
Finding Critical Users for Social Network Engagement:
The Collapsed k-Core Problem

Fan Zhang,† Ying Zhang,† Lu Qin,† Wenjie Zhang,§ Xuemin Lin§
†QCIS, University of Technology Sydney, §University of New South Wales

fanzhang.cs@gmail.com, {ying.zhang, lu.qin}@uts.edu.au, {zhangw, lxue}@cse.unsw.edu.au

Abstract

In social networks, the leave of critical users may significantly
break network engagement, i.e., lead a large number of other
users to drop out. A popular model to measure social network
engagement is k-core, the maximal induced subgraph in which
every vertex has at least k neighbors. To identify critical users
for social network engagement, we propose the collapsed k-
core problem: given a graph G, a positive integer k and a
budget b, we aim to find b vertices in G such that the deletion
of the b vertices leads to the smallest k-core. We prove the
problem is NP-hard. Then, an efficient algorithm is proposed,
which significantly reduces the number of candidate vertices
to speed up the computation. Our comprehensive experiments
on 9 real-life social networks demonstrate the effectiveness
and efficiency of our proposed method.

Introduction

The user engagement on social network has attracted sig-
nificant interests over recent years (Wang et al. 2016;
Wu et al. 2013; Bhawalkar et al. 2015). k-core is a simple and
popular model based on degree constraint, which has been
widely used to measure the network engagement (Malliaros
and Vazirgiannis 2013; Chitnis, Fomin, and Golovach 2013;
2016; Abello and Queyroi 2013; Garcia, Mavrodiev, and
Schweitzer 2013). Assuming all users in a community/group
are initially engaged, each individual has two strategies, to
remain engaged or drop out. Particularly, a user will remain
engaged if and only if at least k of his/her friends are engaged
(i.e., degree constraint). A user with less than k friends en-
gaged will drop out, and his/her leave may be contagious and
forms a cascade of the departure (i.e., collapse) in the net-
work. When the collapse stops, the remaining engaged users
corresponds to the well-known concept k-core, the maximal
induced subgraph in which every vertex has at least k neigh-
bors. The size of k-core can be used to measure the overall
engagement of the social network.

A natural question is that, given a limited budget b, how to
find b vertices (i.e., users) in a network so that we can get the
smallest k-core by removing these b vertices. This problem is
named the collapsed k-core problem in this paper, which aims
to collapse the engagement of the network with the greatest
extent for a given budget b. By developing an efficient and

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Motivating Example

scalable solution for this problem, we can quickly identify
critical users whose leave will collapse the network most
severely. These users are critical for the overall engagement
of social networks. For instance, we can find most valuable
users, to sustain or destroy the engagement of the networks.
We can also evaluate the robustness of network engagement
against the vertex attack.

Example 1. Suppose there is a study group, and the number
of friends in the group reflects the willingness of engagement
for each member (i.e., user). If one drops out, he/she will
weaken the willingness of his/her friends to remain engaged,
which may incur the collapse of the group. As illustrated in
Figure 1, we model 17 members in a study group and their
relationship as a network. According to the above engage-
ment model with k=3, i.e., a person will drop out if there are
less than 3 friends, 15 members will remain engaged; that is,
3-core of the network is the whole network excluding u1 and
u12. Clearly, if users in 3-core drop out regardless the num-
ber of friends, e.g., attracted by another group, the network
will further collapse. The extent of the collapse varies among
different users. For instance, although u9 has 6 friends in
3-core, the departure of u9 will not further lead to the leave
of other users because each of his/her neighbors still has 3
friends engaged. On the contrary, the leave of u11 will lead
to the leave of 7 members in the group including u2, u5, u6,
u7, u13, u16, and u17. In this sense, it is more cost-effective
to give u11 the incentive (e.g., bonus) to ensure his/her en-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

245

Notation Definition

G an unweighted and undirected graph
u, v, x vertex in the graph
n, m the number of vertices and edges in G
A a set of collapsers vertices

Gx (GA) graph G collapsed by x (A)
k the degree constraint
b the budget for the number of collapsers

Ck(G) k-core of G
|Ck| the number of vertices in Ck(G)

Ck(GA) collapsed k-core with vertices in A deleted
F (x) (F (A)) followers of a collapser x (A)
deg(u, S) the number of adjacent vertices of u in S
NB(u, S) the adjacent vertices of u in S

Table 1: Summary of Notations

gagement or persuade him/her to leave the group.

Challenges and Contributions. To the best of our knowl-
edge, we are the first to propose and investigate the collapsed
k-core problem. We prove the problem is NP-hard for any
k value. To avoid enumerating all possible answer sets with
size b, we resort to greedy heuristics where the best vertex
is obtained in each iteration. Through theoretical analyses,
we significantly reduce the number of candidate vertices to
speed up the computation. We develop an efficient algorithm,
namely CKC, to solve the collapsed k-core problem. Our
comprehensive experiments on 9 real-life networks demon-
strate the efficiency of our proposed techniques. A real exam-
ple from DBLP is presented in the experiments to show the
effectiveness of the collapsed k-core model.

Preliminaries

We consider an unweighted and undirected graph G =
(V,E), where V (resp. E) represents the set of vertices (resp.
edges) in G. When the context is clear, we use a set S of
vertices to represent the induced subgraph of G with S ⊆ G.
We use n (resp. m) to denote the number of vertices (resp.
edges) in the graph G and we assume m > n. We denote the
adjacent vertices set of u in G by NB(u,G), which is also
called the neighbors set of u in G. We use deg(u, S), the de-
gree of u in S, to represent the number of adjacent vertices of
u in S. NB(u, S) (resp. deg(u, S)) is also written as NB(u)
(resp. deg(u)) when the context is clear. Given a subgraph S,
NB(S) denotes the union of the neighbors of the vertices in
S. The concept of k-core has been widely used to describe
cohesive subgraphs, which is formally defined as follows.

Definition 1. k-core. Given a graph G and a positive integer
k, an induced subgraph S is the k-core of G, denoted by
Ck(G), if (i) S satisfies degree constraint, i.e., deg(u, S) ≥ k
for every u ∈ S; and (ii) S is maximal, i.e., any subgraph
S′ ⊃ S cannot be a k-core.

The k-core of a graph G can be obtained by recursively
removing the vertices whose degrees are less than k, with
time complexity O(m) (Batagelj and Zaversnik 2003). In
real applications, the value of k is determined by users based
on their requirement for cohesiveness. The resulting k-core

(a) Construction Example, k = 2

(b) Construction Example, k = 3 (can extend to k > 3)

Figure 2: Examples for NP-hardness Proof

will be more cohesive if the k value becomes larger.

In this paper, once a vertex u in G is collapsed, it is always
removed from k-core regardless of the degree constraint.
Definition 2. collapsed k-core. Given a graph G and a set
A ⊆ G of vertices, the collapsed k-core, denoted by Ck(GA),
is the corresponding k-core of G with vertices in A removed.

In addition to the deletion of the collapsed vertices in A,
more vertices in Ck(G) might be deleted as well due to the
contagious nature of the k-core computation. These vertices
are called followers of the collapsed vertices A, denoted by
F(A,G), because they will remain in k-core if the vertices
in A are not deleted. The size of the followers reflects the
effectiveness of the collapsed vertices, where F(A,G) =
Ck(G) \ {Ck(GA) ∪A}. In the following, we may use col-
lapsers to represent the collapsed vertices, and use F(A) to
denote F(A,G) when the context is clear.
Problem Statement. Given a graph G, a degree constraint k
and a budget b, the collapsed k-core problem aims to find
a set A of b collapsed vertices in G so that the size of the
resulting collapsed k-core, Ck(GA), is minimized; that is,
F(A,G) is maximized.
Example 2. In Figure 1, if we set k = 3 and b = 1, the result
of the collapsed k-core problem can be A = {u11} with
Ck(GA) = {u3, u4, u8, u9, u10, u14, u15} and F(A,G) =
{u2, u5, u6, u7, u13, u16, u17}.

Complexity

Theorem 1. The collapsed k-core problem is NP-hard for
any k.

246

Proof. (1) When k = 1, we reduce the collapsed k-core prob-
lem to the maximum independent set problem (Woeginger
2001). To delete a vertex from 1-core during the collapsed
1-core computation, we have to remove all its adjacent
vertices, i.e., make the vertex independent. Consequently,
the problem of finding the maximum independent set S in
a graph G is equivalent to finding the set of vertices G \ S
such that G \ S is minimum and collapsing them can lead
to an empty 1-core. Note that we need to try at most n − 1
times (1 ≤ b < n) to find the minimum G \ S. Thus, we
have the collapsed k-core problem is NP-hard when k = 1.

(2) When k = 2, we reduce the collapsed 2-core problem
to the case of k = 1, which has been proved to be NP-hard.
Given any graph G1 with n vertices and m edges, we
construct another graph G2 with n + 2m vertices and 4m
edges as follows. For each edge (v1, v2) in G1, we add
two virtual vertices w and w′ and construct the following
four edges in G2: (v1, w), (w, v2), (v1, w′) and (w′, v2), as
shown in Figure 2 (a). An example of graph construction is
also illustrated in Figure 2 (a). We do not need to include any
virtual vertices in the optimal solution of collapsed 2-core
because the influence of deleting a virtual vertex can always
be covered by deleting one of its two neighbor vertices
(non-virtual vertices). Therefore, the deletion of each edge in
G1 during the computation is always mapped to the deletion
of four corresponding edges in G2. Then the optimal solution
of collapsed 2-core on G2 is also that of collapsed 1-core
on G1. As a result, the collapsed k-core problem is NP-hard
when k = 2.

(3) When k ≥ 3, we reduce the collapsed k-core problem
to the maximum coverage problem (Karp 1972); that is find-
ing at most b sets to cover the largest number of elements,
where b is a given budget. Firstly, we consider an arbitrary
instance of maximum coverage problem with s sets T1, .., Ts

and t elements {e1, .., et} = ∪1≤i≤sTi. Then we construct a
corresponding instance of the collapsed k-core problem in a
graph G as follows.

The set of vertices in G consists of three parts: M , V ,
and P . M consists of (t + s)4 vertices in which every pair
of vertices in M are adjacent. V consists of s vertices, v1,
v2, . . ., vs, where vertex vi corresponds to the set Ti for any
1 ≤ i ≤ s. For each vertex vi (1 ≤ i ≤ s), we add k+t−|Ti|
edges from vi to k + t− |Ti| unique vertices in M . Here, by
unique, we mean that each vertex in M can be used at most
once when adding edges to vertices outside M . P consists
of t parts P1, P2, . . ., Pt, where each part Pi (1 ≤ i ≤ t)
corresponds to the element ei and Pi consists of s vertices
pi,1 ,pi,2, . . ., pi,s. For each Pi (1 ≤ i ≤ t) we first add s− 1
edges, that is, for each 1 ≤ j < s, we add an edge from pi,j
to pi,j+1. For each set Ti (1 ≤ i ≤ s) and each element ej
(1 ≤ j ≤ t), if ej ∈ Ti, we add an edge (vi, pj,i) in G. At
this stage, the degree of each vertex in P is at most 3. Next,
we add edges from vertices in P to unique vertices in M to
guarantee that the degree of each vertex in P is exactly k.
This can be done since k ≥ 3. Then the construction of G
is completed. Clearly, G is a k-core. Figure 2 (b) shows an
example of the graph G with k = 3 constructed from 3 sets

(a) k = 1 (b) k = 2 (can extend to
k > 2)

Figure 3: Examples for Non-submodular

and 4 elements.
The key idea is that we ensure that: (i) only vertices in

V need to be considered as collapsed vertices, since any
vertex in M or P cannot have more followers than a vertex
in V ; (ii) none of the vertices in M will be deleted during the
computation; (iii) all Pi have the same size for 1 ≤ i ≤ t; and
(iv) when a vertex vi (1 ≤ i ≤ s) is removed, for each part Pj

(1 ≤ j ≤ t) connected with vi (i.e., ej ∈ Ti), all vertices in
Pj will be deleted due to degree constraint. By doing this, the
optimal solution of the collapsed k-core problem corresponds
to optimal solution of the maximum coverage problem. Since
the maximum coverage problem is NP-hard, we prove that
the collapsed k-core problem is NP-hard for any k ≥ 3.

We also show the properties of monotone and non-
submodular towards the collapsed k-core problem in Theo-
rem 2.

Theorem 2. Let f(A) = |F(A)|. We have f is monotone
but not submodular for any k.

Proof. Suppose there is a set A′ ⊇ A. For every vertex u
in F(A), u will still be deleted in the collapsed k-core with
the collapsers set A′, because removing vertices in A′ \ A
cannot increase the degree of u. Thus f(A′) ≥ f(A) and f
is monotone. For two arbitrary collapsers sets A and B, if f
is submodular, it must hold that f(A ∪ B) + f(A ∩ B) ≤
f(A)+f(B). We show that the inequality does not hold using
counterexamples. When k = 1, we use the example shown in
Figure 3 (a). Suppose k = 1, A = {v1} and B = {v2}, we
have F(A∪B) = {v3, v4}, F(A∩B) = F(A) = F(B) =
∅, so the inequation does not hold. When k = 2, we use
the example shown in Figure 3 (b). Here, M is a complete
graph with 4 × k vertices. When k = 2, if A = {v1} and
B = {v2}, we have F(A ∪ B) = {v3, v4}, F(A ∩ B) =
F(A) = F(B) = ∅, so the inequation does not hold. When
k > 2, we add k − 2 edges between vi and M , for each
1 ≤ i ≤ 4. We can prove that for A = {v1} and B = {v2},
the inequation is still violated.

Solution

Motivation

A straightforward solution of the collapsed k-core problem
is to exhaustively enumerate all possible set A with size b,
and compute the resulting collapsed k-core for each possi-
ble A. The time complexity of O(

(
n
b

)
m) is cost-prohibitive.

Considering the NP-hardness of the problem, we resort to

247

Algorithm 1: GreedyCKC(G, k, b)

Input : G : a social network, k : degree constraint,
b : number of collapsers

Output : A : the set of collapsers
A := ∅; i := 0;1

while i < b do2

for each u ∈ Ck(GA) do3

Compute F (A ∪ u, G);4

u∗ ← the best collapser in this iteration;5

A := A ∪ u∗; i := i+ 1; update Ck(GA);6

return A7

the greedy heuristic which iteratively finds the best collapser,
i.e., the vertex with the largest number of followers. Clearly,
we only need to consider the vertices in Ck(GA) since all
other vertices will be deleted by degree constraint during
k-core computation. Thus, a greedy algorithm is shown in
Algorithm 1 with time complexity O(bnm), where n and m
correspond to the number of candidate collapsers in each iter-
ation (Line 3) and the cost of follower computation (Line 4),
i.e., k-core computation.

The number of vertices in Ck(GA) at Line 3 is still con-
siderably large, which motivates us to develop two effective
pruning rules to further reduce the candidate vertices in each
iteration of the greedy algorithm. Details are introduced in
the following subsection.

Reducing Candidate Collapsers

For presentation simplicity, in this subsection, we introduce
two pruning rules to find the vertex with the largest number
of followers in the first iteration of the greedy algorithm
(i.e., A = ∅). They can be immediately extended to the
following iterations of the greedy algorithm by using the
updated Ck(GA) to replace Ck(G).

Theorem 3 indicates that only vertices with degree k in
k-core and their neighbors in k-core can have followers. Par-
ticularly, P denotes the vertices in k-core of G with degree
k, while T represents vertices in P as well as their neighbors
within k-core.

Theorem 3. Given a graph G and the set P = {u :
deg(u,Ck(G)) = k}, if a collapsed vertex x has at least
one follower, x is from T where T = P ∪{u : u ∈ Ck(G) &
NB(u,G) ∩ P �= ∅}; that is |F(x,G)| > 0 implies x ∈ T .

Proof. We prove that a vertex x ∈ G \ T cannot have any
follower. (1) If x ∈ G \ Ck(G), x will be deleted in k-core
computation and hence |F(x)| = 0. (2) If x ∈ Ck(G) \ T ,
x survived in k-core computation and for each x’s neighbor
u within Ck(G), we have deg(u,Ck(G)) > k since x /∈ T .
Consequently, if x is deleted, we have deg(u,Ck(G)) ≥ k;
that is, the removal of x cannot be propagated to any of
its neighbors regarding degree constraint and hence other
vertices. It means x does not have any follower. Since (G \
Ck(G))∪ (Ck(G) \ T) ∪T = G, we have |F(x,G)| > 0
implies x ∈ T .

In the following theorem, we further reduce the candidate

Algorithm 2: CKC(G, k)

Input : G : a social network, k : degree constraint,
Output : x : the best collapser
Ck(G) := compute Ck(G);1

P := {u : deg(u,Ck(G)) = k};2

T := P ∪ {u : u ∈ Ck(G) & NB(u,G) ∩ P �= ∅};3

for each u ∈ T (Theorem 3) do4

Compute F (u, G);5

T := T \ F(u,G) (Theorem 4);6

return the best collapser7

vertices by excluding vertices which have been identified as
followers of other vertices.
Theorem 4. Given two vertices x and u in graph G, we have
F(u) ⊂ F(x) if u ∈ F(x).

Proof. u ∈ F(x) implies that u will be deleted if x is col-
lapsed. For every vertex in F(u), if x is collapsed, it will
also be deleted since u will be deleted and collapsing x can-
not increase degrees for vertices. Thus F(u) ⊆ F(x). Since
u ∈ F(x) and u /∈ F(u), we have F(u) ⊂ F(x).

According to Theorem 4, in the procedure of finding a
best collapser, every vertex which is a follower of a vertex
can be excluded from candidate collapsers. Consequently,
checking promising collapsers first, which may have large
number of followers, can skip more vertices in the computa-
tion. Naturally, a vertex with more neighbors in the set P is
more promising because all its neighbors in P will follow the
vertex to be deleted. Thus, to further reduce the number of
candidate collapsers, we try collapsing vertices in decreasing
order of their degrees in P .

CKC Algorithm

By taking advantage of two pruning rules in Theorems 3 and
4, Algorithm 2 illustrates the details of CKC algorithm which
finds the best collapser for a given graph G (i.e., b = 1).
Particularly, we first compute the k-core of graph G (Line 1)
and find the set P of vertices with degree k in Ck (Line 2).
According to Theorem 3, we find the set T of vertices in
P , and vertices which are inside Ck and are neighbors of
at least one vertex in P (Line 3). To compute F(u,G), we
can continue the k-core computation in Line 1 with vertex
u deleted (Line 5). We have the best collapser when the
algorithm terminates.

To handle the general case with b > 1, our CKC algorithm
can be easily fit to the greedy algorithm (replacing Line 3
and 4) to find the best collapser in each iteration. In order to
avoid the re-computation of P (Line 2) and T (Line 3) in the
following iterations, we incrementally update two sets at the
end of each iteration. Specifically, let P1 denote the vertices
whose degrees are decreased to k during the computation
and P2 denote the vertices which are discarded during the
computation, we have P = P ∪ (P1 \ P2); Towards the set
T , we include new vertices in NB(P1) and delete vertices in
NB(P2) which do not have any neighbor in the updated P .

Additionally, if we find a vertex u ∈ F (x) in one iteration
of Algorithm 1, x is always a better candidate collapser than u

248

Dataset Vertices Edges davg |C20|
Facebook 4,039 88,234 43.7 1,854
Brightkite 58,228 194,090 6.7 900
Gowalla 196,591 456,830 4.7 3,841
Yelp 552,339 1,781,908 6.5 20,839
YouTube 1,134,890 2,987,624 5.3 18,890
DBLP 1,566,919 6,461,300 8.3 29,564
Pokec 1,632,803 8,320,605 10.2 10,817
LiveJournal 3,997,962 34,681,189 17.4 469,951
Orkut 3,072,441 117,185,083 76.3 2,242,775

Table 2: Statistics of Datasets

in following iterations, because deleting other vertices cannot
change the fact that x has more followers than u (Theorem 4).
Actually, we do not need to consider u as a candidate in
following iterations because u will be excluded from k-core
whenever x is removed. In our implementation, we order
the candidates by their number of neighbors in P in each
iteration to prune more candidate collapsers.

Evaluation

This section evaluates the effectiveness and efficiency of the
proposed techniques through comprehensive experiments.

Experimental Setting

Algorithms To the best of our knowledge, there is no ex-
isting work investigating the collapsed k-core problem and
corresponding algorithms. In this paper, we implement and
evaluate the following algorithms.

• Baseline. The baseline greedy algorithm (Algorithm 1).
In each iteration, it conducts collapsed k-core computation
on every vertex in the updated k-core to find the best
collapser.

• CKC. The greedy algorithm in which collapsed k-core
algorithm (Algorithm 2) is used in each iteration.

Datasets 9 real-life networks are deployed in our experi-
ments and we assume all vertices in each network are initially
engaged. The original data of Yelp is from https://www.
yelp.com.au/dataset challenge, DBLP is from http://dblp.uni-
trier.de/ and the others are from http://snap.stanford.edu/.
Table 2 shows statistics of 9 datasets which are listed in
increasing order of their edge numbers.

All programs are implemented in standard C++ and com-
piled with G++ in Linux. All experiments are performed on
a machine with Intel Xeon 2.8GHz CPU and Redhat Linux
System. We evaluate the effectiveness of the algorithms by
reporting the number of the followers for resulting collapsers.
The efficiency of the algorithms is measured by running time
and the number of vertices accessed.

Effectiveness

We compare the number of followers produced by CKC with
the results of other approaches, and also conduct a case study
to demonstrate a detailed example of the collapsed k-core.

(a) 4 Datasets, k=20, b=20 (b) 5 Datasets, k=20, b=20

(c) Orkut, k=20 (d) LiveJournal, b=20

Figure 4: Number of the Followers

(a) Facebook, k=20 (b) Brightkite, b=2

Figure 5: Greedy vs Optimal

Effectiveness of the Greedy Algorithm Figure. 4 com-
pares the number of followers w.r.t b collapsers identified by
CKC algorithm with that of two other approaches, in which
one randomly chooses b collapsers from vertices in k-core
(Random) and the other chooses b collapsers in the candi-
date set T (Theorem 3) with the largest degrees (Degree).
For Random, we report the average number of the followers
for 100 independent testings . Figure. 4 (a) and (b) show that
although Degree based approach significantly improves the
performance, but it is outperformed by our approach with a
big margin. This implies that it is not effective to find col-
lapsers simply based on degree information. Figure 4 (c) and
(d) report the impact of b and k on the number of follow-
ers for CKC algorithm. The number of the followers clearly
grows with the increase of budget b. The number becomes
relatively small when k is small or large.

To further justify the effectiveness of the greedy approach,
we also compare its performance with that of optimal al-
gorithm (Optimal), which conducts exhaustively search on
two relatively small networks with b varying from 1 to 4 on
Facebook and k varying from 5 to 30 on Brightkite.
Figure 5 shows that the greedy algorithm achieves the optimal
solution except under one setting.

Case Study on DBLP Figure 6 depicts the collapser identi-
fied by the greedy algorithm on DBLP with b = 1 and k = 20
as well as the corresponding followers. For a clear presen-
tation, edges between each author and authors in k-core are
integrated as one edge. It is interesting that the author “Ying

249

Figure 6: Case Study on DBLP, k=20, b=1

(a) DBLP, k=20 (b) DBLP, b=20

Figure 7: Effectiveness of Reducing Candidate Collapsers

Li” alone has 74 followers, and only 12 of them are neighbors
of “Ying Li”. Moreover, we observe that the followers in-
cludes many professors and at least one IEEE fellow (Nalini
K. Ratha). This shows the overall engagement of the network
can be severely damaged by the leave of a few individuals.

Efficiency

We first investigate the efficiency of the individual techniques,
then compare our CKC algorithm with Baseline.

Evaluation of Individual Techniques Figure 7 reports the
number of visited vertices, i.e., the size of candidate col-
lapsers, in three algorithms. Algorithm Baseline+ represents
Baseline algorithm equipped with candidate collapsers re-
ducing technique (Theorem 3). We can see the number of
visited vertices significantly drops by Theorem 3 on DBLP
for different k and b. It is reported that Theorem 4 further
reduces the number of candidate collapsers, which is used in
algorithm CKC.

Performance Evaluation Figures 8 (a) and (b) report the
performance of two algorithms on 9 networks with k = 20
and b = 20. Datasets are ordered by their network sizes (i.e.,
the number of edges) where the largest network Orkut has
117 million edges. We can see CKC runs several times faster
than Baseline on all datasets. It is shown that CKC is also
scalable to the growth of the network size, which identifies a
set of 20 collapsers in 110 seconds on Orkut. Figures 8 (c)

(a) 4 Datasets, k=20, b=20 (b) 5 Datasets, k=20, b=20

(c) Orkut, k=20 (d) Orkut, b=20

Figure 8: Performance of the Algorithms

and (d) study the impact of k and b on two algorithms against
Orkut, with b varying from 1 to 100 and k ranging from 5
to 50. We can see CKC is scalable towards the growth of b
and outstanding on running time for different k, especially
for small or large k. It is reported that CKC significantly
outperforms Baseline under all settings.

Related Work

k-core computation is first introduced by Seidman (Seidman
1983) and becomes a fundamental graph problem with a wide
spectrum of applications such as social contagion (Ugan-
der et al. 2012), network analysis (Adiga and Vullikanti
2013), network visualization (Zhang and Parthasarathy 2012;
Zhao and Tung 2012), event detection (Meladianos et al.
2015), internet topology (Carmi et al. 2007), dense sub-
graph problems (Andersen and Chellapilla 2009), influence
study (Kitsak et al. 2010; Vogiatzis 2013), graph cluster-
ing (Giatsidis et al. 2014), graph model validation (Healy et
al. 2006), structure analysis of software system (Zhang et
al. 2010), and protein function prediction (Altaf-Ul-Amine
et al. 2003). There are multiple studies for core number
computation under different settings including a linear-time
in-memory algorithm (Batagelj and Zaversnik 2003), I/O
efficient algorithms (Wen et al. 2016; Cheng et al. 2011),
locally computing and estimating (Cui et al. 2014) and core
number maintenance on dynamic graphs (Aksu et al. 2014;
Zhang et al. 2016).

The engagement dynamic in social networks has attracted
significant focus, e.g., (Wang et al. 2016; Chwe 2000;
Bhawalkar et al. 2015; Malliaros and Vazirgiannis 2013;
Wu et al. 2013; Chitnis, Fomin, and Golovach 2013; 2016).
The k-core becomes more and more popular in social studies,
because its degeneration property can be used to quantify
engagement dynamics in real social networks (Malliaros and
Vazirgiannis 2013). In the problem of anchoring b vertices
to increase the k-core size (Bhawalkar et al. 2015), we need
to consider the vertices not in k-core because it is useless to
anchor vertices already in k-core. This is different from the
problem of collapsed k-core, where the deletion of a vertex

250

not in k-core will not affect the resulting k-core. As men-
tioned in the proof of NP-hardness, the independent set and
the maximum coverage problems can match certain cases of
the collapsed k-core problem, thus their solutions may be
helpful in solving special cases of our problem, while they
cannot be applied to solving the complete problem. To the
best of our knowledge, our paper is the first to study the col-
lapsed k-core problem to find critical users for social network
engagement.

Conclusion
In this paper, we propose and study the problem of collapsed
k-core, which intends to find a set of vertices whose deletion
can lead to the smallest k-core of the network. We prove
the problem is NP-hard for any given k. An efficient algo-
rithm is proposed, which significantly reduces the number
of candidate vertices to speed up the computation. Empirical
study shows our method can find critical users in the network
whose leave leads a large number of users to drop out. Ex-
tensive experiments on 9 real-life networks demonstrate our
method is scalable on large size networks.

Acknowledgments
Ying Zhang is supported by ARC DE140100679 and
DP170103710. Lu Qin is supported by ARC DE140100999
and DP160101513. Wenjie Zhang is supported by ARC
DP150103071 and DP150102728. Xuemin Lin is supported
by NSFC61232006, ARC DP150102728, DP140103578 and
DP170101628.

References
Abello, J., and Queyroi, F. 2013. Fixed points of graph peeling.
In ASONAM, 256–263.
Adiga, A., and Vullikanti, A. K. S. 2013. How robust is the core
of a network? In ECML-PKDD, 541–556.
Aksu, H.; Canim, M.; Chang, Y.-C.; Korpeoglu, I.; and Ulusoy,
Ö. 2014. Distributed-core view materialization and maintenance
for large dynamic graphs. TKDE 26(10):2439–2452.
Altaf-Ul-Amine, M.; Nishikata, K.; Korna, T.; Miyasato, T.;
Shinbo, Y.; Arifuzzaman, M.; Wada, C.; Maeda, M.; Oshima, T.;
Mori, H.; et al. 2003. Prediction of protein functions based on
k-cores of protein-protein interaction networks and amino acid
sequences. Genome Informatics 14:498–499.
Andersen, R., and Chellapilla, K. 2009. Finding dense sub-
graphs with size bounds. In WAW, 25–37.
Batagelj, V., and Zaversnik, M. 2003. An o(m) algorithm for
cores decomposition of networks. CoRR cs.DS/0310049.
Bhawalkar, K.; Kleinberg, J. M.; Lewi, K.; Roughgarden, T.; and
Sharma, A. 2015. Preventing unraveling in social networks: The
anchored k-core problem. SIAM J. Discrete Math. 29(3):1452–
1475.
Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; and Shir, E.
2007. A model of internet topology using k-shell decomposition.
PNAS 104(27):11150–11154.
Cheng, J.; Ke, Y.; Chu, S.; and Özsu, M. T. 2011. Efficient core
decomposition in massive networks. In ICDE, 51–62.
Chitnis, R. H.; Fomin, F. V.; and Golovach, P. A. 2013. Prevent-
ing unraveling in social networks gets harder. In AAAI.

Chitnis, R.; Fomin, F. V.; and Golovach, P. A. 2016. Parame-
terized complexity of the anchored k-core problem for directed
graphs. Inf. Comput. 247:11–22.
Chwe, M. S.-Y. 2000. Communication and coordination in so-
cial networks. The Review of Economic Studies 67(1):1–16.
Cui, W.; Xiao, Y.; Wang, H.; and Wang, W. 2014. Local search
of communities in large graphs. In SIGMOD, 991–1002.
Garcia, D.; Mavrodiev, P.; and Schweitzer, F. 2013. Social
resilience in online communities: the autopsy of friendster. In
COSN, 39–50.
Giatsidis, C.; Malliaros, F. D.; Thilikos, D. M.; and Vazirgiannis,
M. 2014. Corecluster: A degeneracy based graph clustering
framework. In AAAI, 44–50.
Healy, J.; Janssen, J.; Milios, E. E.; and Aiello, W. 2006. Char-
acterization of graphs using degree cores. In WAW, 137–148.
Karp, R. M. 1972. Reducibility among combinatorial problems.
In Complexity of Computer Computations, 85–103.
Kitsak, M.; Gallos, L. K.; Havlin, S.; Liljeros, F.; Muchnik, L.;
Stanley, H. E.; and Makse, H. A. 2010. Identification of influen-
tial spreaders in complex networks. Nature Physics 6(11):888–
893.
Malliaros, F. D., and Vazirgiannis, M. 2013. To stay or not to
stay: modeling engagement dynamics in social graphs. In CIKM,
469–478.
Meladianos, P.; Nikolentzos, G.; Rousseau, F.; Stavrakas, Y.;
and Vazirgiannis, M. 2015. Degeneracy-based real-time sub-
event detection in twitter stream. In ICWSM, 248–257.
Seidman, S. B. 1983. Network structure and minimum degree.
Social Networks 5(3):269–287.
Ugander, J.; Backstrom, L.; Marlow, C.; and Kleinberg, J. 2012.
Structural diversity in social contagion. PNAS 109(16):5962–
5966.
Vogiatzis, D. 2013. Influence study on hyper-graphs. In AAAI.
Wang, X.; Donaldson, R.; Nell, C.; Gorniak, P.; Ester, M.; and
Bu, J. 2016. Recommending groups to users using user-group
engagement and time-dependent matrix factorization. In AAAI.
Wen, D.; Qin, L.; Zhang, Y.; Lin, X.; and Yu, J. X. 2016. I/O
efficient core graph decomposition at web scale. In ICDE, 133–
144.
Woeginger, G. J. 2001. Exact algorithms for np-hard problems:
A survey. In Combinatorial Optimization, 185–208.
Wu, S.; Sarma, A. D.; Fabrikant, A.; Lattanzi, S.; and Tomkins,
A. 2013. Arrival and departure dynamics in social networks. In
WSDM, 233–242.
Zhang, Y., and Parthasarathy, S. 2012. Extracting analyzing and
visualizing triangle k-core motifs within networks. In ICDE,
1049–1060.
Zhang, H.; Zhao, H.; Cai, W.; Liu, J.; and Zhou, W. 2010. Us-
ing the k-core decomposition to analyze the static structure of
large-scale software systems. The Journal of Supercomputing
53(2):352–369.
Zhang, Y.; Yu, J. X.; Zhang, Y.; and Qin, L. 2016. A fast order-
based approach for core maintenance. CoRR abs/1606.00200.
Zhao, F., and Tung, A. K. H. 2012. Large scale cohesive sub-
graphs discovery for social network visual analysis. PVLDB
6(2):85–96.

251

