate a complicated but
more realistic cohesive subgraph model on attributed graphs,
namely (k,r)-core. Particularly, we consider two intuitive and
important criteria for a cohesive subgraph in real-life social
networks: engagement and similarity.

Engagement It is a common practice to encourage the
engagement of the group members by using the posi-
tive influence from their friends in the same group (e.g.,
[6,22,35,40,55]); that is, ensure there are a considerable num-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00579-4&domain=pdf
http://orcid.org/0000-0003-0548-0130

F. Zhang et al.

ber of friends for each individual user (vertex) in the group
(subgraph). In [6], Bhawalkar and Kleinberg et al. use the
game theory to formally demonstrate that the popular k-core
model can lead to a stable group (i.e., a cohesive subgraph
regarding graph structure). In this paper, we adopt the k-core
model on the graph structure, where each vertex in the sub-
graph has at least k neighbors (structure constraint).

Similarity In addition to the engagement, we usually need to
consider attribute similarities among users (vertices) in the
group (subgraph). The similarity of two users can be derived
from a given set of attributes (e.g., location, interests and
user generated content), which varies in different scenarios
(e.g., [7,28,30,47]). The constraint of pairwise similarity is
often used in social studies when similarity requirement is
nontrivial [25,28,42,61]. By connecting two users (vertices)
whose similarity exceeds a given threshold r , we get a sim-
ilarity graph to capture the similarities among users. In this
paper, we adopt the well-known clique model to capture the
cohesiveness of users from similarity perspective; that is, the
vertices of a cohesive subgraph in this paper form a clique
on the similarity graph, which can ensure pairwise similarity
among users (similarity constraint).

(k,r)-core The engagement and similarity criteria may often
be used together to measure the sustainability of social
groups. For instance, Facebook shows that both engagement
(the number of friends in the group) and similarity (e.g., sim-
ilar pages liked and distance closeness) are two important
criteria when an existing Facebook group is recommended
to a user [19]. To capture both engagement and similarity, we
introduce the (k,r)-core model which is defined as follows.
We say a connected subgraph of G is a (k,r)-core if and only
if it satisfies both structure and similarity constraints. More
specifically, given an attributed graph G, a (k,r)-core is a
k-core of G (structure constraint) and the vertex set of the
(k,r)-core induces a clique on the corresponding similarity
graph (similarity constraint). A (k,r)-core is maximal if none
of its supergraphs is a (k,r)-core. It is less interesting to find
non-maximal (k,r)-cores. In this paper, we aim to efficiently
compute the maximal (k,r)-cores.

Example 1 In Fig. 1, we use a set of keywords to describe
the interests of each user. Jaccard similarity metric can be
employed to measure the user similarity based on user key-
words. Suppose k = 3 and the similarity threshold r = 0.5,
the group within red circle is a maximal (k,r)-core. In this
group, each user has at least three friends and their interests
are similar to others. This group is likely to remain stable,
become active and enhance the interactions among users.

Applications Online group activities are already very com-
mon in many social networks, e.g., Google has indexed
approximately 620 million Facebook groups in 2010 [46].

Fig. 1 Group by friendship and interests. When k = 3 and r = 0.5, the
circled group is a maximal (k,r)-core where each vertex has at least 3
neighbors and is similar to each other

The (k,r)-core model can well-serve the discovery of social
groups where the users are highly similar in terms of interest,
location, etc. Some potential applications are as follows.

Interest-based social groups The official information from
Facebook [19] shows that the criteria used in their group
recommendation system are based on user friendship and
high similarity of user attributes. Facebook recommends a
group A to a user u if (i) the friends of u are members of
the group, and (ii) the attributes of u are highly similar to the
group A, i.e., u is highly similar to existing group members.
The similarity is generally measured by the pages liked by
u, the tags of the group A, the spatial closeness, etc [19].
These requirements well match the modeling of (k,r)-core.
The system only recommends existing user groups, while the
(k,r)-core algorithms can help find new promising groups.

Gambling groups in mobile payment transactions A large
number of payment transactions are now conducted online,
including the money involved in gambling. It is common
that gamblers in the same group frequently transfer money
to a certain number of members, which forms the network
structure. Each user in the network has many attributes, e.g.,
inflow amount, outflow amount, the number of transfers, the
time of each transfer, the location of each transfer, etc. The
gamblers are connected andhighly similar in termsof transfer
amount, the time, the location, etc. Our (k,r)-core model can
be used to detect the suspicious groups, with a particular
similarity function designed for this scenario.

Group buying in social marketing Online group buying ser-
vices, such asGroupon and Pingduoduo, have become highly
popular and successful [38]. The service allows users with
similar purchase interests to congregate online as a group
to obtain group discounts [37]. In addition, the companies
are suggested to encourage social interactions among users
because social influence and group consumption can amplify
the deal popularity [39]. The potential buying groups may be

123

Efficient community discovery with user engagement and similarity

Fig. 2 Group by friendship and locations. Two users are similar if their
spatial distance is not larger than r . When k = 3 and r = 1km, (i) the
groups satisfying structure constraint: G1, G2, G4, G5 and G6; (ii) the
groups satisfying similarity (spatial-closeness) constraint: G1, G3, G4,
G5 and G6; and (iii) the maximal groups satisfying both constraints
(maximal (k,r)-cores): G1, G4 and G6

found by our (k,r)-core model, where proper structure and
similarity thresholds should be applied to fit the marketing
requirement.

Location-based games Pokemon Go is one popular mobile
game with millions of active users worldwide [48], based on
physical locations of users. Its social system was launched
in 2018 to improve user experience [43]. The developers of
Pokemon Go wish to encourage the users to play together
and connect meaningfully in-game [43]. The strict spatial
closeness is required when users wish to form a real team and
play the game nearby. By recommending game teams with
potential to become sustainable and active, the companies can
greatly enhance user stickiness and improve game experience
[12].

Example 2 As illustrated in Fig. 2, we can model the users
and their friendship as a graph, where each user is located on
the map. We say two users are similar if their spatial distance
is not larger than r . Suppose k = 3 and the similarity (dis-
tance) threshold r = 1km,G2 andG3 are not good candidate
groups. Although each user pair in G3 has close distance,
their friendship is weak. Likewise, although each user in G2

has at least k friends, some users cannot conveniently play
with others because they are far away from others. However,
maximal (k,r)-cores (i.e., G1, G4 and G6) can effectively
identify good candidate groups satisfying both structure and
similarity constraints. Note that although G5 is a (k,r)-core,
it is less interesting because it is fully contained by two larger
groups, G4 and G6.

The studied problems (a) The enumeration of maximal (k,r)-
core is a fundamental procedure to find and analyze all
the high-quality groups for network holders, e.g., all the

suspicious groups involved in gambling. Our enumeration
framework is a base for computing the large or diversified
maximal (k,r)-cores. (b) The groupswith larger size aremore
likely to attract attention from the network holders and users,
for potentially higher impact and influence. Thus, we com-
pute the maximum (k,r)-core which is the (k,r)-core with
the largest number of vertices. The proposed algorithm can
also be applied to find the top-l largest maximal (k,r)-cores.
In gambling group detection, the large transaction data may
lead to frequent computation of (k,r)-cores. The manual ver-
ification should examine the large suspicious groups first.
(c) Although each top-l maximal (k,r)-core is individually
large, there may be many common users who join more than
one of the top-l. The overlaps in some results motivate us to
search the diversified top-l maximal (k,r)-cores (DivKRCs in
short)which cover the largest number of vertices in the graph.
DivKRCs are more interesting than the top-l because they
are more diverse and informationally rich, e.g., they contain
the largest number of users involved in different gambling
groups.

Example 3 In Fig. 2, we set k = 3. The enumeration returns
3 maximal (k,r)-cores G1, G4 and G6. The maximum (k,r)-
core is G6 with nine vertices. The top-2 largest maximal
(k,r)-cores G4 and G6 are highly overlapped, with seven
common users in both sides. The diversified top-2 maximal
(k,r)-cores are G1 and G6.

Challenges and contributionsAlthough there is a linear algo-
rithm for k-core computation [5] (i.e., only consider structure
constraint), we prove the (k,r)-core problems are all NP-hard
because of the similarity constraint involved.

The enumeration A straightforward solution is the combi-
nation of the existing k-core and clique algorithms, e.g.,
enumerating the cliques on similarity graph and then check-
ing the structure constraint on the graph. In Sect. 3 and the
empirical study,we show that this is not promising because of
the isolated processing of structure and similarity constraints.
In this paper, we show that performance can be immediately
improved by considering two constraints (i.e., two pruning
rules) at the same time without explicitly materializing the
similarity graph. Then, our technique contributions focus on
largely reducing the search space by proposing effective tech-
niques for pruning, early termination and maximal check. A
good search order is designed to speed up the enumeration.

The maximum To find the maximum (k,r)-core, we follow
the framework of enumeration and aim to further reduce
the search space by pruning unpromising branches. The
(k,k′)-core based approach is designed to fast compute a
tight size upper bound of the maximal (k,r)-core in a search
branch. The upper bound significantly prunes the branches
which produce small (k,r)-cores. A different search order is
designed for finding the maximum.

123

F. Zhang et al.

The diversification In order to find the top-l DivKRCs, a
straightforward algorithm is to firstly enumerate all maxi-
mal (k,r)-cores and then apply a greedy maximum coverage
algorithm [24] to find the top-l DivKRCs. However, it is not
worthwhile and necessary to run the complete (k,r)-core enu-
meration procedure for computing the DivKRCs. Besides, in
this solution, the computations of maximal (k,r)-cores and
the maximum coverage are isolated. Consequently, this solu-
tion is not efficient enough for DivKRC search. We propose
a more efficient algorithm to compute the DivKRCs without
generating all maximal (k,r)-cores and with a guaranteed
approximation ratio. The algorithm maintains at most l can-
didate maximal (k,r)-cores in the (k,r)-core enumeration
procedure. The candidates are updated when better candi-
date maximal (k,r)-cores are found. Following is a summary
of our principal contributions.

– We advocate a novel cohesive subgraph model for
attributed graphs, called (k,r)-core, to capture the cohe-
siveness of subgraphs from both the graph structure and
the vertex attributes. We prove that the problem of enu-
merating all maximal (k,r)-cores, finding the maximum
(k,r)-core and finding the diversifiedmaximal (k,r)-cores
are all NP-hard. (Sect. 2)

– We develop efficient algorithms to enumerate the maxi-
mal (k,r)-coreswith candidate pruning, early termination
and maximal checking techniques. (Sect. 5)

– We develop an efficient algorithm to find the maxi-
mum (k,r)-core. Particularly, a novel (k,k′)-core-based
approach is proposed to derive a tight upper bound for
the size of the candidate solution. (Sect. 6)

– We also develop an efficient algorithm to find the
diversified top-l maximal (k,r)-cores, with a guaranteed
approximation ratio. Particularly, a tight double k-core
based upper bound is proposed to prune unpromising
partial (k,r)-cores. Besides, initial candidate generation
finds large-size initial maximal (k,r)-cores to enhance
the pruning power of the upper bound and the designed
search order. (Sect. 7)

– Based on some key observations, we propose five search
orders for enumerating maximal (k,r)-cores, checking
maximal (k,r)-cores, finding maximum (k,r)-core, find-
ing diversified maximal (k,r)-cores and initial candidate
generation, respectively. (Sect. 8)

– Our empirical studies on real-life data demonstrate that
interesting cohesive subgraphs can be identified by max-
imal (k,r)-cores, maximum (k,r)-core and diversified
top-l maximal (k,r)-cores. The extensive performance
evaluation shows that the techniques proposed in this
paper can greatly improve performance of three mining
algorithms. (Sect. 9)

Table 1 The summary of notations

Notation Definition

G A simple attributed graph

S, J , R Induced subgraphs

u, v Vertices in the attributed graph

sim(u, v) Similarity between u and v

deg(u, S) Number of adjacent vertex of u in S

degmin(S) Minimal degree of the vertices in S

DP(u, S) Number of dissimilar vertices of u
w.r.t S

DP(S) Number of dissimilar pairs of S

SP(u, S) Number of similar vertices of u w.r.t S

M Vertices chosen so far in the search

C Candidate vertices set in the search

E Relevant exclusive vertices set in the
search

R(M , C) Maximal (k,r)-cores derived from
M ∪ C

SF(S) (i.e., SFC (S)) Every u in S with DP(u,C) = 0

SFC∪E (S) Every u in S with DP(u,C ∪ E) = 0

G(M) The induced subgraph of M on G

V (S) The vertex set of S

E(S) The edge set of S

2 Preliminaries

2.1 Problem definition

We consider an undirected, unweighted and attributed graph
G = (V , E, A), where V (G) (resp. E(G)) represents the set
of vertices (resp. edges) inG and A(G) denotes the attributes
of the vertices. By sim(u, v), we denote the similarity of two
vertices u, v in V (G)which is derived from their correspond-
ing attribute values (e.g., users’ geolocations and interests)
such as Jaccard similarity or Euclidean distance. For a given
similarity threshold r , we say two vertices are dissimilar
(resp. similar) if sim(u, v) < r (resp. sim(u, v) ≥ r).1

For a vertex u and a set S of vertices, DP(u, S) (resp.
SP(u, S)) denotes the number of other vertices in S which
are dissimilar (resp. similar) to u regarding the given simi-
larity threshold r . We use DP(S) to denote the number of
dissimilar pairs in S. We use S ⊆ G to denote that S is a
subgraph of G where E(S) ⊆ E(G) and A(S) ⊆ A(G). By
deg(u, S), we denote the number of adjacent vertices of u
in V (S). Then, degmin(S) is the minimal degree of the ver-
tices inV (S). Table 1 summarizes themathematical notations

1 Following the convention, when the distance metric (e.g., Euclidean
distance) is employed, we say two vertices are similar if their distance
is not larger than the given distance threshold.

123

Efficient community discovery with user engagement and similarity

used throughout this paper. Now we formally introduce two
constraints.

Definition 1 (Structure constraint) Given an integer k, a sub-
graph S satisfies the structure constraint if deg(u, S) ≥ k for
each vertex u ∈ V (S), i.e., degmin(S) ≥ k.

Definition 2 (Similarity constraint)Given a similarity thresh-
old r , a subgraph S satisfies the similarity constraint if
DP(u, S) = 0 for each vertex u ∈ V (S), i.e., DP(S) = 0.

We then formally define the (k,r)-core based on structure
and similarity constraints.

Definition 3 ((k, r)-core). Given a connected subgraph S ⊆
G, S is a (k,r)-core if S satisfies both structure and similarity
constraints.

Definition 4 (Maximal (k, r)-core) Given a connected sub-
graph S ⊆ G, S is a maximal (k,r)-core if S is a (k,r)-core
of G and there exists no (k,r)-core S′ of G such that S ⊂ S′.

Definition 5 (Maximum (k, r)-core) Let R denote all (k,r)-
cores of an attributed graph G, a (k,r)-core S ⊆ G is
maximum if |V (S)| ≥ |V (S′)| for every (k,r)-core S′ ∈ R.

Problem statement Given an attributed graph G, a positive
integer k and a similarity threshold r , we aim to develop
efficient algorithms for the following fundamental problems:
(i) enumerating all maximal (k,r)-cores inG; and (ii) finding
the maximum (k,r)-core in G.

For conciseness, we defer the problem definition of diver-
sified maximal (k,r)-core search to Sect. 7.

2.2 Problem complexity

We can compute the k-core in linear time [5], while the two
problems studied in this paper areNP-hard due to the involve-
ment of similarity constraint.

Theorem 1 Given a graph G(V , E), the problems of enu-
merating all maximal (k,r)-cores and finding the maximum
(k,r)-core are NP-hard.

Proof The key idea is that we may construct a specific
attributed graph which is a fully connected graph (i.e., struc-
ture constraint is always satisfied), and wemay come up with
the NP hardness based on the similarity graph by reducing
to the maximal clique problem.

Given a graph G(V , E), we construct an attributed graph
G ′(V ′, E ′, A′) as follows. Let V (G ′) = V (G) and E(G ′) =
{(u, v) | u ∈ V (G ′), v ∈ V (G ′), u �= v}, i.e., G ′ is a com-
plete graph. For each u ∈ V (G ′), we let A(u) = ad j(u,G)

where ad j(u,G) is the set of adjacent vertices of u in G.
Suppose a Jaccard similarity is employed, i.e., sim(u, v) =
|A(u)∩A(v)|
|A(u)∪A(v)| for any pair of vertices u and v in V (G ′), and let

the similarity threshold r = 1
2|V (G ′)| . We have sim(u, v) ≥ r

if the edge (u, v) ∈ E(G), and otherwise sim(u, v) = 0 < r .
Since G ′ is a complete graph, i.e., every subgraph S ⊆ G ′
with |S| ≥ k satisfies the structure constraint of a (k,r)-core,
the problem of deciding whether there is a k-clique on G
can be reduced to the problem of finding a (k,r)-core on G ′
with r = ε and hence can be solved by the problem of enu-
merating all maximal (k,r)-cores or finding the maximum
(k,r)-core. Theorem 1 holds due to the NP-hardness of the
k-clique problem [27].
�

Theorem 2 There does not exist a polynomial delay or poly-
nomial total algorithm for the problem of enumerating all
maximal (k,r)-cores, unless P=NP.

Proof First, according to Theorem 1, it is impossible to find
a (k,r)-core in polynomial time of input size during enu-
meration unless P=NP. Consequently, there is no polynomial
delay algorithm for maximal (k,r)-core enumeration. Sec-
ond, suppose on the contrary that there is a polynomial total
(total time polynomial to input + output size) algorithm for
the maximal (k,r)-core enumeration problem, we can derive
that when there is no (k,r)-core, the algorithm can terminate
in time polynomial to input size. This contradicts Theorem 1.
Therefore, Theorem 2 holds.
�

3 The clique-based approach

Let G ′ denote a new graph named similarity graph with
V (G ′) = V (G) and E(G ′) = {(u, v) | sim(u, v) ≥
r & u, v ∈ V (G)}, i.e., G ′ connects the similar vertices
in V (G). Then, the set of vertices in a (k,r)-core satisfies
the structure constraint on G and is a clique (i.e., a complete
subgraph) on the similarity graph G ′ (because every ver-
tex pair is similar in a (k,r)-core). This implies that we can
use the existing clique algorithms on the similarity graph to
enumerate the (k,r)-core candidates, followed by a structure
constraint check. More specifically, we may first construct
the similarity graph G ′ by computing the pairwise similarity
of the vertices. Then, we enumerate the cliques in G ′ and
compute the k-core on each induced subgraph of G for each
clique. We can find the maximal (k,r)-cores after the maxi-
mal check. We may further improve the performance of this
clique-based approach in the following three ways.

– Instead of enumerating cliques on the similarity graph
G ′, we can first compute the k-core of G, denoted by S.
Then, we apply the clique-basedmethod on the similarity
graph of each connected subgraph in S.

– An edge in S can be deleted if its corresponding vertices
are dissimilar, i.e., there is no edge between these two
vertices in similarity graph S′.

123

F. Zhang et al.

Algorithm 1: EnumerateMKRC(G, k, r)
Input : G : attributed graph, k : degree threshold, r :

similarity threshold
Output : R : Maximal (k,r)-cores
for each edge (u, v) in E(G) do1

Remove edge (u, v) from G If sim(u, v) < r ;2

S ← k-core(G); R := ∅;3
for each connected subgraph S in S do4

R := R ∪ NaiveEnum(∅, S);5

for each (k,r)-core R inR do6
if there is a (k,r)-core R′ ∈ R s.t. R ⊂ R′ then7

R := R \ R;8

return R9

– We only need to compute k-core for each maximal clique
because any maximal (k,r)-core in a non-maximal clique
can be obtained from a maximal clique.

The above three methods substantially improve the per-
formance of the clique-based approach. Nevertheless, our
experiments later will demonstrate that the improved clique-
based approach is substantially outperformed by our baseline
algorithm (Sect. 9.3), although the state-of-the-art k-core and
clique computation methods have been applied [5,51]. This
further validates the effectiveness to integrate computation
of k-core and clique at each search step.

4 Warming up for our approach

For ease of understanding, we start with a straightforward set
enumeration approach . The pseudo-code is given in Algo-
rithm1.At the initial stage (Line 1–2),we remove the edges in
E(G) whose corresponding vertices are dissimilar and then
compute the k-core S of the graph G. For each connected
subgraph S ∈ S, the procedure NaiveEnum (Line 5) identi-
fies all possible (k,r)-cores by enumerating and validating all
the induced subgraphs of S. ByR, we record the (k,r)-cores
seen so far. Line 6–8 eliminate the non-maximal (k, r)-cores
by checking all (k,r)-cores.

During the NaiveEnum search procedure (Algorithm 2),
the vertex set M incrementally retains the chosen vertices,
andC retains the candidate vertices. In order to enumerate all
possible solutions, for each chosen vertex u fromC at Line 4,
we will try to extend M with u (Line 5) or explicitly discard
u (Line 6). Then, each subset R ⊆ S is validated accord-
ing to the structure, similarity and connectivity constraints at
Line 1–2.

As shown in Fig. 3, the enumeration process corresponds
to a binary search tree in which each leaf node represents a
subset of S. In each non-leaf node, there are two branches.
The chosen vertex will be moved to M from C in expand

Algorithm 2: NaiveEnum(M , C)
Input : M : chosen vertices, C : candidate vertices
Output : R : (k,r)-cores
if C = ∅ and degmin(M) ≥ k and DP(M) = 0 then1

R := R ∪ R for every connected subgraph R ∈ G(M);2

else3
u ← choose a vertex in C ;4
NaiveEnum(M ∪ u, C \ u); /* Expand */;5
NaiveEnum(M , C \ u); /* Shrink */;6

Fig. 3 Example of the search tree

branch and will be deleted from C in shrink branch, respec-
tively.

AlgorithmcorrectnessWecan safely removedissimilar edges
(i.e., edges whose corresponding vertices are dissimilar) at
Line 1–2 of Algorithm 1, since they will not be considered
in any (k,r)-core due to the similarity constraint. For every
(k,r)-core R inG, there is one and only one connected k-core
subgraph S from S with R ⊆ S. Since all possible subsets of
S (i.e., 2|S| leaf nodes) are enumerated in the corresponding
search tree, every (k,r)-core R can be accessed exactly once
during the search. Together with the structure/similarity con-
straints and maximal property validation, we can output all
maximal (k,r)-cores.

Algorithm 1 immediately finds the maximum (k,r)-core
by returning the maximal (k,r)-core with the largest size.

5 Finding all maximal (k,r)-cores

In this section, we propose pruning techniques for the enu-
meration. Note that we introduce search orders in Sect. 8.

5.1 Reducing candidate size

Wepresent pruning techniques to explicitly/implicitly exclude
some vertices from C .

5.1.1 Eliminating candidates

Intuitively, when a vertex in C is assigned to (i.e., expand
branch) M or discarded (i.e., shrink branch), we shall recur-
sively remove some non-promising vertices from C due to

123

Efficient community discovery with user engagement and similarity

structure and similarity constraints. The following two prun-
ing rules are based on the definition of (k,r)-core.

Theorem 3 (Structure-based pruning)We can discard a ver-
tex u in C if deg(u, M ∪ C) < k.

Theorem 4 (Similarity-based pruning)We can discard a ver-
tex u in C if DP(u, M) > 0.

Candidate pruning algorithm If a chosen vertex u is extended
to M (i.e., to the expand branch), we first apply the similar-
ity pruning rule (Theorem 4) to exclude vertices in C which
are dissimilar to u. Otherwise, none of the vertices will be
discarded by the similarity constraint when we follow the
shrink branch. Due to the removal of the vertices from C
(expand branch) or u (shrink branch), we conduct structure-
based pruning by computing the k-core for vertices inM∪C .
Note that the search terminates if any vertex in M is dis-
carded.

It takes at most O(|C |) time to find dissimilar vertices
of u from C . Due to the k-core computation, the structure-
based pruning takes linear time to the number of edges in the
induced graph of M ∪ C .

After applying the candidate pruning, following two
important invariants always hold at each search node unless
the search is terminated.

Similarity invariant We have

DP(u, M ∪ C) = 0 for every vertex u ∈ M . (1)

That is, M satisfies similarity constraint regarding M ∪ C .
Degree invariant We have

degmin(M ∪ C) ≥ k. (2)

That is, M and C together satisfy the structure constraint.

5.1.2 Retaining candidates

In addition to explicitly pruning some non-promising ver-
tices, we may implicitly reduce the candidate size by not
choosing some vertices from C . In this paper, we say a ver-
tex u is similarity free w.r.t C if u is similar to all vertices
in C , i.e., DP(u,C) = 0. By SF(C), we denote the set of
similarity free vertices in C .

Theorem 5 Given that the pruning techniques are applied
in each search step, we do not need to choose vertices from
SF(C) on both expand and shrink branches. Moreover, M ∪
C is a (k,r)-core if we have C = SF(C).

Proof For every vertex u ∈ SF(C), we have DP(u, M ∪C)

= 0 due to the similarity invariant of M (Equation 1) and the
definition of SF(C). Let M1 and C1 denote the correspond-
ing chosen set and candidate after u is chosen for expansion.

Fig. 4 Pruning and retaining candidates

Similarly, we have M2 and C2 if u is moved to the shrink
branch. We have M2 ⊂ M1 and C2 ⊆ C1, because there are
no discarded vertices when u is extended to M while some
vertices may be eliminated due to the removal of u in the
shrink branch. This implies that R(M2,C2) ⊆ R(M1,C1).
Consequently, we do not need to explicitly discard u as the
shrink branch of u is useless. Hence, we can simply retain
u in C in the following computation. However, C = SF(C)

implies every vertex u in M ∪C satisfies the similarity con-
straint. Moreover, u also satisfies the structure constraint due
to the degree invariant (Eq. 2) of M ∪ C . So M ∪ C is a
(k,r)-core.
�

Note that a vertex u ∈ SF(C) may be discarded in the
following search due to the structural constraint. Otherwise,
it is moved to M when the condition SF(C) = C holds. For
each vertex u in C , we update DP(u,C) in a passive way
when its dissimilar vertices are eliminated from the compu-
tation. Thus, it takes O(nd) time in the worst case where nd
denotes the number of dissimilar vertex pairs in C .

Remark 1 With similar rationale, we can move a vertex u
directly from C to M if it is similarity free (i.e., u ∈ SF(C))
and is adjacent to at least k vertices in M . This validation
rule will be used without further mention.

Example 4 In Fig. 4, initially we have M = {u6} and C =
{u1, . . . , u5, u7, . . . , u10}. We use the spatial distance of two
vertices as their similarity, and the only dissimilar pair is u4
and u7. Suppose u7 is chosen from C , following the expand
branch, u7 will be moved from C to M and then u4 will
be pruned due to the similarity constraint. Then, we need to
prune u8 as deg(u8, M ∪C) < 3. Thus, M = {u6, u7}, E =
{u4, u8}. Since we have SF(C) = C , this search branch is
terminated and we get a (k,r)-core of M ∪ C . Regarding
the shrink branch, u7 is moved from C to E , which leads to
the deletion of u10 due to structure constraint. Thus, M =
{u6}, E = {u7, u10}. Since we have SF(C) = C , this search
branch is terminated and we get a (k,r)-core of M ∪ C .

5.2 Early termination

Trivial early termination There are two trivial early ter-
mination rules. As discussed in Sect. 5.1, we immediately

123

F. Zhang et al.

terminate the search if any vertex in M is discarded due to
the structure constraint. We also terminate the search if M is
disconnected to C . Both these stipulations will be applied in
the remainder of this paper without further mention.

In addition to identifying the subtree that cannot derive any
(k,r)-core, we further reduce the search space by identifying
the subtrees that cannot lead to anymaximal (k,r)-core. By E ,
we denote the related excluded vertices set for a search node
of the tree, where the discarded vertices during the search
are retained if they are similar to M , i.e., DP(v, M) = 0
for every v ∈ E and E ∩ (M ∪ C) = ∅. We use SFC (E)

to denote the similarity free vertices in E w.r.t the set C ;
that is, DP(u,C) = 0 for every u ∈ SFC (E). Similarly, by
SFC∪E (E) we denote the similarity free vertices in E w.r.t
the set E ∪ C .

Theorem 6 (Early termination) We can safely terminate the
current search if one of the following two conditions hold:

(i) There is a vertex u ∈ SFC (E) with deg(u, M) ≥ k;
(ii) There is a set U ⊆ SFC∪E (E), such that deg(u, M ∪

U) ≥ k for every vertex u ∈ U.

Proof (i) We show that every (k,r)-core R derived from cur-
rent M and C (i.e., R ⊆ R(M,C)) can reveal a larger
(k,r)-core by attaching the vertex u. For any R ∈ R, we have
deg(u, R) ≥ k because deg(u, M) ≥ k and M ⊆ V (R). u
also satisfies the similarity constraint based on the facts that
u ∈ SFC (E) and R ⊆ M ∪ C . Consequently, V (R) ∪ {u}
forms a (k,r)-core. (ii) The correctness of condition (ii) has a
similar rationale. The key idea is that for every u ∈ U , u sat-
isfies the structure constraint because deg(u, M ∪ U) ≥ k;
and u also satisfies the similarity constraint because U ⊆
SFE∪C (E) implies that DP(u,U ∪ R) = 0.
�

Early termination check It takes O(|E |) time to check the
condition (i) of Theorem 6 with one scan of the vertices
in SFC (E). Regarding condition (ii), we may conduct k-
core computation on M ∪ SFC∪E (E) to see if a subset of
SFC∪E (E) is included in the k-core. The time complexity is
O(ne) where ne is the number of edges in the induced graph
of M ∪ C ∪ E .

5.3 Checkingmaximal

In Algorithm 1 (Line 6–8), we need to validate the maximal
property based on all (k,r)-cores of G. The cost increases
with both the number and the average size of the (k,r)-cores.
Similar to the early termination technique, we use the fol-
lowing rule to check the maximal property.

Theorem 7 (Checking maximal) Given a (k,r)-core R, R is
a maximal (k,r)-core if there does not exist a non-empty set

Fig. 5 Early termination and maximal check

U ⊆ E such that R ∪ U is a (k,r)-core, where E is the
excluded vertices set when R is generated.

Proof Wehave E contains all discarded vertices that are sim-
ilar to M according to the definition of the excluded vertices
set. For any (k,r)-core R′ which fully contains R, we have
R′ ⊆ E ∪ R because R = M and C = ∅, i.e., the vertices
outside of E ∪ R cannot contribute to R′. Therefore, we can
safely claim that R is maximal if we cannot find R′ among
E ∪ R.
�
Example 5 In Fig. 5, we have M = {u2, u5, u6}, C =
{u1, u3, u4, u7, u8, u9, u10}. u4 and u7 are the only dissim-
ilar pair. If u9 is chosen from C on the shrink branch, u9
is moved from C to E . Because u9 is similar to every ver-
tex in C and has 3 neighbors in M , the search is terminated
for u9 ∈ SFC (E) and deg(u9, M) ≥ 3 according to The-
orem 6. If we expand and shrink the initial graph several
times, the graph becomes M = {u1, u2, u3, u5, u6, u9} and
E = {u4, u7, u8, u10}. Here, M is a (k,r)-core, but we can
further extend u7 and u10 to M and get a larger (k,r)-core.
So M is not a maximal (k,r)-core.

Since the maximal check is similar to our advanced enu-
meration algorithm, we defer the details to Sect. 5.4.

5.4 Advanced enumerationmethod

Algorithm 3 shows our advanced enumeration algorithm
which integrates the techniques proposed in the previous
sections. We first apply the candidate pruning algorithm
outlined in Sect. 5.1 to eliminate some vertices based on
structure/similarity constraints.AlongwithC ,we alsoupdate
E by including discarded vertices and removing the ones
that are not similar to M . Line 2 may then terminate the
search based on our early termination rules. If the condition
C = SF(C) holds, M ∪ C is a (k,r)-core according to The-
orem 5, and we can conduct the maximal check (Line 3–5).
Otherwise, Line 7–9 choose one vertex from C\SF(C) and
continue the search following two branches.

Checking maximal algorithm According to Theorem 7, we
need to check whether some of the vertices in E can be
included in the current (k,r)-core, denoted by M∗. This can

123

Efficient community discovery with user engagement and similarity

Algorithm 3: AdvancedEnum(M , C , E)
Input : M : chosen vertices set, C : candidate vertices set, E :

relevant excluded vertices set
Output : R : maximal (k,r)-cores
Update C and E based on candidate pruning techniques1
(Theorem 3 and Theorem 4);
Return If current search can be terminated (Theorem 6);2
if C = SF(C) (Theorem 5) then3

M := M ∪ C ;4
R := R ∪ G(M) If CheckMaximal(M , E) (Theorem 7);5

else6
u ← a vertex in C \ SF(C) (Theorem 5);7
AdvancedEnum(M ∪ u, C \ u, E);8
AdvancedEnum(M , C \ u, E ∪ u);9

Algorithm 4: CheckMaximal(M , C)
Input : M : chosen vertices, C : candidate vertices
Output : isMax : true if M is a maximal (k,r)-core
Update C based on similarity and structure constraint;1
if G(M) is a (k,r)-core then2

Exit the algorithm with isMax = f alse If |M∗| < |M |;3

else if |C | > 0 then4
u ← a vertex in C ;5
CheckMaximal(M ∪ u, C \ u);6
CheckMaximal(M , C \ u);7

be regarded as the process of further exploring the search
tree by treating E as candidate C (Line 5 of Algorithm 3).
Algorithm 4 presents the pseudo-code for ourmaximal check
algorithm.

To enumerate all the maximal (k,r)-cores of G, we need
to replace the NaiveEnum procedure (Line 5) in Algorithm 1
using our advanced enumeration method (Algorithm 3).
Moreover, the naive checking maximals process (Line 6–8)
is not necessary since checking maximals is already con-
ducted by our enumeration procedure (Algorithm 3). Since
the search order for vertices does not affect the correctness,
the algorithm correctness can be immediately guaranteed
based on above analyses. It takes O(ne + nd) times for each
search node in the worst case, where ne and nd denote the
total number of edges and dissimilar pairs in M ∪ C ∪ E .

6 Finding themaximum (k,r)-core

In this section, we introduce the novel upper bound-based
algorithm to find the maximum (k,r)-core.

6.1 Algorithm for finding themaximum

Algorithm 5 presents the pseudo-code for finding the maxi-
mum (k,r)-core, where R denotes the largest (k,r)-core seen
so far. There are three main differences compared to the enu-

meration algorithm (Algorithm 3). (i) Line 2 terminates the
search if we find the current search is non-promising based
on the upper bound of the core size, denoted by KRCore-
SizeUB(M ,C). (ii) We do not need to validate the maximal
property. (iii) Along with the order of visiting the vertices,
the order of the two branches also matters for quickly iden-
tifying large (k,r)-cores (Line 6–12), which is discussed in
Sect. 8.

To find the maximum (k,r)-core in G, we need to replace
the NaiveEnum procedure (Line 5) in Algorithm 1 with
the method in Algorithm 5, and remove the naive maximal
check section of Algorithm 1 (Line 6–8). To quickly find a
(k,r)-core with a large size, we start the algorithm from the
subgraph S which holds the vertex with the highest degree.
The maximum (k,r)-core is identified when Algorithm 1 ter-
minates.

Algorithm correctness Since Algorithm 5 is essentially an
enumeration algorithm with an upper bound-based pruning
technique, the correctness of this algorithm is clear if the
K RCoreSizeU B(M,C) at Line 2 is calculated correctly.

Time complexity As shown in Sect. 6.2, we can efficiently
compute the upper bound of core size in O(ne + ns) time
where ns is the number of similar pairs w.r.t M ∪C ∪E .
For each search node, the time complexity is same to the
enumeration algorithm.

6.2 Size upper bound of (k,r)-core

Weuse R to denote the (k,r)-core derived fromM∪C . In this
way, |M | + |C | is clearly an upper bound of |R|. However,
it is very loose because it does not consider the similarity
constraint.

Recall that G ′ denotes a new graph that connects the sim-
ilar vertices of V (G), called similarity graph. By J and J ′,
we denote the induced subgraph of vertices M ∪ C from
graph G and the similarity graph G ′, respectively. Clearly,
we have V (J) = V (J ′). Because R is a clique on the simi-
larity graph J ′ and the size of a k-clique is k, we can apply the
maximum clique size estimation techniques to J ′ to derive
the upper bound of |R|. Color [26] and k-core-basedmethods
[5] are two state-of-the-art techniques for maximum clique
size estimation.

Color-basedupper bound Let cmin denote theminimumnum-
ber of colors to color the vertices in the similarity graph J ′
such that every two adjacent vertices in J ′ have different col-
ors. Since a k-clique needs k number of colors to be colored,
we have |R| ≤ cmin. Therefore, we can apply graph coloring
algorithms to estimate a small cmin [26].

k-core-based upper bound Let kmax denote the maximum k
value such that k-core of J ′ is not empty. Since a k-clique is
also a (k-1)-core, this implies that we have |R| ≤ kmax + 1.

123

F. Zhang et al.

Algorithm 5: FindMaximum(M , C , E)
Input : M : chosen vertices set , C : candidate vertices set,

E : relevant excluded vertices set
Output : R : the largest (k,r)-core seen so far
Update C and E ; Early terminate if possible;1
if K RCoreSizeU B(M,C) > |R| then2

if C = SF(C) then3
R := G(M ∪ C);4

else5
u ← choose a vertex in C \ SF(C);6
if Expansion is preferred then7

FindMaximum(M ∪ u, C \ u, E);8
FindMaximum(M , C \ u, E ∪ u);9

else10
FindMaximum(M , C \ u, E ∪ u);11
FindMaximum(M ∪ u, C \ u, E);12

Therefore, we may apply the existing k-core decomposition
approach [5] to compute themaximal core number (i.e., kmax)
on the similarity subgraph J ′.

At the first glance, both the structure and similarity con-
straints are used in the above method because J itself is a
k-core (structure constraint) and we consider the kmax-core
of J ′ (similarity constraint). The upper bound could be tighter
by choosing the smaller one from color-based upper bound
and k-core-based upper bound.Nevertheless, we observe that
the vertices in kmax-core of J ′ may not form a k-core on J
since we only have J itself as a k-core. If so, we can consider
kmax-1 as a tighter upper bound of R. Repeatedly, we have the
largest kmax-i as the upper bound such that the corresponding
vertices form a k-core on J and a (kmax-i)-core on J ′. We
formally introduce this (k, k′)-core-based upper bound in the
following.

(k,k’)-core-based upper bound We first introduce the con-
cept of (k,k′)-core to produce a tight upper bound of |R|.
Theorem 8 shows that we can derive the upper bound for any
possible (k,r)-core R based on the largest possible k′ value,
denoted by k′

max, from the corresponding (k,k′)-core.

Definition 6 ((k,k’)-core) Given a set of verticesU , the graph
J and the corresponding similarity graph J ′, let JU and J ′

U
denote the induced subgraph byU on J and J ′, respectively.
If degmin(JU) ≥ k and degmin(J

′
U) = k′, U is a (k,k′)-core

of J and J ′.

Theorem 8 Given the graph J , the corresponding similarity
graph J ′ and the maximum (k,r)-core R derived from J and
J ′, if there is a (k,k′)-core on J and J ′ with the largest k′,
i.e., k′

max, we have |R| ≤ k′
max + 1.

Proof Basedon the fact that a (k,r)-core R is also a (k,k′)-core
with k′ = |R| − 1 according to the definition of (k,r)-core,
the theorem is proven immediately.
�

(a) (b)

Fig. 6 Upper bound examples, k = 3. The color-based upper bound is
5 becausewe need 5 colors to color J ′. The k-core-based upper bound is
5 since kmax of J ′ is 4. The (k, k′)-core-based upper bound is 4 because
there is a non-empty (3, 3)-core and the (3, 4)-core is empty

If (k,k′)-core exists in the graph (J , J ′), it is impossible to
color graph J ′ with k′ or fewer colors, because there exists
some vertex v of degree k′ or higher. Thus, (k,k′)-core-based
approach provides tighter upper bound compared to color-
based approach.

Example 6 In Fig. 6, we have k = 3, M = {u3}, and
C = {u1, u2, u4, u5, u6}. Figure 6a shows the induced sub-
graph J from M ∪C on G, and Fig. 6b shows the similarity
graph J ′ from M ∪C on the similarity graph G ′. We need at
least 5 colors to color J ′, so the color-based upper bound is
5. By core decomposition on similarity graph J ′, we get that
the k-core-based upper bound is 5 since kmax = 4 with 4-
core {u2, u3, u4, u5, u6}. Note that the vertices of this 4-core
do not form a 3-core on J . Regarding the (k, k′)-core-based
upper bound, we can find k′

max = 3 because there is a (3, 3)-
core on J and J ′ with four vertices {u2, u3, u5, u6}, and there
is no other (k, k′)-core with a larger k′ than k′

max. Conse-
quently, the (k, k′)-core-based upper bound is 4, which is
tighter than 5.

6.3 Algorithm for (k,k′)-core upper bound

Algorithm 6 shows the details of the (k,k′)-core-based upper
bound (i.e., k′

max) computation, which conducts core decom-
position [5] on J ′ with additional update which ensures the
corresponding subgraph on J is a k-core. Initially, we use
deg(u) and degsim(u) to denote the degree and similarity
degree (i.e., the number of similar pairs from u) of u w.r.t
M ∪ C , respectively. Meanwhile, N B(u) (resp. N Bsim(u))
denotes the set of adjacent (resp. similar) vertices of u. The
key idea is to recursively mark the k′ value of the vertices
until we reach the maximal possible value. Line 1 sorts
all vertices based on the increasing order of their similar-
ity degrees. In each iteration, the vertex u with the lowest
similarity degree has already reached its maximal possible k′
(Line 3). Then, Line 4 invokes the procedureKK’coreUpdate
to remove u and decrease the degree (resp. similarity degree)
of its neighbors (resp. similarity neighbors) at Line 9–11
(resp. Line 12–15). Note that we need to recursively remove
vertices with degree smaller than k (Line 15) in the proce-

123

Efficient community discovery with user engagement and similarity

Algorithm 6: KK’coreBound(M , C)
Input : M : vertices chosen, C : candidate vertices
Output : k′

max : the upper bound for the size of the maximum
(k,r)-core in M ∪ C

H := vertices in M ∪ C with increasing order of their similarity1
degrees;
for each u ∈ H do2

k′ := degsim(u);3
KK’coreUpdate(u, k′, H);4
reorder H accordingly;5

return k′ + 16

KK’coreUpdate(u, k′, H)7
Remove u from H ;8
for each v ∈ N Bsim(u) ∩ H do9

if degsim(v) > k′ then10
degsim(v) := degsim(v) − 1;11

for each v ∈ N B(u) ∩ H do12
deg(v) := deg(v) − 1;13
if deg(v) < k then14

KK’coreUpdate(v, k′, H);15

dure. At Line 5, we need to reorder the vertices in H since
their similarity degree values may be updated. According to
Theorem 8, k′ + 1 is returned at Line 6 as the upper bound
of the maximum (k,r)-core size.

Time complexity We can use an array H to maintain the ver-
tices where H [i] keeps the vertices with similarity degree i .
Then, the sorting of the vertices can be done in O(|J |) time.
The time complexity of the algorithm is O(ne + ns), where
ne and ns denote the number of edges in the graph J and the
similarity graph J ′, respectively.

Algorithm correctnessLet k′
max(u) denote the largest k′ value

u can contribute to (k,k′)-core of J . By Hj , we represent the
vertices {u} with k′

max(u) ≥ j according to the definition
of (k,k′)-core. We then have Hj ⊆ Hi for any i < j . This
implies that a vertex u on Hi with k′

max(u) = i will not
contribute to Hj with i < j . Thus, we can prove correctness
by induction.

6.4 The top-lmaximal (k,r)-cores

Besides the maximum (k,r)-core, social network service
providers would also like to see the top-l maximal (k,r)-
cores whose activeness reflects the hotness of the network.
Users may be interested in these top-l communities which
can be some representative and appealing groups in the net-
work. To find the top-l maximal (k,r)-cores, we can record
current top-l largest maximal (k,r)-cores in Algorithm 5. At
Line 2, the size upper bound is compared with the size of
the minimum maximal (k,r)-core recorded. At Line 4, we
replace the minimum maximal (k,r)-core with current larger
one if it is maximal. More specifically, the output of Algo-

rithm 5 should be “{R j | j ∈ N+ & j ≤ l}: the top-l
largest maximal (k,r)-cores seen so far”. Line 2 should be
replaced by “If {K RCoreSizeU B(M,C) > |min(R j)|}
then” where min(R j) is the minimum maximal (k,r)-core
in {R j | j ∈ N+ & j ≤ l}. Line 4 should be replaced by
“min(R j) := M∪C If CheckMaximal(M, E);”. Since there
is no difference for Algorithm 6 toward finding themaximum
and the top-l, the algorithm keeps same.

7 Finding diversifiedmaximal (k,r)-cores

In this section, we first formally define the diversified
maximal (k,r)-core (DivKRC) search problem. Then, we
introduce a baseline algorithm based on (k,r)-core enumer-
ation, followed by our advanced DivKRC search algorithm,
including the basic framework, the double k-core upper
bound and initial candidate generation. Note that the search
order for DivKRC is introduced in Sect. 8.

7.1 Problem definition

We formally define the diversified top-l maximal (k,r)-core
search problem in this section.

Definition 7 (Coverage) Given a set of maximal (k,r)-cores
D = {R1, R2, . . .} in G, the coverage of D, denoted by
cov(D), is the set of vertices covered by the (k,r)-cores in
D, i.e., cov(D) = ∪R∈DV (R).

Problem statement Given an attributed graph G, an integer
k, a similarity threshold r and an integer l, the diversified
top-l maximal (k,r)-core search is to find a set D, such that
(1) each R ∈ D is a maximal (k,r)-core, (2) |D| ≤ l and (3)
|cov(D)| is maximized.D is called diversified top-l maximal
(k,r)-cores (DivKRCs).

When l = 1, the DivKRC search problem becomes
the maximum (k,r)-core search problem which is NP-hard.
Therefore, the DivKRC search problem is NP-hard.

7.2 Baseline algorithm

Benefit from the efficient (k,r)-core enumeration algorithm,
we can retrieve the top-l DivKRCs with the maximum cover-
age fromall the enumeratedmaximal (k,r)-cores. Essentially,
it is the maximum coverage problem which finds l sets (l
maximal (k,r)-cores) to cover the largest number of elements
(vertices) fromall the given sets (all themaximal (k,r)-cores).

The baseline algorithm is shown inAlgorithm7.AtLine 1,
it first computes all the maximal (k,r)-cores by the proposed
enumeration algorithm in Sect. 5, where the advanced enu-
meration (Algorithm 3) and maximal check (Algorithm 4)
are applied. Then, it computes the top-l DivKRCs using the

123

F. Zhang et al.

Algorithm 7: CoverEnum(G, k, r , l)
Input : G : attributed graph, k : degree threshold, r :

similarity threshold, l : number limit of DivKRCs
Output : D : the top-l DivKRCs
R := EnumerateMKRC(G, k, r) with advanced enumeration1
(Algorithm 3) and maximal check (Algorithm 4);
D := ∅; V ′ := V (R);2
for i = 1 to l do3

R := argmaxR′∈R−D{|V (R′) ∩ V ′|};4
D := D ∪ R; V ′ := V ′ \ V (R);5

return D6

greedy algorithm for maximum coverage problem (Line 3–
5). The maximum coverage problem is to select l sets from
a collection of sets such that the union of l sets contains
the largest number of elements. At Line 2, let D be the
selected sets (maximal (k,r)-cores) and V ′ be the elements
(vertices) not covered by D. The algorithm greedily adds a
maximal (k,r)-core to D which covers most vertices in V ′
(Line 4). Then, D and V ′ are updated accordingly (Line 5).
The greedy coverage algorithm achieves an approximation
ratio of 1 − 1/e which is the best possible approximation
of a polynomial time algorithm for the maximum coverage
problem as shown in [24].

The major limitation of the baseline algorithm is the iso-
lated computations of maximal (k,r)-cores and the top-l
DivKRCs. Although the baseline can achieve a good approx-
imation ratio, it requires the complete maximal (k,r)-core
generation which indicates that the baseline cannot be faster
than (k,r)-core enumeration. Besides, the baseline keeps all
the maximal (k,r)-cores in memory. The number might be
exponential in some special cases such as the input graph is
a complete graph in structure. Toovercomeabove limitations,
we can maintain the top-l candidates in the enumeration pro-
cedure to prune unpromising search space and greatly speed
up the DivKRC computation.

7.3 Advanced DivKRC search

7.3.1 Basic algorithm

We define the private coverage of a maximal (k,r)-core and
the min-cover (k,r)-core in D as follows.

Definition 8 (Private coverage) pcov(R,D). Given a set of
maximal (k,r)-coresD = {R1, R2, . . .}, for each R ∈ D, the
private coverage of R in D, denoted by pcov(R,D), is the
set of vertices in R that are not covered by the other maximal
(k,r)-cores in D, i.e., pcov(R,D) = V (R)\cov(D\R).

Definition 9 (Min-cover (k,r)-core) Rmin(D). Given a set
of maximal (k,r)-cores D = {R1, R2, . . .}, the min-cover
(k,r)-core of D, denoted by Rmin(D), is the maximal (k,r)-

Algorithm 8: DivBasic(G, k, r , l)
Input : G : attributed graph, k : degree threshold, r :

similarity threshold, l : number limit of DivKRCs
Output : D : the top-l DivKRCs
for each edge (u, v) in E(G) do1

Remove edge (u, v) from G If sim(u, v) < r ;2

S ← k-core(G); D := ∅;3
for each connected subgraph S in S do4

DivEnum(∅, S,∅);5

return D6

DivEnum(M , C , E)7
Update C and E based on candidate pruning techniques8
(Theorem 3 and Theorem 4);
if |D| < l or K RCoreSizeU B(M,C) >9

|pcov(Rmin(D),D)| + cov(D)
l then

if C = SF(C) then10
M := M ∪ C ;11
CandidateUpdate(R) for every maximal R ∈ G(M);12

else13
u ← choose a vertex in C \ SF(C);14
if Expansion is preferred then15

DivEnum(M ∪ u, C \ u, E);16
DivEnum(M , C \ u, E ∪ u);17

else18
DivEnum(M , C \ u, E ∪ u);19
DivEnum(M ∪ u, C \ u, E);20

CandidateUpdate(R)21
if |D| < l then22

D := D ∪ {R}; Return;23

D′ := (D \ {Rmin(D)}) ∪ {R};24

if |pcov(R,D′)| > |pcov(Rmin(D),D)| + cov(D)
l then25

D := D′;26

core R ∈ D with the smallest pcov(R,D), i.e., Rmin(D) =
argminR∈D|pcov(R,D)|.

The basic algorithm for DivKRC search is shown in Algo-
rithm 8. It firstly conducts graph reduction by edge removing
(Line 1–2) and k-core computation (Line 3). Then, it invokes
DivEnum procedure (Line 4–5) to find DivKRCs based on
the framework of (k,r)-core enumeration.

At Line 8, DivEnum updates candidate vertex set C and
excluded vertex set E according to Theorem 3 and Theo-
rem 4. At Line 9, the (k,r)-core size upper bound technique
(Algorithm 6) is applied to see whether the search branch
is still promising. To continue the recursion, we require the
(k,r)-core size upper bound of currentM∪C to be larger than
theminimumsize of private coverage of amaximal (k,r)-core
inD plus cov(D)

l , i.e., |pcov(Rmin(D),D)|+ cov(D)
l . It is the

update threshold for a new (k,r)-core to replace an existing
(k,r)-core inD. If the condition in Line 9 is not satisfied, the
search branch can be pruned because every (k,r)-core gen-
erated by M ∪ C cannot change current candidate set D as
shown in CandidateUpdate procedure.

123

Efficient community discovery with user engagement and similarity

When every vertex in C is similar to every other vertex in
C (Line 10), the induced subgraph ofM∪C becomes a (k,r)-
core. At Line 12, we check every maximal (k,r)-core from
M ∪ C in CandidateUpdate procedure. The maximality of a
(k,r)-core can be fast checked by Algorithm 4. When there
is a vertex in C not similar to another vertex in C (Line 13),
we select a vertex u to continue the recursion by expansion
or shrinking. At Line 14, the vertex selection in the basic
algorithm is same to that of the finding the maximum (k,r)-
core (Algorithm 5 and Sect. 8.2). According to the scores of
u in vertex selection, we decide the preference of expansion
(Line 16–17) or shrinking (Line 19–20).

At Line 22–23, CandidateUpdate pushes the (k,r)-core R
into the candidate set D when the candidate number in D is
less than l. The (k,r)-core R can replace a candidate in D if
R satisfies the update condition in Line 25.

Algorithm analysis Because the basic algorithm follows the
framework of (k,r)-core enumeration, its time complexity is
O(Tenum +|R| · |Rmax|) where Tenum is the time complexity
for (k,r)-core enumeration, R is the set of all the maximal
(k,r)-cores, and Rmax is the largest (k,r)-core inR. The can-
didate update is dominated by (k,r)-core search in both time
complexity and runtime. The result quality of Algorithm 8
can be guaranteed as Theorem 9 shows.

Theorem 9 Given the graph G and an integer l, supposeD∗
is the optimal diversified top-l maximal (k,r)-cores, and D
is the result returned by Algorithm 8, we have |cov(D)| ≥
0.25 × |cov(D∗)|.

Proof The correctness is based on a theoretical result from
[3], which shows that: Given a stream of sets A =
{R1, R2, . . .} and an integer l, letAi = {R1, R2, . . . , Ri } and
Di = Ai for 0 < i ≤ l. For any i > l, we construct Di from
Di−1 as follows: letD′

i = (Di−1\{Rmin(Di−1)})∪{Ri }, we
have (1) Di = D′

i if |cov(D′
i)| > (1 + 1

l)|cov(Di−1)|, and
(2) Di = Di−1 otherwise. It is guaranteed that Di is a 0.25-
approximation solution of the maximum coverage problem
of l sets on A.

Then, we prove that the result of Algorithm 8 satis-
fies the above setting. Firstly, we show the condition in
Line 25 of Algorithm 8 is same to |cov(D′)| > (1 +
1
l)|cov(D)| in [3]. Let Rmin = Rmin(D) and D− =
D\Rmin, we also have D− = D′\R because D′\R =
D\Rmin. Then, |pcov(R,D′)| = |cov(D′)| − |cov(D−)|,
and |pcov(Rmin,D)| = |cov(D)| − |cov(D−)|. So the two
conditions are same.Then,we show theupper bound inLine8
ofAlgorithm8does not violate the condition in [3]. Theupper
boundprunes the searchbrancheswhen the (k,r)-cores gener-
ated by these branches cannot satisfy rule (1) in the condition,
and thus all the pruned (k,r)-cores follow rule (2)which will
not change D.
�

(a) (b)

Fig. 7 Double k-core upper bound examples, k = 3. The shaded
vertices in the figure are the vertices covered by D\Rmin. The (k,k′)-
core-based upper bound is 5 due to the (3, 4)-core induced by G\{u1}.
The double k-core-based upper bound is the private coverage of the
double 3-core (the whole vertex set in this case), which is 2

7.3.2 Upper bound of private coverage

The upper bound used in Line 9 of Algorithm 8 is to prune
the search branches where any (k,r)-core produced in M ∪C
cannot trigger Line 26 and thus cannot replace the Rmin(D)

in candidate setD. Currently, we use the upper boundUBR∗ ,
which is the size upper bound of the largest (k,r)-core (R∗) in
the candidate set M∪C , obtained by Algorithm 6.UBR∗ is a
correct upper bound of the largest possible private coverage
of a (k,r)-core R in D′, where D′ = (D\{Rmin(D)}) ∪ {R}
and R is computed from M ∪ C . However, UBR∗ may not
be tight when there are few private vertices in a (k,r)-core of
M∪C . The upper bound can be largely tighten if we compute
the largest possible number of private vertices for a (k,r)-core
R in M ∪ C toward D′′, where D′′ = D\{Rmin(D)}. Note
that pcov(R,D′) = pcov(R,D′′) for any R.

A straightforward idea is to count the number of private
vertices in a set V ∗ toward D′′, where V ∗ fully contains
V (R∗), where R∗ is the largest (k,r)-core inM∪C . However,
it is infeasible because the number of private vertices in V ∗
is not certainly the largest among that of every (k,r)-core
R in M ∪ C . So we have to find a vertex set V ub which
fully contains every R in M ∪C to count the largest possible
number of private vertices.

Note that although UBR∗ is at least the size of R∗, the
corresponding (k, k′

max)-core ofUBR∗ in Algorithm 6 is not
a V ub and does not certainly contain every R in M ∪ C .
The UBR∗ is the number k′

max + 1 from the (k, k′
max)-core

where the (k, k′
max)-core may not contain the R∗, as shown

in Example 7. Thus the (k, k′
max)-core is not a V ub and its

private coverage toward D′′ cannot be used to compute an
upper bound of private coverage for every R in M ∪ C .

Example 7 In Fig. 7, we have a friendship graph J and
the corresponding similarity graph J ′. We can compute the
(k,k′)-core-based upper bound (i.e., k′

max + 1) by running
Algorithm 6. When k = 3, it is to compute the (3, k′)-core
with the largest k′, i.e., k′

max. The result value of k′
max is 4

because there is a (3, 4)-core {u2, u3, . . . , u7} and there is no

123

F. Zhang et al.

(3, 5)-core. We can see that the (3, 4)-core does not contain
the (k,r)-core {u1, u2, u3, u4}. Thus the private coverage of
(3, 4)-core cannot be utilized in computing a better upper
bound, and the (k,k′)-core-based upper bound for DivKRC
here can only be 5.

Double k-core-based upper bound We define the concept of
double k-core which contains every R in M∪C . Theorem 10
shows that we can derive the upper bound of private coverage
for any possible (k,r)-core R based on the double k-core.
Given a vertex set U and a graph J , let J (U) denote the
induced subgraph by U on J .

Definition 10 (Double k-core) Given a set of vertices U , the
friendship graph J and the corresponding similarity graph J ′.
U is a double k-core of J and J ′ if (1) degmin(J (U)) ≥ k,
(2) degmin(J

′(U)) ≥ k and (3) there is no double k-core U ′
of J and J ′ such that U ⊂ U ′.

Theorem 10 Given a graph J , the corresponding similarity
graph J ′, the double k-core U on J and J ′, the candidate
(k,r)-core setD, let Rmin = Rmin(D) if |D| ≥ l, and Rmin =
∅ otherwise. We have |pcov(J (U),D′)| ≥ |pcov(R,D′)|
for every (k,r)-core R in J and J ′, where D′ = (D\Rmin) ∪
{R}.
Proof LetC be the vertex set of an arbitrary (k,r)-core R in J
and J ′, we prove that C ⊆ U . We have J (C) is a k-core and
J ′(C) is a clique. Since degmin(J (C)) ≥ k, the size ofC is at
least k+1. Then, the J ′(C) is also a k-core because J ′(C) is
a clique containing at least k + 1 vertices. Suppose there is a
non-empty set W = C\U , we have degmin(J (U ∪ W)) ≥ k
and degmin(J

′(U ∪ W)) ≥ k because every vertex w ∈ W
has at least k neighbors inU ∪W . Then,U ∪W is the double
k-core of J and J ′, which contradicts with that U is the
double k-core of J and J ′. So there is no such non-empty set
W and C ⊆ U . Consequently, we have |pcov(J (U),D′)| ≥
|pcov(R,D′)| because V (R) = C ⊆ U for every R in J
and J ′.
�
Example 8 In Fig. 7, we have a friendship graph J and the
corresponding similarity graph J ′.We have Rmin = Rmin(D)

if |D| ≥ l, and Rmin = ∅ otherwise. The shaded vertices in
the figure are the vertices covered by D\Rmin. When k = 3,
the full vertex set in the figure is already the double 3-core.
Since the double k-core-based upper bound is the private
coverage of the double 3-core, the upper bound is 2.As shown
in Example 7, the (k,k′)-core-based upper bound is 5. So the
double k-core-based upper bound is better than (k,k′)-core-
based upper bound in this example.

When the private vertices in current candidate (k,r)-core
set D are very few or none, the double k-core upper bound
may be less effective than the (k,k′)-core-based upper bound.

Algorithm 9: DoubleKcoreBound(M , C , D)
Input : M : vertices chosen, C : candidate vertices, D : l

candidate (k,r)-cores
Output : UBpri : the upper bound for private coverage
U := M ∪ C ;1
G ′ is the similarity graph of G;2
deg(u) := deg(u,G(U)) for every u ∈ U ;3
degsim(u) := degsim(u,G ′(U)) for every u ∈ U ;
for each u ∈ U with deg(u) < k or degsim(u) < k do4

Remove u from U ;5
for each v ∈ N B(u) ∩U do6

deg(v) := deg(v) − 1;7

for each v ∈ N Bsim(u) ∩U do8
degsim(v) := deg(v)sim − 1;9

if |D| ≥ l then Rmin := Rmin(D); else Rmin := ∅;10
D′ := (D \ {Rmin}) ∪ {G(U)};11
return |pcov(G(U),D′)|12

With the update of candidate (k,r)-core set, the private ver-
tices may largely increase and then the double k-core upper
bound becomes more effective.

7.3.3 Algorithm for double k-core-based upper bound

Algorithm 9 shows the details of double k-core- based upper
bound computation. Initially, we use deg(u) and degsim(u)

to denote the degree and similarity degree (i.e., the number
of similar pairs containing u) of u w.r.t M ∪C , respectively.
Meanwhile, N B(u) (resp. N Bsim(u)) denotes the set of adja-
cent (resp. similar) vertices of u. We delete every vertex
which violates the definition of double k-core at Line 5 and
update the degrees of its neighbors in G (Line 6–7) and G ′
(Line 8–9). The upper bound is the private coverage ofG(U)

inD′ which replaces the min-cover (k,r)-core inD by G(U)

(Line 10–12).

Algorithm analysis The time complexity of Algorithm 9 is
O(m + m′ + n + |U | + |Rmin(D)|) where m (resp. m′) is
the number of edges in G(M ∪ C) (resp. G ′(M ∪ C)), n
is the number of vertices in M ∪ C , and |U | + |Rmin(D)|
is the complexity of private coverage computation. The cor-
rectness is guaranteed by Theorem 10. Algorithm 9 can be
immediately applied by replacing the basic upper bound
K RCoreSizeU B(M,C) at Line 9 of Algorithm 8.

7.3.4 Initial candidate generation

In this section, we generate initial candidate (k,r)-coresD to
enhance the pruning power of the proposed upper bound of
private coverage. Good initial candidates can also enhance
the effectiveness of search order which will be introduced
in Sect. 8.5. Intuitively, each (k,r)-core in a good initial D
should be large and has low overlap with other (k,r)-cores in
D.

123

Efficient community discovery with user engagement and similarity

Algorithm 10: InitCandidate(G, k, r , l)
Input : G : a connected subgraph, k : degree threshold, r :

similarity threshold, l : number limit of DivKRCs
Output : D : the initial l DivKRCs
D := ∅;1
for each connected subgraph S in the reduced G do2

D := EnumL(∅, S,∅);3

return top-l (k,r)-cores inD with maximum size4

EnumL(M , C , E)5
Return if M ∩ D �= ∅ or D update time ≥ α × l;6
Update C and E based on candidate pruning techniques7
(Theorem 3 and Theorem 4);
if D < l or K RCoreSizeU B(M,C) > |Rmin(D)| then8

if C = SF(C) then9
M := M ∪ C ;10
D := D \ {Rmin(D)} ∪ {R} if |R| > |Rmin(D)| and R is a11
maximal (k,r)-core in G(M);

else12
u ← choose a vertex in C \ SF(C);13
if Expansion is preferred then14

EnumL(M ∪ u, C \ {u ∪ D}, E);15
EnumL(M , C \ {u ∪ D}, E ∪ u);16

else17
EnumL(M , C \ {u ∪ D}, E ∪ u);18
EnumL(M ∪ u, C \ {u ∪ D}, E);19

The initial candidate computation is shown in Algo-
rithm 10 which maintains l candidate maximal (k,r)-cores
where any two (k,r)-cores do not overlap. It follows the
framework of (k,r)-core enumeration on the graph after prun-
ing dissimilar edges and non-k-core vertices (Line 2–3). The
search branch is returned once D contains some vertices in
M , orD is updated for not less than α× l times (Line 6). The
upper bound in Line 8 is computed by Algorithm 6 because
all the vertices in D are private vertices. The smallest (k,r)-
core in D is replaced by a new maximal (k,r)-core R if R is
larger than it (Line 11).

Algorithm analysis Compared with the diversified maximal
(k,r)-core search (Algorithm8),Algorithm10 generates only
one maximal (k,r)-core for each vertex in the reduced graph.
Thus the time complexity is not larger than Algorithm 8.
By pruning all the branches when M has overlap withD and
limiting the update time ofD, Algorithm 10 runs much faster
than Algorithm 8. The initial candidate computation can be
easily applied in the basic DivKRC search by inserting it
between Line 3 and 4 in Algorithm 8.

8 Search order

Section 8.1 briefly introduces some important measurements
that should be considered for an appropriate visiting order.
Then, we investigate the visiting orders in five algorithms:

finding the maximum (k,r)-core (Algorithm 5), advanced
maximal (k,r)-core enumeration (Algorithm 3), maximal
check (Algorithm 4), advanced diversified top-l maximal
(k,r)-core search (Algorithm 8 equipped with Algorithm 9
and 10) and initial candidate generation (Algorithm 10).

8.1 Important measurements

In this paper, we need to consider two kinds of search orders:
(i) the vertex visiting order: the order of which vertex is cho-
sen from candidate set C and (ii) the branch visiting order:
the order of which branch goes first (expand first or shrink
first). It is difficult to find simple heuristics or cost functions
for the three problems studied because, generally speaking,
finding a maximal/maximum (k,r)-core can be regarded as
an optimization problem with two constraints. On one hand,
we need to reduce the number of dissimilar pairs to satisfy
the similarity constraint, which implies eliminating a con-
siderable number of vertices from C . On the other hand,
the structure constraint and the maximal/maximum property
favor a larger number of edges (vertices) in M ∪ C ; that is,
we prefer to eliminate fewer vertices from C .

To accommodate this, we propose three measurements
where M ′ and C ′ denote the updated M and C after a chosen
vertex is extended to M or discarded.

– Δ1: the change of number of dissimilar pairs, where

Δ1 = DP(C) − DP(C ′)
DP(C)

. (3)

Note that we have DP(u, M ∪ C) = 0 for every u ∈ M
according to the similarity invariant (Eq. 1).

– Δ2: the change of the number of edges, where

Δ2 = |E(M ∪ C)| − |E(M ′ ∪ C ′)|
|E(M ∪ C)| . (4)

Recall that |E(V)| denotes the number of edges in the
induced graph from the vertex set V .

– deg(u, M ∪ C): Degree. We also consider the degree of
the vertex as it may reflect its importance. In our imple-
mentation, we choose the vertex with highest degree at
the initial stage (i.e., M = ∅).

8.2 Finding themaximum (k,r)-core

In the search process, since the size of the largest (k,r)-core
seen so far is critical to reduce the search space, we aim
to quickly identify the (k,r)-core with larger size. One may
choose to carefully discard vertices such that the number of
edges in M is reduced slowly (i.e., only prefer smaller Δ2

value). However, as shown in our empirical study, this may

123

F. Zhang et al.

result in poor performance because it usually takes many
search steps to satisfy the structure constraint. Conversely,
we may easily fall into the trap of finding (k,r)-cores with
small size if we only insist on removing dissimilar pairs (i.e.,
only favor larger Δ1 value).

In our implementation, we use a cautious greedy strategy
where a parameter λ is used to make the trade-off. In partic-
ular, we use λΔ1 −Δ2 to measure the suitability of a branch
for each vertex in C\SF(C). In this way, each candidate has
two scores. The vertex with the highest score is then chosen,
and its branch with higher score is explored first (Line 6–12
in Algorithm 5).

For time efficiency, we only explore vertices within two
hops from the candidate vertex when we compute its Δ1 and
Δ2 values. It takes O(nc × (d21 + d22)) time where nc denote
the number of vertices in C\SF(C), and d1 (resp. d2) stands
for the average degree of the vertices in J (resp. J ′).

8.3 Enumerating all maximal (k,r)-core

The ordering strategy in this section differs from finding the
maximum in two ways.

(i) We observe that Δ1 has much higher impact than Δ2 in
the enumeration problem, so we adopt the Δ1-then-Δ2

strategy; that is, we prefer the larger Δ1, and the smaller
Δ2 is considered if there is a tie. This is because the
enumeration algorithm does not prefer (k,r)-core with
very large size since it eventually needs to enumerate all
maximal (k,r)-cores.Moreover, by the early termination
technique proposed in Sect. 5.2, we can avoid exploring
many non-promising subtrees that were misled by the
greedy heuristic.

(ii) We do not need to consider the search order of two
branches because both must be explored eventually.
Thus, we use the score summation of the two branches
to evaluate the suitability of a vertex. The complexity of
this ordering strategy is the same as that in Sect. 8.2.

8.4 Checkingmaximal

The search order for checking maximals is rather different
than the enumeration and maximum algorithms. Toward the
checking maximals algorithm, it is cost effective to find a
small (k,r)-core which fully contains the candidate (k,r)-
core. To this end, we adopt a short-sighted greedy heuristic.
In particular, we choose the vertex with the largest degree
and the expand branch is always preferred as shown in Algo-
rithm 4. By continuously maintaining a priority queue, we
fetch the vertex with the highest degree in O(log |C |) time.

8.5 Finding diversifiedmaximal (k,r)-cores

In the diversified top-l maximal (k,r)-core search, we aim
to fast identify maximal (k,r)-cores with large overall cov-
erage, which requires the identified (k,r)-cores to contain a
large number of private vertices. As discussed in Sect. 8.2,
choosing a vertex with the largest λΔ1 − Δ2 score helps to
quickly find a large size (k,r)-core. But this score fails to
ensure a large size of private vertices in the searched (k,r)-
core where the majority of vertices may be shared vertices
with other (k,r)-cores in the candidate set D.

In our implementation, to encourage the preference on
large private vertices, we give incentives to the scores of a
vertex where the updated C ′ excludes theD vertices from C .
We propose the following incentive measurement to fulfill
the above requirement.

– Δ3: the change of number of shared vertices with D,
where

Δ3 = (C\C ′) ∩ D
C\C ′ . (5)

Specifically, we use λΔ1−Δ2+Δ3 to measure the potential
of a branch for each vertex in C\SF(C), where λ is used to
make the trade-off. In this way, each candidate vertex has two
scores. The vertex with the highest score is chosen, and its
branchwith higher score is explored first. For time efficiency,
we only explore vertices within two hops from the candidate
vertex when we compute its Δ1, Δ2 and Δ3 values. It takes
O(nc × (d21 + d22)) time where nc denote the number of
vertices in C\SF(C) and d1 (resp. d2) stands for the average
degree of the vertices in J (resp. J ′).

Toward the search order in initial candidate generation
(Algorithm 10), since we require each candidate has no over-
lap with any other candidate, Δ3 is always 0 for each vertex.
We apply the score λΔ1 −Δ2 as in Sect. 8.2 because the ini-
tial candidate generation has the same objective with finding
the maximum (k,r)-core, that is to fast identify a (k,r)-core
with large size.

9 Performance evaluation

This section evaluates the effectiveness and efficiency of our
algorithms through comprehensive experiments.

9.1 Experimental setting

Algorithms In this paper, we implement and evaluate 7 base-
line algorithms and 3 advanced algorithms, as described in
Table 3. Since the naive method in Sect. 4 is extremely slow
even on a small graph, we employ BasEnum and BasMax

123

Efficient community discovery with user engagement and similarity

Table 2 Summary of techniques

Technique Description

CR The candidate retaining technique (Theorem 5)

ET The early termination technique (Theorem 6)

CM The checking maximal technique (Theorem 7)

CK A tighter upper bound from the color-based and the
k-core-based upper bound. (Sect. 6.2)

UB The (k,k′)-core upper bound technique (Theorem 8)

UBd The double k-core upper bound technique for
DivKRC search (Theorem 10)

IN The initial candidate generation technique for
DivKRC search (Sect. 7.3.4)

SO The best search order is applied (Sect. 8)

as the baseline algorithms in the empirical study for the prob-
lem of enumerating all maximal (k,r)-cores and finding the
maximum (k,r)-core, respectively.We employ the top-l algo-
rithm TopLMax and two baseline algorithms DivEnum and
BasDiv for the problem of diversified top-l maximal (k,r)-
core search.

In Table 2, we show the name for each technique. Table 3
summaries all the evaluated algorithms.

Datasets Five real datasets are used in our experiments.
The original data of DBLP are from http://dblp.uni-trier.de,
DBpedia is from [22], and the remaining three datasets
are from http://snap.stanford.edu. For non-spatial data, we
use Weighted Jaccard Similarity of the attribute sets of two
vertices to measure their similarity. For spatial data, we use
Euclidean Distance between the locations of two users to
measure their similarity.

In DBLP, we consider each author as a vertex with
attribute of counted “publication venues” list. There is an
edge between an author pair iff they have at least one co-
authored paper. In Pokec, we consider each user to be a
vertex with personal interests. There is an edge between two
users iff they are friends. In Gowalla and Brightkite,
we consider each user as a vertex along with his/her check-in
information. The graph structure is based on user friendship.
An edge is removed if an incident user has no check-in. In
DBpedia, each vertex represents an entity, and each edge
represents the relationship between two entities. The attribute
of each entity is a keyword set, extracted by the Stanford
Analyzer and Lemmatizer. Table 4 shows the statistics of the
datasets.

Parameters We use different settings of k and r , where k
varies from 3 to 25. In Gowalla and Brightkite, the
distance threshold r ranges from 1 km to 5000 km. The
pairwise similarity distributions are highly skewed in DBLP
and Pokec. Thus, we used the thousandth of the pairwise
similarity distribution in decreasing order which is from top

Table 3 Summary of algorithms

Algorithm Description

SimCore Given G and r , the algorithm firstly removes all the
dissimilar edges (similarity less than r) in G and
then computes the k-core on the new graph G

Clique+ The advanced clique-based algorithm proposed in
Sect. 3, using the clique and k-core computation
algorithms in [51] and [5], respectively. The source
code for maximal clique enumeration was
downloaded from http://www.cse.cuhk.edu.hk/
~jcheng/publications.html

BasEnum The basic enumeration method proposed in
Algorithm 1 including the structure and similarity
constraints-based pruning techniques (Theorems 3
and 4 in Sect. 5.1). The best search order
(Δ1-then-Δ2, in Sect. 8.3) is applied

AdvEnum AdvEnum = BasEnum+CR+ET+CM. The advanced
enumeration algorithm proposed in Sect. 5.4 that
applies all advanced pruning techniques including:
candidate size reduction (Theorems 3, 4 and 5 in
Sect. 5.1), early termination (Theorem 6 in
Sect. 5.2) and checking maximals (Theorem 7 in
Sect. 5.3). Moreover, the best search order is used
(Δ1-then-Δ2, in Sect. 8.3)

BasMax The algorithm proposed in Sect. 6.1 with the upper
bound replaced by a naive one: |M | + |C |. The best
search order is applied (λΔ1 − Δ2, in Sect. 8.2)

AdvMax AdvMax = BasMax+UB. The advanced finding
maximum (k,r)-core algorithm proposed in
Sect. 6.1 including (k,k′)-core-based upper bound
technique (Algorithm 6). Again, the best search
order is applied (λΔ1 − Δ2, in Sect. 8.2)

TopLMax The algorithm for finding the top-l maximal
(k,r)-core with the largest sizes, proposed in
Sect. 6.4 by utilizing the AdvMax algorithm

DivEnum The baseline algorithm for DivKRC search proposed
in Algorithm 7 which applies the greedy maximum
coverage algorithm on all the enumerated maximal
(k,r)-cores from AdvEnum

BasDiv The basic DivKRC search proposed in Algorithm 8
where candidate retaining CR, early termination
ET, maximal check CM, upper bound UB and the
best search order for AdvMax (λΔ1 − Δ2) are
applied

AdvDiv The advanced DivKRC search which equips
Algorithm 8 with the double k-core upper bound
UBd (Theorem 10 in Sect. 7.3.3), initial candidate
generation IN (Sect. 7.3.4) and the best search
order SO (Sect. 8.5)

Table 4 Statistics of datasets

Dataset Nodes Edges davg kmax

Brightkite 58,228 194,090 6.67 52

Gowalla 196,591 456,830 4.65 43

DBLP 1,566,919 6,461,300 8.25 118

Pokec 1,632,803 8,320,605 10.19 27

DBpedia 8,099,955 71,527,515 17.66 95

123

http://dblp.uni-trier.de
http://snap.stanford.edu
http://www.cse.cuhk.edu.hk/~jcheng/publications.html
http://www.cse.cuhk.edu.hk/~jcheng/publications.html

F. Zhang et al.

Fig. 8 Case study onGowalla (k =10, r =10km). Two groups (maximal
(k,r)-cores) of users are marked by different colors

1‰ to top 15‰ (the similarity threshold value drops). In
diversified top-l maximal (k,r)-core search, the default l is
10. Regarding the search orders of the AdvMax, BasMax
and AdvDiv algorithms, we set λ to 5 by default. The α in
initial candidate generation (IN) is set to 1 by default.

All programs were implemented in standard C++ and
compiled with G++ in Linux. All experiments were per-
formed with Intel Xeon 2.3GHz CPUs and a Redhat Linux
system. The time cost is set to INF if an algorithm did not
terminate within one hour. The source code is available at
https://sites.google.com/view/fanzhang.

9.2 Effectiveness of AdvEnum and AdvMax

Compared to k-core, (k,r)-core enables us to find more valu-
able information with the additional similarity constraint.

Gowalla Figure 8 illustrates a set of Gowalla users who
are from the same k-corewhen k = 10. By setting r to 10 km,
twogroups of users emerge, each ofwhich is amaximal (k,r)-
core, and we cannot identify them by structure constraint or
similarity constraint alone. We observe that the maximum
(k,r)-core in Gowalla always appears at Austin when k ≥
6. Then, we realize that this is because the headquarters of
Gowalla is located in Austin.

DBLP Figure 9 shows cases of DBLP when k = 15 and
r= 3‰.2 In Fig. 9a, all authors come from the same k-core
based on their co-authorship information alone (their struc-
ture constraint). While there are two (k,r)-cores with one
common author Steven, if we also consider their research
background (their similarity constraint). We find the result of
(k,r)-cores is consistent with reality that there are two groups
of people with Steven from both sides. Figure 9b depicts
the maximum (k,r)-core of DBLP with 49 authors. We find
that they have intensively co-authored many papers related

2 To avoid the noise, we enforce that there are at least three co-authored
papers between two connected authors in the case study.

Fig. 9 Case study on DBLP (k =15, r = top 3‰)

(a) (b)

Fig. 10 (k,r)-core statistics

to a project named Ensembl (http://www.ensembl.org/index.
html), which is one of the well-known genome browsers.

Statistics We also report the number of maximal (k,r)-
cores, the average size and maximum size of (k,r)-cores
on Gowalla and DBLP. Figure 10a and b shows that both
maximum size of (k,r)-cores and the number of maximal
(k,r)-cores are much more sensitive to the change of r or k
on the two datasets, compared to the average size.

Let R denote a connected k-core subgraph returned by
SimCore. Table 5 shows the average percentage of vertices
in R similar to a vertex u in R, on different settings. We find
the vertices in R may be dissimilar to many other vertices
in R, because here we only enforce two users to be similar
if they are structurally connected. Thus, the tightness of the
similarity constraint in SimCore is dependent on the graph
structure. Note that this percentage for any vertex in a (k,r)-
core is always 100% due to the pairwise vertex similarity.

123

https://sites.google.com/view/fanzhang
http://www.ensembl.org/index.html
http://www.ensembl.org/index.html

Efficient community discovery with user engagement and similarity

Table 5 Average percentage of
similar vertices in the subgraph
for 100 randomly selected
vertices of top-5 largest
maximal k-core subgraphs
returned by SimCore

Setting top-1 top-2 top-3 top-4 top-5

DBLP (k =10, r = top 3‰) 0.28 (857) 0.54 (245) 0.63 (189) 0.31 (126) 0.86 (115)

DBLP (k =10, r = top 5‰) 0.32 (1182) 0.61 (248) 0.65 (198) 0.28 (152) 0.54 (118)

Gowalla (k =5, r =150) 0.47 (2139) 0.98 (1671) 0.22 (1154) 0.7 (1113) 1 (840)

Gowalla (k =5, r =300) 0.38 (4043) 0.42 (2963) 0.28 (2062) 0.24 (984) 0.99 (877)

The sizes of subgraphs are shown in brackets

10-1

100

101

102

103

2 4 6 8 10

Ti
m

e
C

os
t (

se
c)

r (km)

Clique+
BasEnum

10
-1

10
0

10
1

10
2

10
3

10 12 14 16 18

Ti
m

e
C

os
t (

se
c)

k

Clique+
BasEnum

(a) (b)

Fig. 11 Evaluation of clique-based method

101

102

103

INF

10 50 100 150 200

Ti
m

e
C

os
t (

se
c)

r (km)

BasEnum
BasEnum+CR
BasEnum+CR+ET
AdvEnum 101

102

103
INF

6 7 8 9 10

Ti
m

e
C

os
t (

se
c)

k

BasEnum
BasEnum+CR
BasEnum+CR+ET
AdvEnum

(a) (b)

Fig. 12 Evaluation of pruning techniques

9.3 Efficiency of AdvEnum and AdvMax

In this section, we evaluate the efficiency of the techniques.

Evaluating the clique-based method In Fig. 11, we eval-
uate the time cost of the maximal (k,r)-core enumeration
for Clique+ and BasEnum on the Gowalla and DBLP
datasets. In the experiments, BasEnum always outperforms
Clique+ by a stablemargin becausewe apply pruning rules
in BasEnum with the best search order and a large num-
ber of cliques are materialized in the similarity graphs for
Clique+. Consequently, we exclude Clique+ from the
following experiments. This supports the insight that for a
problem of computing cohesive subgraphs on dual graphs,
a careful integration of existing cohesive subgraph compu-
tations at each search step (e.g., BasEnum) is better than
computing the two kinds of cohesive subgraphs sequentially
(e.g., Clique+).

Evaluating the pruning techniques Figure 12 shows the
efficiency of our pruning techniques on Gowalla and
DBLP by incrementally integrating these techniques from
BasEnum,BasEnum+CR,BasEnum+CR+ET toAdvEnum
(BasEnum+CR+ET+CM). Particularly, BasEnum + CR rep-
resents the BasEnum algorithm with candidate retaining

10-1

100

101

102

103
INF

1 2 3 4 5

Ti
m

e
C

os
t (

se
c)

r (‰)

BasMax
BasMax+CK
AdvMax

10-1

100

101

102

103
INF

10 11 12 13 14

Ti
m

e
C

os
t (

se
c)

k

BasMax
BasMax+CK
AdvMax

(a) (b)

Fig. 13 Evaluation of upper bounds

technique (Theorem 5). Then BasEnum + CR + ET further
includes the early termination technique (Theorem 6). By
integrating the checking maximal technique (Theorem 7),
it turns to be our AdvEnum algorithm. Note that the best
search order is used for all algorithms. Among these tech-
niques, Theorem 5 achieves the best speedup because the
search on SF(C) is skipped and SF(C) may be large. The
results in Fig. 12 confirm that all techniques contribute to
enhancing the performance of AdvEnum.

Evaluating the upper bound techniques Figure 13 demon-
strates the effectiveness of the (k,k′)-core-based upper bound
technique (Algorithm 6) on DBLP by varying the values
of r and k. In BasMax+CK, we used the better upper
bound from color and k-core-based upper bound techniques
(Sect. 6.2) [5,26]. Studies show that BasMax+CK greatly
enhances performance compared to the naive upper bound
|M | + |C | (used in BasMax). Nevertheless, our (k,k′)-
core-based upper bound technique (AdvMax) outperforms
BasMax+CK by a large margin because it can better exploit
the structure/similarity constraints.

Evaluating the search orders In this experiment, we evalu-
ate the effectiveness of the three search orders proposed for
the maximum algorithm (Sect. 8.2, Fig. 14a–c), enumeration
algorithm (Sect. 8.3, Fig. 14d, e) and the checking maxi-
mal algorithm (Sect. 8.4, Fig. 14f). We first tune λ value
for the search order of AdvMax in Fig. 14a against DBLP
and Gowalla. In the following experiments, we set λ to 5
for maximum algorithms. Fig. 14b verifies the importance
of the adaptive order for the two branches on DBLP where
Expand (resp. Shrink)means the expand (resp. shrink) branch
is always preferred in AdvMax. In Fig. 14c, we investigate a
set of possible order strategies for AdvMax. As expected,
the λΔ1 − Δ2 order proposed in Sect. 8.2 outperforms

123

F. Zhang et al.

8

10

12

14

16

2 4 6 8 10

Ti
m

e
C

os
t (

se
c)

λ

DBLP, k=15, r=top 3‰
Gowalla, k=5, r=100km

101

102

103

INF

3 4 5 6 7

Ti
m

e
C

os
t (

se
c)

k

Expand
Shrink
AdvMax

101

102

103
INF

3 4 5 6 7

Ti
m

e
C

os
t (

se
c)

k

Random
Degree
Δ2

Δ1
Δ1-then-Δ2
λΔ1−Δ2

10-2
10-1
100
101
102
103
INF

1 2 3 4 5

Ti
m

e
C

os
t (

se
c)

r (km)

Random
Degree
Δ1-then-Δ2

101

102

103

INF

10 50 100 150 200

Ti
m

e
C

os
t (

se
c)

r (km)

Δ1
λΔ1−Δ2
Δ1-then-Δ2

 0

 0.5

 1

 1.5

 2

10 50 100 150 200

Ti
m

e
C

os
t (

se
c)

r (km)

λΔ1−Δ2
Δ1-then-Δ2
Degree

(a) (b)

(c)

(e) (f)

(d)

Fig. 14 Evaluation of search orders

the other alternatives including random order, degree-based
order (Sect. 8.4, used for checking maximals), Δ1 order, Δ2

order and Δ1-then-Δ2 order (Sect. 8.3, used by AdvEnum).
Similarly, Fig. 14d and e confirms that theΔ1-then-Δ2 order
is the best choice for AdvEnum compared to the alternatives.
Figure 14f shows that the degree order achieves the best per-
formance for the checking maximal algorithm (Algorithm 4)
compared to the two orders used by AdvEnum and AdvMax.

Effect of different datasets Figure 15 evaluates the perfor-
mance of the enumeration and maximum algorithms on
four datasets with k = 10. We set r to 500 km, 300
km, 3‰ and 5‰ in Brightkite, Gowalla, DBLP and
Pokec, respectively. We use AdvEnum-SO to denote the
AdvEnum algorithm without the best search order while
all other advanced techniques applied (degree order is
used instead). Figure 15a demonstrates the efficiency of
those techniques and search orders on four datasets. We
also demonstrate the efficiency of the upper bound and
search order for the maximum algorithm in Fig. 15b, where
three algorithms are evaluated (AdvMax-SO, BasMax, and
AdvMax).

Effect of k and r Figure 16 studies the impact of k and
r for the three enumeration algorithms on Gowalla and
DBLP. As expected, Fig. 16a shows that the time cost drops
when k grows because many more vertices are pruned by

10-1

100

101

102

103
INF

Brightkite Gowalla DBLP Pokec

Ti
m

e
C

os
t (

se
c)

Datasets

AdvEnum-SO
BasEnum
AdvEnum

 0
 1
 2
 3
 4
 5
 6

Brightkite Gowalla DBLP Pokec

Ti
m

e
C

os
t (

se
c)

Datasets

AdvMax-SO
BasMax
AdvMax

(a) (b)

Fig. 15 Performance on four datasets

100

101

102

103
INF

 5 6 7 8 9 10

Ti
m

e
C

os
t (

se
c)

k

AdvEnum-SO
BasEnum
AdvEnum

10-1

100

101

102

103
INF

1 3 5 7 9 11 13 15

Ti
m

e
C

os
t (

se
c)

r (top ‰)

AdvEnum-SO
BasEnum
AdvEnum

(a) (b)

Fig. 16 Effect of k and r for enumeration

10-1

100

101

102

 5 6 7 8 9 10

Ti
m

e
C

os
t (

se
c)

k

AdvMax-SO
BasMax
AdvMax

10-1

100

101

102

103
INF

1 3 5 7 9 11 13 15

Ti
m

e
C

os
t (

se
c)

r (top ‰)

AdvMax-SO
BasMax
AdvMax

(a) (b)

Fig. 17 Effect of k and r for maximum

the structure constraint. In Fig. 16b, the time costs grow
when r increases because more vertices will be included
in (k,r)-cores when the similarity threshold drops. Simi-
lar trends are also observed in Fig. 17 for three maximum
algorithms. Moreover, Figs. 16 and 17 further confirm the
effectiveness of proposed techniques. AdvMax greatly out-
performsAdvEnum under the same setting becauseAdvMax
can further cut-off the search tree based on the derived upper
bound of the (k,r)-core size and does not need maximal
check.

9.4 Effectiveness of AdvDiv

Coverage In Fig. 18, we report the number of vertices cov-
ered (coverage) by the result of TopLMax, DivEnum and
AdvDiv, respectively, by varying the values of k, r and l.
Figure 18a shows the coverage when we vary k, where the
coverage basically becomes smaller with a larger k, because
the structural constraint becomes tighter with a larger k. Fig-
ure 18b and c shows the coverage increaseswith a larger input
of r . In Fig. 18d, the coverage increases when l becomes
larger. We observe that the trends of TopLMax are not as
good as that of DivEnum and AdvDiv with the larger

123

Efficient community discovery with user engagement and similarity

 0

 500

 1000

 1500

 2000

5 6 7 8 9

C
ov

er
ag

e

k

TopLMax
DivEnum
AdvDiv

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

10 50 100 150 200

C
ov

er
ag

e

r (km)

TopLMax
DivEnum
AdvDiv

 0

 500

 1000

 1500

 2000

1 3 5 7 9

C
ov

er
ag

e

r (top ‰)

TopLMax
DivEnum
AdvDiv

 0

 500

 1000

 1500

 2000

 2500

10 20 30 40 50

C
ov

er
ag

e

l

TopLMax
DivEnum
AdvDiv

(a)

(c) (d)

(b)

Fig. 18 Evaluation of vertex coverage

Fig. 19 Case study on DBLP (k =10, r = top 1‰, l=2)

input values, which further validates the effectiveness of the
DivKRC search. Although the coverage results of AdvDiv
are slightly smaller than that of DivEnum, AdvDiv can
outperform DivEnum on efficiency by more than 1 order of
magnitude.

DBLP We conduct case studies on DBLP to show the effec-
tiveness of diversified top-l maximal (k,r)-cores. Fig. 19a, b
depicts the top-2 largest maximal (k,r)-cores by TopLMax

100

101

102

103
INF

5 6 7 8 9

Ti
m

e
C

os
t (

se
c)

k

BasDiv
BasDiv+SO
BasDiv+SO+UBd
AdvDiv 10-1

100

101

102

103
INF

1 3 5 7 9 11

Ti
m

e
C

os
t (

se
c)

r (top ‰)

BasDiv
BasDiv+SO
BasDiv+SO+UBd
AdvDiv

(a) (b)

Fig. 20 Evaluation of individual techniques

and the diversified top-2 maximal (k,r)-cores by AdvDiv,
respectively, when k = 10 and r = top 1‰.3

Figure 19a shows the two (k,r)-cores from TopLMax
highly overlap where all the authors located at the mid-
dle are shared by the two (k,r)-cores. Besides the middle
authors, one (k,r)-core further contains two authors (Leo and
Y. Amy), and the other further contains three authors (John,
Martin and Bronwen). The top-2 maximal (k,r)-cores from
TopLMax are less interesting than the diversified top-2 from
AdvDiv depicted in Fig. 19b. There is only one common
author, Steven, in the diversified top-2 maximal (k,r)-cores.
Specifically, one diversified (k,r)-core, denoted byRl , (resp.
the other, denoted by Rr) contains the left group of authors
(resp. the right group) and Steven. We can see theRr is sim-
ilar to the (k,r)-cores in Fig. 19a, but theRl is quite different
to the result in Fig. 19a. The number of authors in Fig. 19b
is also larger than that in Fig. 19a. Consequently, the result
of AdvDiv is more informative and valuable than that of
TopLMax.

9.5 Efficiency of AdvDiv

Evaluating the individual techniques Figure 20 shows the
efficiency gain by incrementally equipping each proposed
technique on BasDiv. Note that the best search order for
AdvMax and the (k,k′)-core upper bound from AdvMax are
employed in BasDiv initially. BasDiv + SO denotes the
BasDiv equipped with best search order (SO) for DivKRC
search proposed in Sect. 8.5. BasDiv + SO + UBd fur-
ther equips the advanced double k-core upper bound (UBd)
designed in Sect. 7.3.3. After employing the initial candi-
date generation (IN), the algorithm becomes the advanced
DivKRC search algorithm (AdvDiv). Figure 20 validates
that all the proposed techniques improve the search effi-
ciency, especially the double k-core upper bound and best
search order techniques.

Evaluating the search orders Figure 21 shows the effect
of employing different search orders in AdvDiv, includ-

3 To make the figure clear, in this case study, one edge represents that
there are at least three co-authored papers between two corresponding
authors.

123

F. Zhang et al.

100

101

102

103
INF

 5 6 7 8 9 10

Ti
m

e
C

os
t (

se
c)

k

Degree
Δ1-then-Δ2
λΔ1-Δ2
λΔ1-Δ2+Δ3

100

101

102

103
INF

3 5 7 9 11

Ti
m

e
C

os
t (

se
c)

r (top ‰)

Degree
Δ1-then-Δ2
λΔ1-Δ2
λΔ1-Δ2+Δ3

(a) (b)

Fig. 21 Evaluation of search orders

100

101

102

103

10 50 100 150 200

Ti
m

e
C

os
t (

se
c)

r (km)

Color+Kcore
KKCore
KKCore+DoubleKcore
DoubleKcore

100

101

102

103
INF

4 5 6 7 8

Ti
m

e
C

os
t (

se
c)

k

Color+Kcore
KKCore
KKCore+DoubleKcore
DoubleKcore

(a) (b)

Fig. 22 Evaluation of upper bounds

ing the degree in M ∪ C-based order (Degree), the best
order in AdvEnum (Δ1-then-Δ2), the best order in AdvMax
(λΔ1−Δ2) and the best order for AdvDiv (λΔ1−Δ2+Δ3).
The other techniques for AdvDiv, such as the double k-
core upper bound and initial candidate generation, are all
equipped when comparing the search orders. In Fig. 21,
the degree-based order is significantly outperformed by the
other 3 orders. The AdvMax order is more effective than
the AdvEnum order. The best order designed for AdvDiv
further outperforms the other two best orders in AdvEnum
and AdvMax, respectively, on different k and r values. It
validates the effectiveness of encouraging the exclusion of
shared vertices in C ∩ D when we design the best search
order for AdvDiv.

Evaluating the upper bounds Figure 22 reports the effect
of employing different upper bound techniques in AdvDiv,
including the color and k-core-based upper bound (Color+
Kcore), the (k,k′)-core-based upper bound (KKcore),
the (k,k′)-core and double k-core integrated upper bound
(KKcore+DoubleKcore) and the double k-core upper
bound (DoubleKcore) adopted for AdvDiv. The other
techniques for AdvDiv, such as the best search order and
initial candidate generation, are all equipped when compar-
ing the upper bounds. Color+Kcore adopts the smaller
one from the color-based upper bound and k-core-based
upper bound (Sect. 6.2) [5,26]. KKcore is also proposed
in Sect. 6.2 which performs better than Color+Kcore
when evaluating the upper bounds in finding the maximum
(k,r)-core. DoubleKcore is proposed in Sect. 7.3.3 which
considers the private coverage status in the top-l candidates
to further improve the upper bound technique for AdvDiv.
KKcore+DoubleKcore adopts the smaller one from

 0

 50

 100

 150

 200

 0.5 1 1.5 2 2.5

Ti
m

e
C

os
t (

se
c)

α

k=5
k=6

 0

 20

 40

 60

 80

 100

2 3 4 5 6

Ti
m

e
C

os
t (

se
c)

α

r=top 9‰
r=top 11‰

(a) (b)

Fig. 23 Evaluation of α in initial candidate generation

KKcore upper bound and DoubleKcore upper bound, to
see whether KKcore can help to improve DoubleKcore
by outperformance in some cases.

In Fig. 22a, we notice that the KKcore and Color+
Kcore perform better when r = 50 and r = 150 with the
same k and l, which is due to the different overlap status of
candidate (k,r)-coreswith different r values. Theoverlaps are
heavier for some r such that KKcore and Color+Kcore
upper bounds sometimes fail to prune unpromising branches
while our DoubleKcore cuts a lot of these unpromis-
ing branches. Fig. 22a and b shows that DoubleKcore
and KKcore+DoubleKcore significantly outperform the
other upper bounds for different k and r . DoubleKcore
runs even slightly faster than KKcore+DoubleKcore,
which indicates KKcore upper bound is outperformed
by DoubleKcore in most cases, and the time cost of
computing KKcore cannot be paid-off when integrating
DoubleKcore and KKcore. It further validates the supe-
rior of our DoubleKcore upper bound.

Evaluating α in initial candidate generation Figure 23 shows
the effect of varying α in AdvDiv, where all the other tech-
niques are equipped. α is used in initial candidate generation
(IN) to limit the number of candidate update. A good α can
achieve a balance between time cost of IN and the benefit
from IN. Fig. 23a shows we can set α to 1 for Gowalla.
Figure 23b shows performance of AdvDiv on DBLP is bet-
ter when α = 3. Fig. 23a and b suggests that the different
values of α do not have a significant impact on the runtime
of AdvDiv.

Evaluating performance of AdvDiv Figure 24 reports the
overall performance of AdvDiv compared with the two
baselines DivEnum and BasDiv, with different k, r , l
and on different datasets. Fig. 24a shows the runtime of 3
algorithms on all datasets with k = 5 and l = 10, where
r = 100 km on location-based datasets and r = top 3‰ for
other datasets. We can see the AdvDiv significantly outper-
form the baseline algorithms. Figure 24b reports the runtime
of 3 algorithmsonBrightkitewith different l values.AdvDiv
can outperform the baselines by several times, where the
margin can be several orders of magnitude when l is rela-
tively small. Figure 24c shows the runtime of 3 algorithms on
Gowalla with different k values. AdvDiv still largely out-

123

Efficient community discovery with user engagement and similarity

100

101

102

103
INF

BrightkiteGowalla DBLP Pokec

Ti
m

e
C

os
t (

se
c)

Datasets

DivEnum
BasDiv
AdvDiv

10-1

100

101

102

103
INF

 0 5 10 15 20 25 30 35 40

Ti
m

e
C

os
t (

se
c)

l

DivEnum
BasDiv
AdvDiv

100

101

102

103
INF

4 5 6 7 8 9

Ti
m

e
C

os
t (

se
c)

k

DivEnum
BasDiv
AdvDiv

10-1

100

101

102

103
INF

1 3 5 7 9 11

Ti
m

e
C

os
t (

se
c)

r (top ‰)

DivEnum
BasDiv
AdvDiv

(a)

(c) (d)

(b)

Fig. 24 Evaluation of performance of AdvDiv

10-2

10-1

10 0

10 1

10 2

10 3

20% 40% 60% 80% 100%

Ti
m

e
C

os
t (

se
c)

n

AdvEnum
AdvDiv
AdvMax

100

101

102

103

104

 12 14 16 18 20 22 24

Ti
m

e
C

os
t (

se
c)

k

AdvEnum
AdvDiv
AdvMax

100

101

102

103

104

1000 2000 3000 4000 5000

Ti
m

e
C

os
t (

se
c)

r (km)

AdvEnum
AdvDiv
AdvMax

100

101

102

103

104

 0.07 0.08 0.09 0.1 0.11 0.12

Ti
m

e
C

os
t (

se
c)

r

AdvEnum
AdvDiv
AdvMax

(a)

(c) (d)

(b)

Fig. 25 Scalability evaluation

performs the other algorithms. Figure 24d shows the runtime
of 3 algorithms on DBLP with different r values, where the
AdvDiv can outperform DivEnum and BasDiv by more
than one order of magnitude.

9.6 Scalability of AdvEnum, AdvMax and AdvDiv

Figure 25a shows that the 3 proposed algorithms are scalable
with increasing size of DBpedia data, where k = 15, l = 10
and r = 0.1. The graphs are generated by random node
sampling. To show a comprehensive result, we also report the
trends of runtime with large ranges of similarity constraint r
and degree constraint k, respectively. Figure 25b shows the
performance on different values of k. Figure 25c and d varies
r from 500 km to 5000 km on Gowalla, and from 0.07 to
0.12 on DBpedia, respectively. Note that the result is empty
for r > 0.12 on DBpedia. We can observe that the runtime

is relatively large when extreme values of k or r are used,
e.g, r > 500 km, while the algorithms can return in 10 s for
many reasonable settings, e.g., r = 100 km which may be
preferred in real-life scenarios.

10 Related work

Mining cohesive subgraphs on graphs A variety of cohesive
subgraph models have been widely studied [67], e.g., clique
[14], k-core [45] and k-truss [66]. Below,we introduce k-core
and clique used in this paper.

k-core The model of k-core, introduced in [45], has many
applications such as social contagion [49], influence study
[34], user engagement [6,40], and network robustness [63,64,
68]. Batagelj and Zaversnik present a liner in-memory algo-
rithm for core decomposition [5]. An I/O efficient algorithm
is proposed for core decomposition on graphs that cannot fit
in the main memory [54]. There are some extended mod-
els based on k-core, e.g., (k,d)-core [35] and (k,s)-core [62]
which are different from our model because they do not con-
sider user similarity in the models.

Clique As a fundamental graph problem, finding cliques has
been extensively studied in the literature, e.g., [9,53]. Many
algorithms are designed for computingmaximal cliques, e.g.,
[10,11,18,51]. Finding a maximum clique in a unit disk
graph (UDG) is polynomially solvable [15], while the algo-
rithm cannot be applied to finding the maximum (k,r)-core
because of the structure constraint involved. An algorithm
formaximal clique enumeration onUDG is proposed in [29].
The approximate enumeration of maximal cliques [33] may
inspire the approximate algorithm for (k,r)-core computa-
tion.

Mining attributed graphs It is common to use attributed
graphs under various scenarios for real-world social network
studies on both research and industry [23,32]. A large amount
of classical graph queries have been investigated on attributed
graphs such as clustering [57], community detection [58] and
networkmodeling [32]. None of these works combine k-core
and pairwise similarity computation on attributed graphs.

There are some investigations on the problem of cohesive
subgraph computation on attributed graphs. Wu et al. [56]
develop efficient algorithms to find a set of nodes which
are connected in structural graph and the corresponding
subgraph on conceptual graph is the densest. Their result
excludes some cohesive subgraphs where vertices have high
engagement and similarity. Zhu et al. [69] study the computa-
tion of a k-core containing a query vertex and within a given
spatial region. Chen et al. [13] propose algorithms to find the
maximum k-truss where users are co-located. The above two
works study community search on location-based social net-
workswhile we detect communities considering similarity of

123

F. Zhang et al.

various attributes instead of geographic distances. Fang et al.
[22] propose algorithms to find a subgraph related to a query
point considering cohesiveness on both structure and key-
word similarity, while it focuses on maximizing the number
of common keywords of the vertices in the subgraph. They
also propose algorithms [21] to find a connected cohesive
subgraph which satisfies a minimum degree of k for every
vertex in the subgraph and has the minimum spatial radius.
Wang et al. [52] develop algorithms to find the k-cores with
bounded radius r which contains a query vertex. Their exper-
imental results report that the radius-bounded k-cores are
dissimilar to the (k,r)-cores, which implies the difference of
radius constraint in [52] and pairwise similarity constraint in
the (k,r)-core model.

To the best of our knowledge, (k,r)-core is the first cohe-
sive subgraph model which considers both user engagement
and similarity on various types of attributes. Note that the
conference version of this paper can be found in [65].

Computing maximum coverageAs shown in [24], the greedy
algorithm for computing maximum l-coverage can achieve
an approximation ratio of 1−1/e which cannot be improved
by any algorithm in polynomial time unless P=NP. Some
works study the maximum l-coverage problem in streaming,
e.g., [3,4]. In [4], Badanidiyuru et al. design an algorithm
which maintains multiple lists of sets ∪1≤i≤lDi . Let di =
(i/2−|cov(Di)|)/(l−|Di |), a new set C is added toDi if C
covers at least di vertices which are not inDi . TheDi which
covers the most vertices is returned after processing all sets.
In [59], Yu andYuan propose an algorithmwhich retains a set
with high potential to cover some new vertices and removes
an existing set if it does not cover any new vertices. The
l retained sets with the most covered vertices are returned
after processing all sets. Although these two algorithms have
better approximation ratios than [3] theoretically, they are
not suitable for our DivKRC search because neither of them
can lead to the effective pruning techniques proposed in this
paper.

Diversified top-l search This search problem aims to find the
top-l answers that are most relevant to a query in consid-
eration of diversity. As an extensively studied topic, most
existing works focus on answering the query for a specific
problem. For example, Lin et al. study the l most representa-
tive skyline problem [36]. Some works study the diversified
top-k document retrieval [1,2]. Fan et al. study the diversi-
fied top-l graph pattern matching [20]. Yuan et al. study the
diversified top-l clique search [60]. Nevertheless, the clique
structure on a single graph does not consider the user engage-
ment and similarity constraints at the same time. Drosou and
Pitoura present a survey on diversifying query results under
different scenarios [17]. Some other works study the general
framework of diversified top-l search [44,50]. Borodin et al.
[8] andMinack et al. [41] study the top-l result diversification

on a dynamic environment. Deng and Fan analyze the com-
plexity of query result diversification [16]. Nevertheless, the
diversity in above frameworks is established on pairwise dis-
similarity of query results. Consequently, these frameworks
cannot be applied to solve the DivKRC search efficiently.

11 Discussion

In many real-life networks, it is rather natural to consider
both structure and attribute values in many graph problems.
we can expect a variety of extensions of (k,r)-core model to
be used for different scenarios. The techniques developed in
this paper can shed light on the computation of the exten-
sions. For instance, our study suggests that it is less efficient
to sequentially apply the state-of-the-art techniques for each
constraint (i.e., cohesive subgraph model). Instead, we need
to carefully integrate the computation of the multiple con-
straints at each search step. Our study also indicates that,
to deal with the multiple constraints, it is crucial to develop
advanced early termination andmaximal check techniques as
well as design good visiting orders. When finding the (k,r)-
trusses whose vertices form k-truss on graph structure and
clique on the similarity graph, the (k,k′)-core upper bound
technique can be directly applied to this problem because a
k-truss is also a (k-1)-core. The double k-core-based upper
bound and initial candidate generation can be used to speed
up the diversified (k,r)-truss search. With similar rationale,
other proposed techniques, e.g., candidate retaining, early
termination, maximal check and search orders, can also be
extended or provide insights into the counterparts of new
cohesive subgraph models on attributed graphs.

12 Conclusion

In this paper, we propose a novel cohesive subgraph model,
called (k,r)-core, which considers the cohesiveness of both
graph structure and vertex attribute. We show that the prob-
lem of enumerating the maximal (k,r)-cores, finding the
maximum (k,r)-core and finding the diversified top-l maxi-
mal (k,r)-cores are all NP-hard. A series of novel pruning
techniques are proposed to improve algorithm efficiency.
We also devise effective search orders for each problem.
Extensive experiments on real-life networks demonstrate the
effectiveness of the (k,r)-core and the efficiency of the pro-
posed algorithms.

Acknowledgements Xuemin Lin is supported by 2018YFB1003504,
NSFC61232006, ARC DP180103096 and DP170101628. Ying Zhang
is supported by ARC DP180103096 and FT170100128. Lu Qin is sup-
ported by ARC DP160101513. Wenjie Zhang is supported by ARC
DP180103096.

123

Efficient community discovery with user engagement and similarity

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying
search results. In: WSDM, pp. 5–14 (2009)

2. Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIG-
MOD, pp. 781–792 (2011)

3. Ausiello, G., Boria, N., Giannakos, A., Lucarelli, G., Paschos, V.T.:
Online maximum k-coverage. Discrete Appl. Math. 160(13–14),
1901–1913 (2012)

4. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.:
Streaming submodular maximization: massive data summarization
on the fly. In: KDD, pp. 671–680 (2014)

5. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decom-
position of networks. In: CoRR, cs.DS/0310049 (2003)

6. Bhawalkar, K., Kleinberg, J.M., Lewi, K., Roughgarden, T.,
Sharma,A.: Preventing unraveling in social networks: the anchored
k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

7. Bird, C., Gourley, A., Devanbu, P. T., Gertz, M., Swaminathan, A.:
Mining email social networks. In: MSR, pp. 137–143 (2006)

8. Borodin, A., Lee, H.C., Ye, Y.:Max-sum diversification, monotone
submodular functions and dynamic updates. In: PODS, pp. 155–
166 (2012)

9. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM 16(9), 575–576 (1973)

10. Chang,L.: Efficientmaximumclique computationover large sparse
graphs. In: SIGKDD, pp. 529–538 (2019)

11. Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in
sparse graphs. Algorithmica 66(1), 173–186 (2013)

12. Chen, K., Lei, C.: Network game design: hints and implications of
player interaction. In: NETGAMES, p. 17 (2006)

13. Chen, L., Liu, C., Zhou, R., Li, J., Yang, X., Wang, B.: Maxi-
mum co-located community search in large scale social networks.
PVLDB 11(10), 1233–1246 (2018)

14. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal
clique enumeration with limitedmemory. In: KDD, pp. 1240–1248
(2012)

15. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Dis-
crete Math. 86(1–3), 165–177 (1990)

16. Deng, T., Fan,W.:On the complexity of query result diversification.
PVLDB 6(8), 577–588 (2013)

17. Drosou, M., Pitoura, E.: Search result diversification. SIGMOD
Rec. 39(1), 41–47 (2010)

18. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse
real-world graphs. In: SEA, pp. 364–375 (2011)

19. Facebook. How does facebook suggest groups for me?
https://www.facebook.com/help/382485908586472?helpref=uf_
permalink. Accessed 16 Sep 2019

20. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern match-
ing. PVLDB 6(13), 1510–1521 (2013)

21. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community
search over large spatial graphs. PVLDB 10(6), 709–720 (2017)

22. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search
for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)

23. Fang,Y., Zhang,H.,Ye,Y., Li,X.:Detecting hot topics from twitter:
a multiview approach. J. Inf. Sci. 40(5), 578–593 (2014)

24. Feige, U.: A threshold of ln n for approximating set cover. J. ACM
45(4), 634–652 (1998)

25. Ferrara, E., JafariAsbagh, M., Varol, O., Qazvinian, V., Menczer,
F., Flammini, A.: Clusteringmemes in socialmedia. In: ASONAM,
pp. 548–555 (2013)

26. Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph
coloring. JACM 23(1), 43–49 (1976)

27. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide
to the Theory of NP-Completeness. W. H Freeman, New York
(1979)

28. Goldberg, M.K., Kelley, S., Magdon-Ismail, M., Mertsalov, K.,
Wallace, A.: Finding overlapping communities in social networks.
In: SocialCom/PASSAT, pp. 104–113 (2010)

29. Gupta, R., Walrand, J., Goldschmidt, O.: Maximal cliques in unit
disk graphs: polynomial approximation. In: Proceedings INOC,
vol. 2005. Citeseer (2005)

30. Hristova, D., Musolesi, M., Mascolo, C.: Keep your friends close
and your facebook friends closer: A multiplex network approach
to the analysis of offline and online social ties. In: ICWSM (2014)

31. Huang, X., Lu, W., Lakshmanan, L.V.S.: Truss decomposition of
probabilistic graphs: Semantics and algorithms. In: SIGMOD, pp.
77–90 (2016)

32. Pfeiffer, J.J III., Moreno, S., Fond, T.L., Neville, J., Gallagher, B.:
Attributed graph models: modeling network structure with corre-
lated attributes. In: WWW, pp. 831–842 (2014)

33. Izumi, T., Suzuki, D.: Faster enumeration of all maximal cliques in
unit disk graphs using geometric structure. IEICE Trans. 98–D(3),
490–496 (2015)

34. Kitsak,M., Gallos, L.K., Havlin, S., Liljeros, F.,Muchnik, L., Stan-
ley, H.E., Makse, H.A.: Identification of influential spreaders in
complex networks. Nat. Phys. 6(11), 888–893 (2010)

35. Lee, P., Lakshmanan, L.V.S., Milios, E.E.: CAST: a context-aware
story-teller for streaming social content. In: CIKM, pp. 789–798
(2014)

36. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most
representative skyline operator. In: ICDE, pp. 86–95 (2007)

37. Liu, Y., Sutanto, J.: Buyers purchasing time and herd behavior on
deal-of-the-day group-buyingwebsites. Electron.Mark. 22(2), 83–
93 (2012)

38. Luo, M.M., Chea, S.: The effect of social rewards and perceived
effectiveness of e-commerce institutional mechanisms on intention
to group buying. In: Advances in Human Factors, Business Man-
agement, Training and Education, pp. 833–840. Springer, Berlin
(2017)

39. Luo, X., Andrews, M., Song, Y., Aspara, J.: Group-buying deal
popularity. J. Mark. 78(2), 20–33 (2014)

40. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling
engagement dynamics in social graphs. In: CIKM, pp. 469–478
(2013)

41. Minack, E., Siberski, W., Nejdl, W.: Incremental diversification for
very large sets: a streaming-based approach. In: SIGIR, pp. 585–
594 (2011)

42. Mitzlaff, F., Atzmüller, M., Hotho, A., Stumme, G.: The social dis-
tributional hypothesis: a pragmatic proxy for homophily in online
social networks. Soc. Netw. Anal. Min. 4(1), 216 (2014)

43. PokemonGo. Developer insights: Inside the philosophy of friends
and trading. https://pokemongolive.com/en/post/jundevupdate-
trading/. Accessed 16 Sep 2019

44. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. PVLDB
5(11), 1124–1135 (2012)

45. Seidman, S.B.:Network structure andminimumdegree. Soc.Netw.
5(3), 269–287 (1983)

46. Sharma, P., Govindan, S.: Information seeking behavior of expats
in asia on facebook open groups. Singap. J. Libr. Inf. Manag. 44,
35 (2016)

47. Singla, P., Richardson, M.: Yes, there is a correlation—from social
networks to personal behavior on the web. In: WWW, pp. 655–664
(2008)

48. Statista. Number of active users of pokemon go worldwide from
2016 to 2020, by region (in millions). https://www.statista.com/
statistics/665640. Accessed 16 Sep 2019

49. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural
diversity in social contagion. PNAS 109(16), 5962–5966 (2012)

50. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou,
M., Srivastava, D., Traina, Jr. C., Tsotras, V.J.: On query result
diversification. In: ICDE, pp. 1163–1174 (2011)

123

https://www.facebook.com/help/382485908586472?helpref=uf_permalink
https://www.facebook.com/help/382485908586472?helpref=uf_permalink
https://pokemongolive.com/en/post/jundevupdate-trading/
https://pokemongolive.com/en/post/jundevupdate-trading/
https://www.statista.com/statistics/665640
https://www.statista.com/statistics/665640

F. Zhang et al.

51. Wang, J., Cheng, J., Fu,A.W.:Redundancy-awaremaximal cliques.
In: KDD, pp. 122–130 (2013)

52. Wang, K., Cao, X., Lin, X., Zhang,W., Qin, L.: Efficient computing
of radius-bounded k-cores. In: ICDE, pp. 233–244 (2018)

53. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Vertex priority
based butterfly counting for large-scale bipartite networks. PVLDB
12(10), 1139–1152 (2019)

54. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core
graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)

55. Wu, S., Sarma, A.D., Fabrikant, A., Lattanzi, S., Tomkins, A.:
Arrival and departure dynamics in social networks. In: WSDM,
pp. 233–242 (2013)

56. Wu, Y., Jin, R., Zhu, X., Zhang, X.: Finding dense and connected
subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)

57. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based
approach to attributed graph clustering. In: SIGMOD, pp. 505–516
(2012)

58. Yang, J., McAuley, J.J., Leskovec, J.: Community detection in net-
works with node attributes. In: ICDM, pp. 1151–1156 (2013)

59. Yu, H., Yuan, D.: Set coverage problems in a one-pass data stream.
In: SDM, pp. 758–766 (2013)

60. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Diversified top-k
clique search. In: ICDE, pp. 387–398 (2015)

61. Yuan, Q., Zhao, S., Chen, L., Liu, Y., Ding, S., Zhang, X., Zheng,
W.: Augmenting collaborative recommender by fusing explicit
social relationships. In: Recsys Workshop (2009)

62. Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discov-
ering strong communities with user engagement and tie strength.
In: DASFAA, pp. 425–441 (2018)

63. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an effi-
cient algorithm to prevent unraveling in social networks. PVLDB
10(6), 649–660 (2017)

64. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical
users for social network engagement: the collapsed k-core problem.
In: AAAI, pp. 245–251 (2017)

65. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engage-
ment meets similarity: efficient (k, r)-core computation on social
networks. PVLDB 10(10), 998–1009 (2017)

66. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently rein-
forcing social networks over user engagement and tie strength. In:
ICDE, pp. 557–568 (2018)

67. Zhang, Y., Qin, L., Zhang, F., Zhang, W.: Hierarchical decomposi-
tion of big graphs. In: ICDE, pp. 2064–2067 (2019)

68. Zhou, Z., Zhang, F., Lin, X., Zhang, W., Chen, C.: K-core max-
imization: An edge addition approach. In: IJCAI, pp. 4867–4873
(2019)

69. Zhu, Q., Hu, H., Xu, C., Xu, J., Lee, W.: Geo-social group queries
with minimum acquaintance constraints. VLDB J. 26(5), 709–727
(2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Efficient community discovery with user engagement and similarity
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Problem complexity

	3 The clique-based approach
	4 Warming up for our approach
	5 Finding all maximal (k,r)-cores
	5.1 Reducing candidate size
	5.1.1 Eliminating candidates
	5.1.2 Retaining candidates

	5.2 Early termination
	5.3 Checking maximal
	5.4 Advanced enumeration method

	6 Finding the maximum (k,r)-core
	6.1 Algorithm for finding the maximum
	6.2 Size upper bound of (k,r)-core
	6.3 Algorithm for (k,k')-core upper bound
	6.4 The top-l maximal (k,r)-cores

	7 Finding diversified maximal (k,r)-cores
	7.1 Problem definition
	7.2 Baseline algorithm
	7.3 Advanced DivKRC search
	7.3.1 Basic algorithm
	7.3.2 Upper bound of private coverage
	7.3.3 Algorithm for double k-core-based upper bound
	7.3.4 Initial candidate generation

	8 Search order
	8.1 Important measurements
	8.2 Finding the maximum (k,r)-core
	8.3 Enumerating all maximal (k,r)-core
	8.4 Checking maximal
	8.5 Finding diversified maximal (k,r)-cores

	9 Performance evaluation
	9.1 Experimental setting
	9.2 Effectiveness of AdvEnum and AdvMax
	9.3 Efficiency of AdvEnum and AdvMax
	9.4 Effectiveness of AdvDiv
	9.5 Efficiency of AdvDiv
	9.6 Scalability of AdvEnum, AdvMax and AdvDiv

	10 Related work
	11 Discussion
	12 Conclusion
	Acknowledgements
	References

