
Discovering Strong Communities with User
Engagement and Tie Strength

Fan Zhang1, Long Yuan1(�), Ying Zhang2, Lu Qin2, Xuemin Lin1, and
Alexander Zhou3

1 University of New South Wales, Sydney, Australia
fan.zhang3@unsw.edu.au,{longyuan,lxue}@cse.unsw.edu.au

2 Centre for AI, University of Technology Sydney, Sydney, Australia
{ying.zhang,lu.qin}@uts.edu.au

3 University of Queensland, Brisbane, Australia
alexander.zhou@uqconnect.edu.au

Abstract. In this paper, we propose and study a novel cohesive sub-
graph model, named (k,s)-core, which requires each user to have at least
k familiars or friends (not just acquaintances) in the subgraph. The mod-
el considers both user engagement and tie strength to discover strong
communities. We compare the (k,s)-core model with k-core and k-truss
theoretically and experimentally. We propose efficient algorithms to com-
pute the (k,s)-core and decompose the graph by a particular sub-model
k-fami. Extensive experiments show (1) our (k,s)-core and k-fami are ef-
fective cohesive subgraph models and (2) the (k,s)-core computation and
k-fami decomposition are efficient on various real-life social networks.

1 Introduction

Graphs are widely used to represent the abundant interactions in social network-
s, where each vertex represents a user and each edge represents a relationship
between two users. A variety of cohesive subgraph models have been proposed
to find social communities, while most of which suffer from computational in-
tractability and other drawbacks. Clique [12] is the most cohesive subgraph mod-
el where each vertex is adjacent to every other vertex in the clique. Due to the
exponential number of maximal cliques in most social networks and the NP-
completeness of the clique decision problem [5], a lot of clique-relaxation models
are proposed.

The increasing volume of real-life social networks requires outstanding com-
putation efficiency on cohesive subgraph models, which leads us to the k-core [14]
and k-truss [6], the popular and well-studied models with polynomial computa-
tion time. The k-core is defined as a maximal subgraph where each vertex has
a degree of at least k (i.e., at least k neighbors) in the k-core. The k-core is
computed by deleting every vertex with degree less than k, which is efficient.
However, the simple definition leads to promiscuous subgraphs and thus the k-
core is considered as “seedbeds, within which cohesive subsets can precipitate
out” [14]. Another concern of the k-core is that the definition on the neighbor

2

1,2 -core

Fig. 1. Motivation Example

number of a vertex treats each incident edge equally (i.e., the strength of every
edge is always same). However, the ties (i.e., edges) in social networks have quite
different strength, e.g., two users can be acquaintances who only met once, or
close friends who meet every day. So the k-truss model is proposed and defined
as a maximal subgraph where each edge has a support of at least is k (i.e., is
contained in at least k triangles) in the k-truss. The support of an edge has been
shown to be effective on dynamically estimating the strength of the edge [6, 8,
16]. The k-truss is computed by deleting every edge with support less than k,
and then delete isolated vertices. In Figure 1, we show a social network G, con-
sisting of 12 users who form the 3-core. The 4-core of G is empty. The 1-truss of
G is G minus the edges e(u7, u9) and e(u8, u12). The 2-truss of G is empty.

There are two concerns of the k-truss model. (1) All the edges with support
less than k are deleted including those between the vertices in the k-truss, which
is not consistent with reality. Like in Figure 1, the edges e(u7, u9) and e(u8, u12)
are not a part of the 1-truss. The friendship between two users, even if weak,
always exists in a community as long as the two users are in the community.
Besides, the enforced deletion of weak ties in k-truss makes the tie strength
estimation inaccurate, as some triangles are unnecessarily deleted. (2) In social
communities, the existence of a relationship between two users is dependent on
the existence of the two users (i.e., the communities are vertex-oriented). Since
the computation of k-truss is based on the removal of weak ties in the network,
which makes the k-truss edge-oriented (i.e., the existence of a vertex in k-truss is
decided by the existence of its incident edges). Like in Figure 1, there are many
edges with support 2 initially, while the 2-truss computation recursively deletes
the edges with support less than 2, which leads to an empty 2-truss.

To address the above concerns, we introduce the (k,s)-core model which is
a maximal subgraph where each vertex has an engagement of at least k (i.e.,
at least k strong ties) in the (k,s)-core. Towards tie strength, like in k-truss,
an edge is a strong tie if it has a support of at least s (i.e., is contained in
at least s triangles) in the (k,s)-core. In Figure 1, the (1,2)-core consists of
u1,u2,...,u6 where each user has at least a strong tie. We can see the (1,2)-core
is tightly connected which cannot be found by k-core or k-truss for any k. The
definition of (k,s)-core ensures there is sufficient number of close friends for each
user in the (k,s)-core, which strongly encourages the user to keep engaged in
the (k,s)-core. Besides, this definition preserves all the weak ties as long as the
incident vertices exist in the (k,s)-core, which is more consistent with reality

3

and allows for a more accurate estimation of tie strength. The definition of
vertex engagement ensures that the (k,s)-core is vertex-oriented and possesses
more potential on computation efficiency than k-truss. An efficient algorithm is
proposed to compute the (k,s)-core.

The two parameters in (k,s)-core enable the model to have high flexibility in
regards to adjusting different requirements for user engagement and tie strength.
However, this makes the decomposition more complex as it needs to compute all
the (k,s)-cores for any given k and s. To make the decomposition more afford-
able, we introduce a representative sub-model k-fami which is a (k, k − 1)-core.
We propose an efficient algorithm to decompose a graph into hierarchical struc-
tures by the k-fami. Extensive experiments show our (k,s)-core computation
and k-fami decomposition are more efficient than k-truss computation and its
decomposition, respectively. With the definitions based on characteristics of so-
cial communities, our (k,s)-core and k-fami produce more convincing cohesive
subgraphs for finding strong communities.

2 Problem Definition

In this section, we give some notations and formally define the cohesive subgraph
models including our novel (k,s)-core. The notations are summarized in Table 1.

We consider an unweighted and undirected graph G = (V,E), where V (resp.
E) represents the set of vertices (resp. edges) in G. We denote n = |V |, m = |E|
and assume m > n. N(u,G) is the set of adjacent vertices of u in G. We say a
vertex u is incident to an edge e, or e is incident to u, if u is one of the endpoints
of e. Let S denote a subgraph of G. We use deg(u, S), the degree of u in S, to
represent the number of adjacent vertices of u in S. When the context is clear,
we omit the the input graph in notations, such as deg(e) for deg(e,G).

Definition 1. k-core. Given a graph G, a subgraph S is the k-core of G, de-
noted by Ck(G), if (i) S satisfies the degree constraint, i.e., deg(u, S) ≥ k for
every u ∈ S; and (ii) S is maximal, i.e., any subgraph S′ ⊃ S is not a k-core.

User Engagement. For each user (vertex), the k-core model uses the number of
acquaintances (neighbors) in the k-core to measure the engagement of this user.
In our (k,s)-core model, we consider the number of friends or familiars to better
represent the engagement of a user.

Towards the k-core model, one straightforward concern is that the relation-
ships (edges, i.e., ties) between users are enforced to have equal strength, which
is not consistent with reality. Consequently, the model of k-truss is proposed
where each tie has different strength. We define a triangle as a cycle of length 3
in the graph. A containing-e-triangle is a triangle which contains e. The support
of e in S, i.e., sup(e, S), represents the number of containing-e-triangles in S.

Definition 2. k-truss. Given a graph G, a subgraph S is the k-truss of G,
denoted by Tk(G), if (i) sup(e, S) ≥ k for every edge e ∈ S; (ii) S is maximal,
i.e., any subgraph S′ ⊃ S is not a k-truss; and (iii) S is non-trivial, i.e., no
isolated vertex in S.

4

Table 1. Summary of Notations

Notation Definition

G an unweighted and undirected graph

u, v a vertex in the graph

e; e(u, v) an edge in the graph; the edge with u and v as endpoints

n, m the number of vertices and edges in G, respectively

N(u,G) the set of adjacent vertices of u in G

deg(u,G) the number of adjacent vertices of u in G

sup(e,G) the number of triangles each containing e in G

k, s the thresholds

eng(u,G) the number of edges where each edge e has sup(e,G) ≥ s
and e is incident to u in G

Ck(G); Tk(G) the k-core of G; the k-truss of G

Ck,s(G); Fk(G) the (k,s)-core of G; the k-fami of G

fn(u) fami number of the vertex u

E(u,G) the edge set where each edge is incident to u and is in G

Tie Strength. For each tie (edge), the k-truss model uses the number of triangles
containing it (common neighbors of two endpoints) in the k-truss to estimate the
strength of this tie. All weak ties are deleted in k-truss. In our (k,s)-core model,
we preserve the weak ties between community members to better estimate the
strength of a tie.

In real-life social network, the relationship between two users is concurrent
with the existence of the users. This means the weak ties between the users in
k-truss should not be deleted. Furthermore, the enforced removing of the weak
ties leads to the incompletion of some triangles and thus the inaccuracy on the
estimation of tie strength. To overcome these concerns, we firstly define strong
tie and strong engagement as the following.

Definition 3. strong tie. Given a graph G and an integer s, an edge e is called
a strong tie in G if sup(e,G) ≥ s; or a weak tie if sup(e,G) < s.

We use eng(u, S), the engagement of u in S, to represent the number of
strong ties where each edge e has sup(e, S) ≥ s and e is incident to u.

Definition 4. strong engagement. Given a graph G and an integer k, a vertex
u is strongly engaged in G if u is incident to at least k strong ties in G, i.e.,
eng(u,G) ≥ k; or weakly engaged if eng(u,G) < k.

If a user has at least k close friends or familiars in a community, he/she is
strongly encouraged to stay engaged in the community, which naturally leads us
to the following definition for modeling strong communities.

Definition 5. (k,s)-core. Given a graph G, a subgraph S is the (k,s)-core of
G, denoted by Ck,s(G), if (i) every vertex in S is strongly engaged in S, i.e.,
eng(u, S) ≥ k for each u ∈ S; and (ii) S is maximal, i.e., any subgraph S′ ⊃ S
is not a (k,s)-core.

5

2-truss

3
2 2

2

1

3
2

2 2

2

2

1 1

1

3

2

1

3

3

2

3

3

2

2

3,2 -core

1

1

1

1

1

1

1

3

1

1

1

1

1

1

Fig. 2. Running Example

The (k,s)-core model ensures that each inside user has at least k strong
ties in the (k,s)-core, and each tie is preserved if the two corresponding users
(endpoints) exist in the (k,s)-core. Consequently, the (k,s)-core overcomes the
above mentioned concerns in k-core and k-truss, and can be more consistent
with real-life scenarios. Note that we have Ck,0(G) = Ck(G), Ck,s(G) ⊆ Ck(G)
and Tk(G) ⊆ Ck+1,k(G) according to above definitions.

Example 1. In Figure 2, the social network G consists of 17 vertices where each
edge is labeled by its support in G. The G itself is a 2-core, 1-truss and (2,1)-
core, respectively. The C3,2(G) is induced by {v5, v6, v7, v8, v9, v10, v11, v12, v13}
which is a tightly connected vertex set. Note that although there are some edges
between {v1, v2, v3, v4} and C3,2(G), each of the edges has a support of only 1,
which means the connection is weak. The C3,2(G) cannot be found by k-core
or k-truss because (i) the C3(G) = C4(G) is induced by G \ {v14, v15, v16, v17};
(ii) the C5(G) = ∅; (iii) the T2(G) is induced by v9, v10,..., v13; and (iv) the
T3(G) = ∅. Note that in the computation of T2(G), the edge supports decrease
accordingly when removing each edge with a support of less than 2.

In real-life applications, the value of k (resp. s) can be determined by users
based on their requirement for engagement level (resp. tie strength), or learned
according to ground-truth communities. The parameters k and s provide more
flexibility on adjusting the resulting communities from (k,s)-core.

3 (k, s)-Core Computation

In this section, we introduce an efficient algorithm for finding the (k,s)-core.
The following theorem shows we can correctly compute the (k,s)-core on a small
k′-core.

Theorem 1. When k > 0, the (k,s)-core of G is a subgraph of k′-core of G
(i.e., Ck,s(G) ⊆ Ck′(G)) where k′ = max(k, s + 1).

Proof. The (k,s)-core of G, Ck,s(G), is a subgraph of the k-core of G because
each vertex in Ck,s(G) has at least k neighbors in Ck,s(G). When k > 0, each

6

Algorithm 1: ComputeCore(G, k)

Input : G : a social network, k : degree constraint
Output : Ck(G)
while exists u ∈ G with deg(u,G) < k do1

G:= G \ {u ∪ E(u,G)};2

return G3

Algorithm 2: ComputeKSCore(G, k, s)

Input : G : a social network, k : engagement constraint, s : tie strength
constraint

Output : Ck,s(G)
k′ := max(k, s + 1); G := ComputeCore(G, k′);1

s(e) := sup(e,G) for each e ∈ G; d(u) := eng(u,G) for each u ∈ G;2

while exists u ∈ G with d(u,G) < k do3

for each v ∈ N(u) and d(v,G) ≥ k do4

G := G \ e(u, v);5

if s(e(u, v)) ≥ s then6

d(v) := d(v)− 1;7

for each w ∈ N(u) ∩N(v) and d(w) ≥ k and s(e(v, w)) ≥ s do8

s(e(v, w)) := s(e(v, w))− 1;9

if s(e(v, w)) = s− 1 then10

d(w) := d(w)− 1;11

G:= G \ {u ∪ E(u,G)};12

return G13

vertex in Ck,s(G) is incident to at least a strong tie which is contained in at least
s triangles in Ck,s(G), which means the vertex has a degree of at least s + 1.
Since k′ = max(k, s+ 1), every vertex in Ck,s(G) has a degree of at least k′, i.e.,
the (k,s)-core is a subgraph of the k′-core.

Theorem 1 allows us to compute the k′-core first as a base for (k,s)-core
computation. The algorithm for computing k-core is shown in Algorithm 1 with
a time complexity of O(m + n).

Algorithm 2 gives the algorithm for computing the (k,s)-core. In Line 1, we
compute the k′-core. Then we do triangle counting on the k′-core to generalize
the support and engagement values in Line 2. For each vertex with insufficient
engagement (Line 3), we delete the vertex and its incident edges (Line 12 and 5)
where the support and engagement values are updated accordingly. Specifically,
in Line 4, we can delete the incident edge of u one by one. Then we update
the affected engagement value (Line 7, and 11) and the edge support in affected
triangles (Line 8 and 9). Note that we do not need to update the vertex engage-
ments which are already less than k and the edge supports which are already
less than s.

7

Example 2. In Figure 2, the social network G consists of 17 vertices where each
edge is labeled by its support in G. In the computation of (3,2)-core, we firstly
compute the 3-core of G, which deletes {v14, v15, v16, v17} from G. Then we
compute the support for each edge in current G and count the engagement for
each vertex in G. We push v1, v2, v3 and v4 in queue for deletion since their
engagement is less than 3. Note that when we delete a vertex and its incident
edges, we do not need to update the corresponding supports and engagements
which are already insufficient. Like when v1 is deleted, we do not need to update
the engagement of v2 and the support of e(v2, v3). Once the engagement of a
vertex drops from 3 to 2, it is pushed into the queue. We get the (3,2)-core after
deleting every vertex and its incident edges in the queue.

Complexity. The most time-consuming steps are computing sup(e,G) for each
e (Line 2) and its update (Line 8) which both take O(m1.5) [18]. The vertex
deletion and edge deletion take O(n) and O(m) respectively. So the time com-
plexity is O(m1.5). We need O(n) space to store engagement set and O(m) space
to store the neighbor set and edge support set in G. So the space complexity is
O(m).

Correctness. The correctness is straightforward if no (1) d(u,G) < k in Line 4
and no (2) d(w) ≥ k and s(e(v, w)) ≥ s in Line 8. The reason for (1) and
d(w) ≥ k in (2) is that all the vertices with already less than k engagements will
be deleted with their incident edges, the update for their engagements and edge
supports is not necessary. The reason for s(e(v, w)) ≥ s in (2) is that all the
edges with less than s supports are already weak ties which cannot be affected
by the deletion of other edges. Note that the existence of edges is concurrent
with the existence of their incident vertices.

4 Fami Decomposition

In this section, we propose the model of k-fami and its decomposition algorith-
m. Firstly, we introduce the following theorem which reveals the hierarchical
structure from the (k,s)-core.

Theorem 2. Given k and s, the (k,s)-core of G is a subgraph of (k′, s′)-core of
G (i.e., Ck,s(G) ⊆ Ck′,s′(G)) if k ≥ k′ and s ≥ s′.

Proof. When s ≥ s′, we have Ck,s(G) ⊆ Ck,s′(G) because (i) every strong tie e
in Ck,s(G) is also a strong tie on sup(e) ≥ s′; and (ii) each vertex in Ck,s(G) has
at least k strong ties to fulfill the requirement for existing in Ck,s′(G). When
k ≥ k′, we have Ck,s′(G) ⊆ Ck′,s′(G) because eng(u) ≥ k′ for each u ∈ Ck,s′(G).
Consequently, Ck,s(G) ⊆ Ck′,s′(G) if k ≥ k′ and s ≥ s′.

For a given k and s, Theorem 2 shows that we can find a (k′, s′)-core which
contains the (k,s)-core (k′ ≤ k and s′ ≤ s) and a (k′′, s′′)-core which is contained
in the (k,s)-core (k′′ ≥ k and s′′ ≥ s). It motivates us to introduce a particular
sub-model k-fami as a representation for the (k,s)-core to show the hierarchical

8

Algorithm 3: FamiDecomp(G)

Input : G : a social network
Output : fn(u) for every u ∈ G
k := 1; G′ := G;1

d(u) := deg(u,G) for each u ∈ G;2

s(e) := sup(e,G) for each e ∈ G;3

order the vertices in G with increasing order of d(u) for each u;4

order the edges in G with increasing order of s(e) for each e;5

while G is not empty do6

while exists u ∈ G with d(u) < k in the order do7

fn(u) := k − 1;8

for each vertex v ∈ N(u) and d(v) ≥ k do9

G := G \ e(u, v);10

if s(e(u, v)) ≥ k − 1 then11

d(v) := d(v)− 1 and reorder the vertices in G;12

for each w ∈ N(u) ∩N(v) and d(w) ≥ k and s(e(v, w)) ≥ k − 1 do13

s(e(v, w)) := s(e(v, w))− 1 and reorder the edges in G;14

if s(e(v, w)) = k − 2 then15

d(w) := d(w)− 1 and reorder the vertices in G;16

G := G \ {u ∪ E(u,G)};17

for each edge e(u, v) ∈ G with s(e(u, v)) = k − 1 in the order do18

d(u) := d(u)− 1 and reorder the vertices in G;19

d(v) := d(v)− 1 and reorder the vertices in G;20

k := k + 1;21

return fn(u) for every u ∈ G′
22

structure of a graph. The computation of all the (k,s)-core for any k and s is
time-consuming due to the large number of combinations of k and s. Our k-fami
decomposition can produce the hierarchical structure of a graph in O(m1.5),
which runs faster than k-truss decomposition in our experiments.

Definition 6. k-fami. Given a graph G, a subgraph S is the k-fami of G (k-
familiar in full), denoted by Fk(G), if S is a (k, k−1)-core, i.e., S = Ck,k−1(G).

With the k-fami model, every vertex in the graph can have a fami number.

Definition 7. fami number. Given a graph G, the fami number of a vertex
u is k∗, denoted by fn(u,G), if (i) there is a k∗-fami which contains u, i.e.,
u ∈ Fk∗(G); and (ii) there is no other k′ > k∗ such that u ∈ Fk′(G).

Fami decomposition is to compute the fami number for every vertex in the
graph. Algorithm 3 presents an algorithm for fami decomposition. Line 1 to 3
initialize the arguments including d(u) (engagement) for each vertex u and s(e)
(support) for each edge e. Line 4 orders the vertices with increasing order of their
engagements. Note that the order can be updated in O(1) time in Line 12, 16, 19
and 20 by using bin sort. Line 5 orders the edges with increasing order of sup-
ports. The order can also be updated in O(1) time in Line 14 by using bin sort.

9

A good implementation can be found in [10]. Then we compute the k-fami from
k = 1 which computes the (k− 1)-fami. The algorithm terminates and produces
all fami numbers when G becomes empty in Line 6. In Line 7 and 8, the fami
number of every vertex u with less than k engagement is recorded as k − 1. For
each neighbor of u with at least k engagement, we delete the edge e(u, v) and
update its engagement if necessary (Line 9 to 12). We also update the supports
and engagements affected by the deletion of e(u, v) (Line 13 to 16). Note that we
do not need to update the engagements of vertices with less than k engagements
and the supports of their incident edges, because these vertices are already in
the waiting list to be deleted (Line 7). After deleting all vertices with less than
k engagements, we increase k by 1 in Line 21 and update the engagements since
some edges becomes weak ties with the increase of k in 18 to 20.

Example 3. In Figure 2, the social network G consists of 17 vertices where each
edge is labeled by its support in G. In the k-fami decomposition, we firstly
compute the support for each edge in G and count the engagement for each
vertex in G. Then the edges are ordered with increasing supports and the vertices
are ordered with increasing engagements. Note that the orders are implemented
in integer buckets with O(1) update time as in [10]. Then we compute the k-fami
from k = 1 to kmax. When k = 1, there is no u ∈ G with d(u) < k. Then we
lift the strong tie threshold by 1, which decrease the d(u) and d(v) by 1 for each
e(u, v) with support k− 1, and reorder the vertices. Then we lift k by 1 and find
the vertices with d(u) < k in the order. The computation of k-fami is the same
as in Algorithm 2 except that s = k + 1 and the reorder for vertices and edges.
When k = 2, there is still no u ∈ G with d(u) < k. When k = 3, 8 vertices
with d(u) < k are deleted (v1,...,v4,v14,...,v17) and marked with fami number
2. Recursively, the algorithm terminates when all the vertices are deleted and
marked. We thus have the k-fami for k from 1 to 3.

Complexity. In Algorithm 3, the most time-consuming steps are computing
sup(e) for every e ∈ G (Line 3) and updating the edge supports (Line 13 and 14),
which takes O(m1.5) time [18]. The removal of all vertices and edges takes O(m)
time. The orders, engagement reorders and support reorders take O(m) time. So
the time complexity of Algorithm 3 is O(m1.5). Towards the space complexity,
the neighbor set for every vertex, the edge support set and the support order
dominate the complexity, where each takes O(m) space. So the space complexity
of Algorithm 3 is O(m).

Correctness. We show that for each k in Algorithm 3, it computes a correct
(k − 1)-fami. When k = 1, the isolated vertices are removed from G (Line 17)
with fami number 0 (Line 8). When k = 2, the engagement numbers are correctly
updated (Line 18 to 20). Then every vertex with less than k engagement is
deleted, where the incident edges are deleted one by one (Line 10 and 17).
Note that the engagements of vertices with less than k engagement need not
to be updated according to edge deletions because these vertices are already
in waiting list for deletion. The supports of their incident edges also need not
to be updated. Besides, the supports less than k − 1 need not to be updated

10

Table 2. Statistics of Datasets

Dataset Nodes Edges davg kcore
max ktruss

max kfami
max |4|

Facebook 4,039 88,234 43.7 115 95 102 1,612,010

Brightkite 58,228 194,090 6.7 52 40 43 449,717

Gowalla 196,591 456,830 4.7 43 21 25 1,061,143

YouTube 1,134,890 2,987,624 5.3 51 17 24 3,056,386

DBLP 1,566,919 6,461,300 8.3 118 117 118 15,389,320

Pokec 1,632,803 8,320,605 10.2 27 18 19 6,971,538

LiveJournal 3,997,962 34,681,189 17.4 360 350 353 177,820,130

Orkut 3,072,441 117,185,083 76.3 253 76 83 627,584,181

Table 3. Summary of Algorithms

Algorithm Description

k-core computing the k-core [3], i.e., Algorithm 1

k-truss computing the k-truss [6]

k-fami computing the k-fami, i.e., Algorithm 2

ks-core computing the (k,s)-core, i.e., Algorithm 2

coreDecomp core decomposition in [10], i.e., computing the largest k for
every vertex u ∈ G such that the k-core contains u

trussDecomp truss decomposition in [18], i.e., computing the largest k for
every vertex u ∈ G such that the k-truss contains u

famiDecomp fami decomposition, i.e., Algorithm 3

because they are already weak ties and cannot affect the vertex engagements.
At Line 21, all vertices with less than k engagement are deleted with correct
updates of all supports and engagements. Current G is a (k−1)-fami. For k > 2,
the correctness can be ensured by recursion and Theorem 2.

5 Experimental Evaluation

5.1 Experimental Setting

Datasets. Eight real-life networks were deployed in our experiments and we
assume all vertices in each network are initially engaged. The original data of
DBLP was downloaded from http://dblp.uni-trier.de/ and the others from
http://snap.stanford.edu/. In DBLP, we consider each author as a vertex
and there is an edge for a pair of authors if they have at least one co-authored
paper. There are existing vertices and edges in other datasets. Table 2 shows the
statistics of the 8 datasets, listed in increasing order of their edge numbers.

Algorithms. To the best of our knowledge, no existing work investigates the
(k,s)-core and k-fami. We tested 4 algorithms (k-core, k-truss, k-fami and
ks-core) to produce and compare different resulting subgraphs. We also imple-
mented and evaluated the decomposition algorithms including core decomposi-
tion (coreDecomp), truss decomposition(trussDecomp) and our fami decompo-
sition (famiDecomp). Table 3 shows the summary of the algorithms.

11

102

103

104

105

106

107

Facebook

Brightkite

Gowalla
YouTube

DBLP
Pokec

LiveJournal

Orkut

N
um

be
r

of
 V

er
tic

es

k-core k-truss k-fami

(a) All Datasets, k = 15

101

102

103

104

105

 5 10 15 20 25

N
um

be
r

of
 V

er
tic

es

k

k-core
k-fami
k-truss

(b) Gowalla

101

102

103

104

105

106

3 6 9 12 15 18
N

um
be

r
of

 V
er

tic
es

k

k-core
k-fami
k-truss

(c) Pokec

Fig. 3. Vertex Number in k-core, k-truss and k-fami

Parameters. We conducted experiments under different settings by varying the
engagement constraint k from 3 to 80 and the support constraint s from 10 to
50. We also report the result of 3 graph decompositions.

All programs were implemented in standard C++ and compiled with G++
in Linux. All experiments were performed on a machine with Intel Xeon 2.8GHz
CPU and Redhat Linux System.

5.2 Effectiveness

Statistics. We report the maximum core number (kcoremax), truss number (ktrussmax)
and fami number (kfami

max) on each dataset in Table 2. The kfami
max is usually

between the values of kcoremax and kfami
max , which shows our k-fami model captures

unique hierarchical structures of the graphs. We show the number of vertices in
k-core, k-truss and k-fami in Figure 3. When k = 15, Figure 3 (a) shows the
size of k-fami is always between k-core and k-truss where the difference varies
on all datasets due to the different natures of the datasets. Figure 3 (b) and (c)
show the decrease of the size in 3 models with the growth of k. When k = 25,
the k-truss in Gowalla is empty. The margin between the sizes of k-fami and the
other 2 models varies with different k.

In Figure 4, we report the size of (k,s)-core with different k and s. Figure 4
(a) shows the trend of the (k,s)-core size when we fix s and vary k. Figure 4
(b) shows the trend of the (k,s)-core size when we fix k and vary s. In both
Figure 4 (a) and (b), for a given s, We can see that the (k,s)-core sizes are
almost the same when k ≤ s because they all belong to (s + 1)-core according

12

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80

N
um

be
r

of
 V

er
tic

es
 (

10
4)

k

s=10
s=20
s=30
s=40
s=50

(a) Orkut

 0
 20
 40
 60
 80

 100
 120
 140

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 V

er
tic

es
 (

10
4)

s

k=10
k=20
k=30
k=40

(b) Orkut

Fig. 4. Vertex Number in (k,s)-core with Different k and s

Fig. 5. Case Study of k-core, k-truss and k-fami on DBLP

to Theorem 1. When k > s, the (k,s)-core becomes smaller with the increase of
k. Figure 4 reveals the hierarchical structure of a graph with the changing of k
and s in the (k,s)-core.

Case Study on DBLP. Figure 5 depicts the k-core, k-truss and k-fami on
the DBLP-30 dataset with k = 15. In DBLP-30, to make this case study visible,
each edge between two authors represents that there are at least 30 co-authored
papers between the two authors. The whole graph in Figure 5 is the k-core of
DBLP-30. The (k,s)-core excludes the sparse group at the bottom right corner
with 5 authors. The k-truss is formed by all the square vertices (in blue) which
excludes all the sphere vertices (in red) and their incident edges from (k,s)-
core. We can see all the square and sphere vertices connect tightly, which shows
the advantages of our (k,s)-core model. Specifically, the (k,s)-core is superior
than the other 2 models in the sense that (1) the k-core is relatively large since
it tolerates some vertices with low engagement and (2) the k-truss enforcedly
excludes all the weak ties which makes the tie strength estimation (number of
triangles) inaccurate and the non-concurrence of the vertices and its incident
edges in resulting communities.

5.3 Efficiency

Decompositions. In Figure 6, we report the decomposition time for k-core, k-
truss and k-fami. The coreDecomp and trussDecomp are the state-of-the-art al-

13

10-2
10-1
100
101
102
103
104

Facebook

Brightkite

Gowalla
YouTube

DBLP
Pokec

LiveJournal

Orkut

R
un

ni
ng

 T
im

e
(s

ec
)

coreDecomp trussDecomp famiDecomp

Fig. 6. Running Time for Graph Decompositions

10-2

10-1

100

 5 10 15 20 25

R
un

ni
ng

 T
im

e
(s

ec
)

k

k-core
k-fami
k-truss

(a) Gowalla

10-2

10-1

100

101

102

3 6 9 12 15 18

R
un

ni
ng

 T
im

e
(s

ec
)

k

k-core
k-fami
k-truss

(b) Pokec

Fig. 7. Running Time of k-core, k-truss and k-fami Computation

gorithms for in-memory core decomposition and truss decomposition, respective-
ly. Figure 6 shows that coreDecomp is faster than trussDecomp and famiDecomp

because it does not need triangle listing and support updates on the graph.
However, coreDecomp treats each edge equally and ignores the difference in tie
strength. Our famiDecomp algorithm outperforms trussDecomp in running time
by up to 2 times, because famiDecomp is a vertex-oriented algorithm where the
existence of edges depends on the incident vertices, while trussDecomp is an
edge-oriented algorithm. Besides, our famiDecomp can avoid unnecessary updat-
ing of some supports and engagements as Algorithm 3 shows.

Effect of k and s. We show the effect of k in k-core, k-truss and k-fami compu-
tation in Figure 7. As discussed above, k-core is faster than k-truss or k-fami
but it ignores the strength of ties in discovering cohesive subgraphs. The run-
ning time of k-truss and k-fami becomes smaller as k increases because both
of them compute a k′-core first which reduces the candidate set for their com-
putation. So performance of 3 algorithms tends to be closer when k becomes
larger. In Figure 8, we show the running time of (k,s)-core on different k and s.
The runtime of ks-core becomes smaller when max(k, s + 1) becomes larger,
because ks-core computes a max(k, s + 1)-core first to reduce the candidate
set. For the same reason, when we fix s and k ≤ s, the runtime of ks-core does
not change much. It also explains the consistent runtime of ks-core when we
fix k and s < k.

Different Datasets. Figure 9 reports the running time of k-core, k-truss and k-
fami on all datasets with k = 15. k-core still outperforms k-truss and k-fami

14

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80

R
un

ni
ng

 T
im

e
(s

ec
)

k

s=10
s=20
s=30
s=40
s=50

(a) Orkut

 400

 450

 500

 550

 600

 650

 10 15 20 25 30 35 40 45 50

R
un

ni
ng

 T
im

e
(s

ec
)

s

k=10
k=20
k=30
k=40

(b) Orkut

Fig. 8. Running Time of (k,s)-core with Different k and s

10-2
10-1
100
101
102
103
104

Facebook

Brightkite

Gowalla
YouTube

DBLP
Pokec

LiveJournal

Orkut

R
un

ni
ng

 T
im

e
(s

ec
)

k-core k-truss k-fami

Fig. 9. Running Time of k-core, k-truss and k-fami Computation

by ignoring the tie strength in computation. Our k-fami is faster than k-truss

on all datasets because k-fami is a vertex-oriented algorithm and avoids up-
dating unnecessary support and engagement values in Algorithm 2. It further
confirms the effectiveness of our (k,s)-core model in producing cohesive sub-
graphs with the consideration of tie strength.

6 Related Work

There are various cohesive subgraph models to accommodate different scenarios
in the literature. Clique [12] is an extremely cohesive subgraph where every
vertex is adjacent to every other vertex in the clique. Because the definition
of clique is usually too restrictive, some clique relaxation models have been
proposed, such as k-plex [15], k-core [14] and k-truss [6], and so on. Among these
cohesive subgraph models, k-core and k-truss are the widely studied models with
polynomial computation time.

Seidman [14] proposes the k-core where each vertex has at least k neighbors
in the k-core. The k-core has a wide spectrum of applications such as social con-
tagion [17], community detection [21], user engagement [20] and so on. Batagelj
and Zaversnik [2] present an algorithm for core decomposition of a graph with
time complexity of O(m + n). Zhang et al. [22] propose a fast order-based al-
gorithm to maintain k-core in dynamic graphs. Bhawalkar et al. [4] propose the
problem of anchored k-core to prevent network unraveling. Zhang et al. [19]
present an efficient algorithm to solve the anchored k-core problem. However,
the k-core uses vertex degree to determine the user engagement which treats

15

each edge equally. In real-life social networks, the strength of user relationships
(edges) varies a lot and cannot be always identical [7].

Further considering the strength of ties, Cohen [6] proposes the model of
k-truss where every edge exists in at least k triangles in the k-truss with its
decomposition algorithm in O(

∑
v∈V (G)(deg(v)2)) time. Rotabi et al. [13] show

that most strong tie detection methods are based on structural information,
especially on triangles. Wang and Cheng [18] reduce the time complexity of
truss decomposition to O(m1.5) and study the I/O efficient truss decomposition.
Shao et al. [16] study the k-truss detection problem on distributed systems and
propose an efficient parallel algorithm. Zhao and Tung [23] use the k-truss to
capture the cohesion in social interactions and propose a visualization system
based on k-truss. Huang et al. [8] study the k-truss based community mod-
el, which further requires edge connectivity inside the community. Akbas and
Zhao [1] propose a truss-equivalence based index to speed up the search of the
truss based community. Huang and Lakshmanan [9] study the attributed k-truss
community search where the largest attribute relevance score is satisfied. How-
ever, k-truss deletes all the weak ties even if the corresponding users exists in
the k-truss, which makes the tie strength estimation inaccurate and that some
users are excluded from k-truss unreasonably. Besides, k-truss is edge-oriented
while social communities are user(vertex)-oriented.

To the best of our knowledge, we for the first time propose the novel (k,s)-
core to overcome above concerns in k-core and k-truss. Lee et al. [11] propose
the (k, d)-core where each vertex has at least k neighbors in the subgraph and
each edge is contained in at least d triangles in the subgraph. The (k, d)-core is
essentially a subgraph of d-truss with additional requirement for vertex degree of
at least k, which can be regarded as a strengthened d-truss. Thus, the model still
has the same concerns as in k-truss and is different than our (k,s)-core model.

7 Conclusion

In this paper, we propose a novel cohesive subgraph, (k,s)-core, which requires
each user to have at least k familiars or friends in the subgraph. The (k,s)-core
addresses the concerns in k-core and k-truss including (1) k-core enforces the
strength of each tie to be equal; (2) k-truss deletes all the weak ties; and (3)
k-truss is edge-oriented while social communities are user(vertex)-oriented. We
propose an efficient algorithm to compute the (k,s)-core. A particular k-fami is
introduced to efficiently decompose a graph. Extensive experiments validate the
effectiveness of our models and the efficiency of our algorithms.

Acknowledgments

Fan Zhang and Long Yuan are supported by Huawei YBN2017100007. Ying
Zhang is supported by ARC FT170100128 and DP180103096. Lu Qin is sup-
ported by ARC DP160101513. Xuemin Lin is supported by NSFC 61672235,
ARC DP170101628, DP180103096 and Huawei YBN2017100007.

16

References

1. E. Akbas and P. Zhao. Truss-based community search: a truss-equivalence based
indexing approach. PVLDB, 10(11):1298–1309, 2017.

2. V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of
networks. CoRR, cs.DS/0310049, 2003.

3. V. Batagelj and M. Zaversnik. Fast algorithms for determining (generalized) core
groups in social networks. Adv. Data Analysis and Classification, 5(2):129–145,
2011.

4. K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing
unraveling in social networks: the anchored k-core problem. SIAM Journal on
Discrete Mathematics, 29(3):1452–1475, 2015.

5. C. Bron and J. Kerbosch. Finding all cliques of an undirected graph (algorithm
457). Commun. ACM, 16(9):575–576, 1973.

6. J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Secu-
rity Agency Technical Report, page 16, 2008.

7. M. S. Granovetter. The strength of weak ties. American journal of sociology,
78(6):1360–1380, 1973.

8. X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community
in large and dynamic graphs. In SIGMOD, pages 1311–1322, 2014.

9. X. Huang and L. V. S. Lakshmanan. Attribute-driven community search. PVLDB,
10(9):949–960, 2017.

10. W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo. K-core decomposition of
large networks on a single PC. PVLDB, 9(1):13–23, 2015.

11. P. Lee, L. V. S. Lakshmanan, and E. E. Milios. CAST: A context-aware story-teller
for streaming social content. In CIKM, pages 789–798, 2014.

12. R. D. Luce and A. D. Perry. A method of matrix analysis of group structure.
Psychometrika, 14(2):95–116, 1949.

13. R. Rotabi, K. Kamath, J. M. Kleinberg, and A. Sharma. Detecting strong ties
using network motifs. In WWW, pages 983–992, 2017.

14. S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–
287, 1983.

15. S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical sociology, 6(1):139–154, 1978.

16. Y. Shao, L. Chen, and B. Cui. Efficient cohesive subgraphs detection in parallel.
In SIGMOD, pages 613–624, 2014.

17. J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in
social contagion. PNAS, 109(16):5962–5966, 2012.

18. J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB,
5(9):812–823, 2012.

19. F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. OLAK: an efficient algorithm
to prevent unraveling in social networks. PVLDB, 10(6):649–660, 2017.

20. F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users for social
network engagement: The collapsed k-core problem. In AAAI, pages 245–251, 2017.

21. F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engagement meets sim-
ilarity: Efficient (k, r)-core computation on social networks. PVLDB, 10(10):998–
1009, 2017.

22. Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based approach for core
maintenance. In ICDE, pages 337–348, 2017.

23. F. Zhao and A. K. H. Tung. Large scale cohesive subgraphs discovery for social
network visual analysis. PVLDB, 6(2):85–96, 2012.

